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Abstract. Rainfall-induced landslides (RILs) are an is-
sue in the southern Andes nowadays. RILs cause loss of
life and damage to critical infrastructure. Rainfall-induced
landslide early warning systems (RILEWSs) can reduce
and mitigate economic and social damages related to RIL
events. The southern Andes do not have an operational-
scale RILEWS yet. In this contribution, we present a pre-
operational RILEWS based on the Weather and Research
Forecast (WRF) model and geomorphological features cou-
pled to logistic models in the southern Andes. The models
have been forced using precipitation simulations. We correct
the precipitation derived from WRF using 12 weather sta-
tions through a bias correction approach. The models were
trained using 57 well-characterized RILs and validated by
ROC analysis. We show that WRF has strong limitations in
representing the spatial variability in the precipitation. There-
fore, accurate precipitation needs a bias correction in the
study zone. We used accurate precipitation simulation and
slope, demonstrating a high predicting capacity (area under
the curve, AUC, of 0.80). We conclude that our proposal
could be suitable at an operational level under determined
conditions. A reliable RIL database and operational weather
networks that allow real-time correction of the mesoscale
model in the implemented zone are needed. The RILEWSs
could become a support to decision-makers during extreme-
precipitation events related to climate change in the south of
the Andes.

1 Introduction

Rainfall-induced landslides (RILs) are natural hazards that
generate a large number of casualties and economic losses
every year. Rainfall, soil, and slope play a key role in RIL
genesis that must be evaluated in each case. Despite RIL
research in recent years, RILs cannot be avoided. Rainfall-
induced landslide early warning systems (RILEWSs) be-
come a powerful alternative for mitigating human losses
and reducing infrastructure damage (Guzzetti et al., 2020;
Chikalamo et al., 2020; Hermle et al., 2021). The increase
in RIL events showed devastating effects, including loss of
human life and destruction of the natural and urban environ-
ment (Marjanović et al., 2018). Recent RILs affected critical
infrastructure and highways in populated areas (Chikalamo
et al., 2020; Fustos et al., 2020a; Peruccacci et al., 2017;
Fustos et al., 2021). In South America, RILs have caused
high social and economic impacts; they require better eval-
uation in future (Sepulveda and Petley, 2015). The present
work evaluates the design of a RILEWS using a mesoscale
atmospheric model coupled to a logistic model to mitigate
the effect of RILs in the southern Andes.

Due to new extreme rainfall events related to climate
change, RIL events are increasing in the southern Andes and
other parts of the world. To mitigate the impact of extreme-
precipitation RILEWSs have gained interest to mitigate the
impact of RILs using different approaches (Peres and Can-
celliere, 2014; Tiranti et al., 2014; Sättele et al., 2015; Segoni
et al., 2018; Cremonini and Tiranti, 2018; Fan et al., 2019;

Published by Copernicus Publications on behalf of the European Geosciences Union.



2170 I. Fustos-Toribio et al.: Rainfall-induced landslide early warning system

Tiranti et al., 2019; Thirugnanam et al., 2020; Bernard and
Gregoretti, 2021; Lee et al., 2021). RILEWSs based on pre-
cipitation thresholds show good agreement but do not con-
sider the effect of soil moisture, leading to bias in their
predictive capacity (Marra et al., 2017; Zhao et al., 2019;
Chikalamo et al., 2020). Some historically based RILEWSs
with long-term observations, climate reanalysis models, and
atmospheric mesoscale models experience issues related to
the spatial and temporal resolution, reducing the perfor-
mance due to low precipitation accuracy (Lazzari and Pic-
carreta, 2018; Tichavský et al., 2019).

RILEWSs require accurate precipitation data delivered
from local weather stations in dense weather networks, satel-
lite estimations, and atmospheric mesoscale models. How-
ever, atmospheric mesoscale models were shown to be in-
capable of representing accurate precipitation fields in areas
with complex topography like the southern Andes (Yáñez-
Morroni et al., 2018). Currently, mesoscale models are re-
stricted to the quality of their atmospheric forcings, requir-
ing ensembles to be generated to obtain approximate solu-
tions (Wayand et al., 2013). Moreover, the mesoscale mod-
els demand intensive computational efforts that increase the
difficulty of coupling to RILEWSs (Yáñez-Morroni et al.,
2018; Schumacher et al., 2020; Yang et al., 2021). Recently,
mesoscale atmospheric models coupled to local weather sta-
tions have allowed the delimitation of areas susceptible to
RILs by means of deterministic numerical models (Fustos
et al., 2020a). Nowadays, bias correction approaches con-
tribute to reducing the time needed to compute mesoscale
models, improving the estimation of precipitation using in
situ stations (Srivastava et al., 2015; Bannister et al., 2019;
Heredia et al., 2018; Jeong and Lee, 2018; Osman et al.,
2021; Worku et al., 2020). Therefore, a correct implemen-
tation of mesoscale models could allow accurate precipita-
tion in RILEWSs. Nonetheless, the application of corrected
mesoscale models in RILEWSs in complex topography has
not been evaluated yet.

The objective of the present work was to evaluate the
implementation of a RILEWS based on a mesoscale atmo-
spheric model coupled to a logistic model. We corrected
mesoscale models (models that allow atmospheric processes
to be represented at the synoptic scale) using weather sta-
tions, generating likely-RIL probability zones for the first
time in the southern Andes. The paper is structured as fol-
lows: after the introduction, the second section describes the
study site and its pertinence to implement RILEWSs. In the
third section, we describe the data and methods, including
the calibration and validation procedures. In the fourth sec-
tion, we outline the main results of the proposed RILEWS,
focusing on the quality of predictors and model outputs. The
fifth and final section comprises the discussion and conclu-
sions, presenting the implications of this proposal and their
general applicability to the southern Andes.

Figure 1. Study area in the southern Andes zone and the northern
part of the Patagonian Andes. RIL events in the area are highlighted
with yellow dots, and red stars mark the meteorological stations
available. Hillshade based on Shuttle Radar Topography Mission
(SRTM) data.

2 Study area

We evaluated the implementation of RILEWSs in the south-
ern Andes and the northern part of the Patagonian Andes (∼
40.0–42.5◦ S,∼ 72.0–73.5◦W; Fig. 1). A prolonged increase
in RIL events in this area took place during the period 2012–
2019, generated by extreme-precipitation events (Espinoza
et al., 2019). The area presents three principal morphologi-
cal units in bands oriented north–south. From west to east,
they are the Coastal Range, the Central Valley and the An-
des Range (Fig. 1). In the western area, altitudes range from
100–1000 m a.s.l., with slopes between 0 and 25◦. In the cen-
tral valley, the maximum altitude is 150 m.a.s.l., with slopes
between 0 and 15◦ in the central part and between 25 and
45◦ towards the Andes. Finally, the highest altitudes (400
to 2700 m a.s.l.) and the steepest slopes (25–70◦) are found
in the eastern zone (Gomez-Cardenas and Garrido-Urzua,
2018).

Average annual precipitation is strongly correlated with to-
pography and latitude. In the northern segment (∼ 40◦33′–
∼ 41◦10′ S) it is over 1200 mm per year, while in the south
(∼ 41◦10′–∼ 42◦10′ S) it rises to over 1400 mm per year.
In the Central Valley, the precipitation exceeds 1910 mm
per year. The highest precipitation is recorded in the Andes
Range, of over 4000 mm (Alvarez-Garreton et al., 2018). The
climate in the area is classified as oceanic climate (Beck et
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al., 2018) with a dry summer in the northern portion, but no
dry months in the south (Alvarez-Garreton et al., 2018).

The oldest geological units in the area correspond to Cre-
taceous intrusive bodies which emerge in the Rupanco Lake
peninsula and further south. In the Coastal Range, there
are outcrops of metamorphic rocks from the Paleozoic–
Triassic (300–250 Ma). These rocks are largely covered by
sedimentary deposits of various origins: marine from the
Oligocene–Miocene (eastern flank of the Coastal Range),
volcanic from the Oligocene–Miocene (40 to 5 Ma; south of
Rupanco Lake), and glacial from the Pleistocene–Holocene.
In the south-east of the region is the North Patagonian
Batholith (132–77 Ma), consisting of granites, granodiorites,
tonalites, and leucogranites (Gomez-Cardenas and Garrido-
Urzua, 2018). Elsewhere in the region, there are clayey
soils called trumaos and ñadis, which have developed from
glacial–fluvial–volcanic sediments. These soils present a
high organic content, poor drainage, and low development
(Blanco and de la Balze, 2020).

3 Methodology

We assessed the feasibility of a RILEWS applied to RILs
using geomorphological and precipitation forcings for the
southern Andes. We consider an approximation of the prob-
ability of occurrence of RILs through logistic distributions.
The probability allows a spatialization of “likely-landslide”
or “not likely-landslide” conditions under established pre-
cipitation and topographical conditions. Precipitation data
and local geomorphological features were integrated into a
logistic model as predictors to evaluate the occurrence of
RILs. These variables were taken into account because both
the precipitation and the topography predispose the study
area to RILs (Fustos et al., 2017, 2020a). We do not use
additional data, such as soil moisture or climatic index, to
avoid complex models, allowing fast estimations into an op-
erational stage. We used a RIL database (Gomez-Cardenas
and Garrido-Urzua, 2018) separated into calibration sub-
database and validation sub-database to evaluate the models’
performance. The bias associated with the precipitation ob-
tained from the mesoscale model was corrected using in situ
stations (Fig. 2). To establish the reliability of the model for
the correct prediction of RILs, its sensitivity was calculated
using the validation subset. This allowed the RIL prediction
sensitivity to be characterized for operational implementa-
tion in future RILEWSs.

3.1 Atmospheric modelling

The study area contains a limited number of meteorologi-
cal stations, making representing the spatial distribution of
precipitation a challenge. To overcome the limitation im-
posed by the meteorological data, precipitation fields were
estimated using the Weather and Research Forecast model

Figure 2. Short methodological description. The first phase is ex-
plained in detail in Sect. 3.1, and the second stage is explained in
Sect. 3.2 and 3.3.

4.0 (WRF; Skamarock et al., 2019). Atmospheric conditions
were simulated for the period 2014 to 2018 at hourly time
resolution. We used a spatial resolution of 4 km that allows
the representation of the complex topography of the Andes.
WRF parameterization followed the WSM 3-Class Simple
Ice Scheme microphysical model (Hong et al., 2004), while
the soil–atmosphere interaction was parameterized by the
Unified Noah Land-Surface Model (Tewari et al., 2004). The
Final Operational Global Analysis product from the US Na-
tional Centers for Environmental Prediction (NCEP), also
known as FNL (NCEP, 2000), was used as the global forc-
ing to obtain the solutions of precipitation at 4 km or the
mesoscale (resolution on the order of kilometres).

The precipitation fields of the WRF model were compared
with 12 meteorological stations available in the area to eval-
uate the bias of the numerical model (Fig. 1). Biases as-
sociated with local effects of the parameterization selected
in WRF were corrected by MeteoLab (Wilcke, 2013) us-
ing three different methods. The first approach corresponds
to the PP_M4A method with a perfect prognosis approach
(San-Martin et al., 2017). The perfect prognosis establishes
statistical relationships between the variables at large and
local scales. The physical processes on intermediate scales
could be ignored (Maraun et al., 2010). The second approach,
corresponding to the ISI_MIP method, corrects at different
timescales using the monthly mean followed by correction
of the daily variability about the monthly mean (Hempel et
al., 2013). The ISI_MIP method requires a long time se-
ries of data, requiring weather stations with little gaps in the
data. The last method corresponds to BC_QPQM, which fo-
cuses on extreme-value correction and its effects on the bias
correction on the temporal change signal. The methodology
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requires weather stations without data gaps in the time se-
ries. In some cases, outliers exist, showing problems when
correcting these situations (Gutjahr and Heinemann, 2013).
We compared the three methods with WRF without correc-
tions using different statistics functions such as bias, MAE,
RMSE, and Pearson and Spearman correlation coefficients.
Subsequently, the model corrected with the lowest RMSE in
precipitation was used in a RILEWS implementation.

3.2 Rainfall-induced landslide early warming

We propose a model for RILEWSs based on the probabil-
ity of occurrence of RILs in space and time. The proba-
bility was determined using logit and probit logistic distri-
bution functions, which have been implemented previously
in the southern Andes (Fustos et al., 2017, 2020b). The ad-
vantage of logistic regressions is that they establish statisti-
cal relations between physical processes at different scales
with a limited quantity of information (Fustos et al., 2020b).
The logistic regressions were trained based on the local ge-
omorphological conditions (slope) and previously modelled
and corrected precipitation simulations. We used slope val-
ues derived from SRTM data with a spatial resolution of
30 m. A limited number of 4987 RILs have been reported
for the south of Chile (Gomez-Cardenas and Garrido-Urzua,
2018). However, 2035 RILs exist in the zone, and only 57
RIL events have an exact date. The final database considers
mudflow, debris flow, and mass wasting. The current dataset
is the most comprehensive landslide catalogue for the zone
in comparison to well-validated global datasets such as the
Global Landslide Catalog (GLC) (Kirschbaum et al., 2010)
and the Global Fatal Landslide Database (GFLD) (Froude
and Petley, 2018) developed into other studies (Destro et al.,
2017; Rossi et al., 2017; Wang et al., 2021).

The logit distribution model fit the probability of occur-
rence of an event using a logistic curve (Li et al., 2011). The
logit distribution model (L) is given by

L(yi = 1)=
exp(βo′+6Nk=1β

′

kXk)

1+ exp(βo′+6Nk=1β
′

kXk)
, (1)

where L(yi = 1) is the probability of occurrence of a RIL, N
is the number of predictors used (Xk), β ′k is the coefficient
of the function, and βo′ is the intercept. A probit distribution
also uses binary dependent variables, and its main difference
from the logit distribution is the use of the inverse standard
normal distribution. The probit distribution (P ) (McCullagh
and Nelder, 1989) is given by

P(yi = 1)=8−1
(
βo+6

N
k=1βkXk + ε

)
, (2)

where k, β, and Xk refer to the same variables as the logit
distribution, ε is the error in the fit with standard normal dis-
tribution ε ∼N(0,6), and 8−1 denotes an inverse normal
probability function (McCullagh and Nelder, 1989). Four
predictors were used for both the logit and probit functions,

daily precipitation, precipitation over the previous 7 and 30 d,
and slope (Table 1). The complete RIL database was split
into a calibration sub-base (DB1) and an independent cali-
bration validation sub-base (DB2) for subsequent evaluation
(Fig. 2). The database was split by taking between 20 % and
30 % of the data, chosen at random, for calibration. A cali-
bration set was selected 100 times to obtain βk and β ′k , and
their standard deviations denoted by ωk and β ′k , respectively,
calculated according to the methodology presented by Fustos
et al. (2020b).

3.3 Performance assessment

The quality of each regression was evaluated by ROC anal-
ysis (Fawcett, 2006) using the independent database DB2
(Fig. 2). The DB2 has georeferenced the initial failure zone.
We compared the initial failure zone to the pixel of our mod-
els (pixel that includes the point). This allowed us to under-
stand the degree of accuracy in identifying a RIL event under
determined conditions of slope and precipitation. A proba-
bility threshold (tolerance) was established to define the in-
stant when the models identify a RIL event correctly. The
tolerance was defined from the results of the ROC curve for
probability thresholds between 50 % and 95 %. In this way,
the sensitivity of each iteration was estimated (Eq. 3), rep-
resenting the capacity of the set of estimators to detect RIL
events correctly (Fawcett, 2006; Hand and Till, 2001). The
sensitivity (S) was defined as the ratio of true-positive (TP)
predictions of events to the total of positive events (includ-
ing false-negative, FN, predictions). The specificity (E) was
also calculated (Eq. 4) to evaluate the capacity of detection of
non-RIL events or true negative (TN) to avoid false positives
(FP) (Fawcett, 2006). Therefore, this methodology made it
possible to evaluate the capacity of each model to detect RIL
events (Fustos et al., 2020b). We propose that the threshold
must be suitable to separate a likely-landslide event from a
non-likely-landslide event. The threshold maximizes the sen-
sibility in the four models with different degrees of perfor-
mance of RILEWSs.

S =
TP

TP+FN
(3)

E =
TN

TN+FP
(4)

4 Results

This work evaluated a new RILEWS based on two logis-
tic models and forced by geomorphological and atmospheric
conditions on a mesoscale in the southern Andes. We anal-
ysed the quality of the representation of atmospheric con-
ditions of our RILEWS based on logistic identifiers and the
performance in identifying RILs correctly in areas with com-
plex topography.
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Table 1. Models and predictors incorporated.

Daily precipitation 7 d accumulated 30 d accumulated Slope
precipitation precipitation

Model 1 Considered – – Considered
Model 2 – Considered – Considered
Model 3 – – Considered Considered
Model 1 Considered Considered – Considered

4.1 Atmospheric modelling

The uncertainty in precipitation is a critical factor for
RILEWSs (Guzzetti et al., 2020; Chikalamo et al., 2020).
The uncorrected precipitation simulation showed low (∼
0.26–0.49) to medium (∼ 0.32–0.67) correlation values
(Pearson and Spearman correlation coefficients) in compari-
son to in situ weather stations. Our results showed a spatial
dependence of the precipitation error between the mesoscale
model and weather station. Stations located in the SW and
NW extremes of the domain presented low correlations in
comparison to the WRF model (Fig. 3). Moreover, the me-
teorological stations in the eastern zone had RMSE between
16.33 and 18.00 mm, respectively. The RMSE for the rest
of the stations ranged between 8.79 and 12.24 mm. Mean-
while, MAE showed similar values for all the stations (3.44–
6.67 mm), while the bias varies between −4.0 and 5.2 mm,
except in the stations on the W and SE borders (Fig. 4).
Therefore, our results showed that the atmospheric model did
not represent the spatial and temporal distribution of the pre-
cipitation. The corrected precipitation model showed higher
performance in RMSE, correlation, and bias than in the orig-
inal simulations (Fig. 3). The methods of the perfect prog-
nosis (PP_M4A) family gave better performance than bias
correction (BC) methods. The PP_M4a method generated
smaller errors in the corrected fields compared to meteo-
rological stations. The best-performing BC method, gpQM,
did not diminish the MAE, which increased by 0.05 mm on
average compared to the uncorrected model, but it did im-
prove the RMSE by 2.47 mm on average (Fig. 3). Finally,
the Spearman correlation coefficient produced a lower corre-
spondence with the observations than the uncorrected simu-
lation did. Therefore, our results showed that the mesoscale
correction allows the rainfall representation quality to be im-
proved.

The precipitation fields corrected with different ap-
proaches of MeteoLab showed improved values in weather
stations in comparison to the raw solution. The corrected
ISI_MIP results were similar to those described for PP_M4a,
but with slightly larger error values. Both ISI_MIP and
PP_M4a presented a bias lower than 0.5 mm. The gpQM
method varied between −2.69 and 0.95 mm (Fig. 3). We
point out that the PP_M4a method showed the best per-
formance considering MAE and the RMSE (∼ 0.04 and

∼ 0.23 mm, respectively). The Spearman correlation coeffi-
cient ranged between 0.90 and 0.98, increasing the quality
of representation of the precipitation fields in comparison to
weather stations.

4.2 Rainfall-induced landslide early warning

The probability of occurrence of RILs at the spatial and
temporal scale was estimated using the precipitation val-
ues corrected using the PP_M4a approach. The results
of the logit regression (Table 2) showed that the weight
of the intercept varied by a maximum of ∼ 0.36 units
for the four models, varying between 3.1658± 0.0091
and 3.5235± 0.0069 (Fig. 5). The β ′k estimators cor-
responding to the daily precipitation fluctuated between
−0.8176± 0.0089 and −0.8124± 0.0066 (1 mm−1), while
for the precipitation of the previous 7 d the estimator var-
ied from −0.6413± 0.0063 to 0.0020± 0.0086 (1 mm−1).
The indicator obtained for the monthly precipitation was
−0.3518± 0.0033 (1 mm−1) (used exclusively for the M3
model), while the slope estimator fluctuated between
−0.1696± 0.0049 and −1289± 0.0072 (1 per degree)
(Fig. 5).

We point out that estimators related to the precipitation
had a higher absolute weight than the slope for all the mod-
els calibrated. The precipitation used in daily (M1), previous
7 d (M2), or previous 30 d (M3) models showed a decreasing
value (in absolute terms) as the accumulated precipitation pe-
riod increased. The results of the PP_M4a model, which con-
sidered the daily precipitation in conjunction with that of the
previous 7 d, showed that the latter had an absolute weight
of almost zero compared to the former. In general, the stan-
dard deviations (σk) obtained from the estimators and inter-
cept were very low for all the logit models calibrated. The
probit model (Table 3) showed the same behaviour (as the
logit) of the intercept for the four models; its estimator fluctu-
ated between 1.7482± 0.0041 and 1.9113± 0.0030. The βk
values for daily precipitation varied from −0.4166± 0.0046
to −0.4016± 0.0027, the values for 7 d precipitation var-
ied from −0.3545± 0.0029 to −0.0202± 0.0038, the val-
ues for 30 d precipitation were at −0.1897± 0.0020 (just
used in M3), and the slope varied from −0.0741± 0.0022
to −0.0596± 0.0033 (Fig. 6).
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Figure 3. Precision and reliability indicators. Bias (mm), MAE (mm), RMSE (mm), and Spearman correlation coefficient. WRF is the
uncorrected model, while the other models are the different methodologies used for correction by MeteoLab.

Table 2. Values of the estimators for the logit models. False-positive rate (FPR) and true-positive rate (TPR) were evaluated with a threshold
of 95 %.

Intercept Daily precipitation 7 d 30 d Slope FPR TPR
accumulated accumulated
precipitation precipitation

Model 1 3.5235± 0.0069 −0.8176± 0.0089 – – −0.1696± 0.0049 0.3788 0.8791
Model 2 3.3582± 0.0067 −0.6413± 0.0063 −0.1365± 0.0086 0.2750 0.7141
Model 3 3.1658± 0.0091 – – 0.3518± 0.0033 −0.1289± 0.0072 0.6309 0.8376
Model 4 3.5206± 0.0106 −0.8124± 0.0066 0.0020± 0.0086 – –0.1675± 0.0080 0.3956 0.8731

4.3 Performance assessment

ROC analysis of the logit and probit models showed that the
M1, M2, and M4 models gave a similar performance (Figs. 7
and 8). The area under the curve for the logit models var-
ied between 0.8032 and 0.6672, while for the probit models
it varied between 0.8076 and 0.6672. Our results showed a
lack of performance for M3 in comparison to daily precipita-
tion data for logit and probit models (0.6582 and 0.6672, re-
spectively). Models with area-under-the-curve, AUC, values
equal to 0.5 indicate that they are not suitable for discriminat-
ing the landslides and that they generate random predictions.
Therefore, our results demonstrate that the calibrated models
do not do a random fitting. The rate of valid positives in the
logit distributions of the M1 and M4 models was higher than
0.97 with tolerances below 50 %. For the same range, how-
ever, the rate of FP was over 45 %. The same occurred with
the probit models. For a tolerance of 95 %, the prediction of
FN for both regressions diminished to below 40 %, although
the accurate predictions (TP) also fell by ∼ 11 %. Similar
performance was observed in M2, with slightly higher num-
bers of FP, but fewer than the proportion of TP. M3 in contrast
presented rates of accurate predictions and FN close to 1 for

thresholds lower than 85 %. In general, we observe that the
probit models had greater AUC values than the logit, making
them more suitable for RILEWSs.

The logit and probit regressions for M1 and M4 pre-
sented the highest sensitivity values, of 91.79± 1.95 % and
91.81± 2.00 %, respectively, for the logit regressions (Ta-
ble 4). In the probit models, M1 and M4 achieved sensitiv-
ity values of 91.25± 1.96 and 91.16± 2.03 %, respectively.
Likewise, M2 had a sensitivity of 87.07± 2.93 % for logit
and 86.19± 2.79 % for probit. The sensitivity of M3 was
83.89± 5.46 % for logit and 82.94± 5.21 for probit (Ta-
ble 4). In general, we observed that the logit models were
more sensitive than the probit. The specificity values for the
M2 and M3 models were subtly higher for the probit regres-
sions than for the logit, while for the M1 and M4 models the
results obtained were almost equal.

According to this, the best model for predicting RILs in the
study area was M1 (daily precipitation and slope). The sen-
sitivity and specificity values with the 95 % threshold cho-
sen after ROC analysis were higher than 82 %. The results
showed that the indicators were similar for the M1, M3, and
M4 models (Table 4). However, a reduction was observed in
the rate of TP for the M2 model (∼ 10 %).
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Figure 4. Statistical assessment of the model-corrected data versus weather station data using the best results (PP_M4a). (a) BIAS of the
simulation in comparison with stations, (b) MAE of the simulation in comparison with stations, (c) RMSE of the simulation in comparison
with stations, (d) Spearman correlation coefficient of the simulation in comparison with stations. Hillshade based on SRTM data.

Table 3. Values of the estimators for the probit models. False-positive rate (FPR) and true-positive rate (TPR) were evaluated with a threshold
of 95 %.

Intercept Daily precipitation 7 d 30 d Slope FPR TPR
accumulated accumulated
precipitation precipitation

Model 1 1.9113± 0.0030 −0.4166± 0.0046 – – −0.0741± 0.0022 0.3562 0.87136
Model 2 1.8490± 0.0031 – −0.3545± 0.0029 – −0.0675± 0.0038 0.2822 0.7305
Model 3 1.7482± 0.0041 – – −0.1897± 0020 -0.0596± 0.0033 0.6130 0.8280
Model 4 1.9110± 0.0044 −0.4016± 0.0027 −0.0202± 0.0038 – −0.0732± 0.0040 0.3900 0.8632

5 Analysis and discussion

Implementing RILEWSs is a challenge due to natural limita-
tions like historical records and the precipitation data avail-
able. One of the main challenges in RILEWSs corresponds
to the development of a model that generates warning only

using limited meteorological information. Therefore, precip-
itation representation characterized by a low uncertainty in
complex topography environments is a valuable contribution
(Table 4). Our study proposes an alternative to landslide fore-
casting in data-scarce environments, allowing the resilience
of the local community to be increased. Here, we demon-
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Figure 5. Distribution of estimators for each model with logit distribution.

Figure 6. Distribution of estimators for each model with probit distribution.

strate that the mesoscale models become suitable for repro-
ducing the spatial precipitation distribution with a bias cor-
rection using in situ weather stations. The precipitation was
integrated into a logistic model subsequently to establish the
spatial probability of occurrence of a RIL event.

5.1 Atmospheric modelling

Implementation of a RILEWS applied to RILs requires ac-
curate estimation of the spatial distribution of precipitation.
Zones with a low density of meteorological stations gener-

ate uncertainties in the RILEWS implementation (Marra et
al., 2018; Peres et al., 2018). The emergence of mesoscale
atmospheric modelling to RILEWSs opens new possibilities
for applications in data-scarce or ungauged regions. Our re-
sults show that the WRF model needs an extensive evalua-
tion and often calibration by in situ weather stations before
any use in the operational stage. Chikalamo et al. (2020) pub-
lished a study on RILEWSs using satellite rainfall products.
They found a good agreement between the rainfall products
and RILs splitting rainfall thresholds at the seasonal scale.
However, Zambrano-Bigiarini et al. (2017) showed differ-
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Figure 7. ROC curve for thresholds of 5 % to 99 % for logit models.

Figure 8. ROC curve for thresholds of 5 % to 99 % for probit mod-
els.

ences between satellite products and in situ measurements
in high-elevation zones (over 1000 m a.s.l.), suggesting that
just satellite information could generate results with low per-
formance. They found that satellite estimations are more
reliable in the plain areas of southern Chile, far from the
landslide-prone areas. Therefore, a RILEWS based on satel-
lite rainfall products is not feasible in the study zone yet.
Therefore, our results encourage including numerical mod-
elling with bias-corrected solutions with a dense weather net-
work to improve our results. We propose that the zone has
limited weather stations that could be increased in the future.

Table 4. Values of the estimators for the probit models. False-
positive rate (FPR) and true-positive rate (TPR) were evaluated with
a threshold of 95 %.

Model Distribution Sensitivity (%) Specificity (%)

Model 1 Logit 91.79± 1.95 54.36± 14.11
Probit 91.25± 1.96 54.29 ±14.11

Model 2 Logit 87.07± 2.93 62.43± 14.29
Probit 86.19± 2.79 64.18± 14.03

Model 3 Logit 83.89± 5.46 36.11± 16.41
Probit 82.94± 5.21 38.18± 16.44

Model 4 Logit 91.81± 2.00 55.65± 14.46
Probit 91.16± 2.03 55.71± 14.49

Previous works have shown the sensitivity of mesoscale
models to abrupt changes in complex topography (Srivas-
tava et al., 2015; Osman et al., 2021; Heredia et al., 2018;
Jeong and Lee, 2018; Bughici et al., 2019; Bannister et al.,
2019; Worku et al., 2020), which is consistent with the abrupt
topography of the eastern part of the study area (Fig. 4),
where the MAE (6.6) and RMSE (17.9) values were concen-
trated. We avoided the precipitation constraint using a bias-
corrected version of the WRF model to reduce the spatial er-
ror estimation in the precipitation. The use of bias-corrected
precipitation of the WRF model improved the spatial repre-
sentation in this study. The uncorrected model had bias val-
ues higher than 16 mm, which becomes critical during the in-
correct early warning generation. Therefore, an incorrect pre-
cipitation estimation could become a human loss. Our results
deliver precipitation data with a low uncertainty level. That
becomes suitable to operative RILEWSs with a low false-
positive rate (FP).

In many areas of the world, the prediction of rainfall-
induced landslides is usually carried out using empirical rain-
fall thresholds (Gariano et al., 2020). Previous contributions
showed that dense networks of weather stations allow the
representation of the complex precipitation distribution, giv-
ing a good threshold estimation (Nikolopoulos et al., 2014).
However, debris flow thresholds developed from sparse in
situ weather stations generated low performance (Nikolopou-
los et al., 2015). The complex topography and the sparse
weather station availability underestimate rainfall thresholds
for landslides in the southern Andes. A RILEWS based only
on weather stations is thus not suitable. Previous studies
showed a systematic underestimation of debris flow early
warning thresholds related to the use of sparse rain gauge
networks (Marra et al., 2016; Destro et al., 2017; Marra et
al., 2017). Moreover, the topography has a strong influence
on the modification of the spatial distribution of precipita-
tion that leads to debris flows (Marra et al., 2016; Fustos
et al., 2021) and landslides (Fustos et al., 2017). Hence,
our contribution allows reduction in the precipitation esti-
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mation uncertainty, increasing the reliability of RILEWSs
in the southern Andes. From our results, the bias correc-
tion improved the precipitation representation when we com-
pared against the weather stations (Fig. 4). The data from 12
spatially distributed meteorological stations were sufficient
to represent the precipitation fields with low RMSE values
(max 0.36 mm). However, we encourage future users to in-
crease the number of weather stations, reducing the uncer-
tainty in ungauged sub-basins. The zone showed discrepan-
cies between satellite rainfall products and topography, in-
cluding new constraints that could hide some extreme values
regarding precipitation at high altitudes. New RILEWS de-
velopments with a reduced weather network could lead to
misestimation of early warning with disastrous results.

The corrected results represent the precipitation fields in
Andean areas with lower bias values than previous studies
(Yáñez-Morroni et al., 2018; Schumacher et al., 2020). The
PP_M4a approach was found to reduce the bias efficiently
for the study area. We propose that the perfect prognosis ap-
proach allows for the correction of the topographic influence
on the precipitation if an adequate distribution of the weather
stations is available. We note that 30 % of all the RILs oc-
curred on days with low precipitation on the day and during
the preceding days (7 and 30 d previous). Therefore, we pro-
pose that future developments should progress to analysis on
a sub-daily scale. In this context, future developments should
aim to use the corrected WRF at an hourly scale or else use
lower-resolution satellite estimates of precipitation as a tool
to complement WRF simulations.

5.2 Rainfall-induced landslide early warning

The southern Andes have a complex topography that influ-
ences precipitation events with different intensities in a few
kilometres of separation (examples in Figs. 9 and 10). Hence,
a correct precipitation representation along the space allows
the sensitivity to be increased. The sensitivity of RILEWSs
depends heavily on the input variables, specifically the pre-
cipitation in this case. The RILEWS achieved high predictive
ability, with AUC values between 0.65 (M3) and 0.80 (M1),
suggesting high sensitivity to intense precipitation in short
periods. The performance of the model diminished when
data at the monthly scale were used (M3) in comparison
with daily resolution (M1 and M2), where the M2 model
(AUC= 0.77) had similar performance to M1. This similar-
ity may be associated with the soil moisture content, reflect-
ing the previous precipitation; this means that it functions as
a memory of the soil moisture in the slope before a RIL (re-
lated to the different soil types). The memory effect in the
slope in M3 will reflect in part its predisposition to suffer-
ing a RIL based on the soil moisture content in the first few
centimetres. Numerous works have related satellite informa-
tion on precipitation and soil moisture to establish links be-
tween them (Brocca et al., 2020; Camici et al., 2020; Pellarin
et al., 2020). In future, the soil moisture memory approach

could be the best way to obtain a proxy for the soil moisture
content and the slope response to landslides in zones with-
out a network of moisture sensors. This is consistent when
we compare M1 (AUC= 0.80) and M4 (AUC= 0.79); they
present similar sensitivity values (∼ 91 % in both cases), sug-
gesting that either model could be used. Model 1 and Model 4
showed similar performance because one is contained in the
second. Hence, we interpret that an overrepresentation could
exist. Therefore, Model 4 does not support additional infor-
mation. At an operational level, discarding Model 4 reduces
the computing loading, simplifying the alert processes.

5.3 Future developments

The Andes are one of the most susceptible zones to intense
precipitation changes as a product of climate change. To re-
produce and understand intense precipitation changes and
their impact on landslides, a high spatio-temporal resolu-
tion is needed. The present contribution supports reproduc-
ing accurate precipitation, contributing to robust RILEWSs.
Potential improvements should be directed towards increas-
ing the predictive ability by increasing the temporal resolu-
tion of the precipitation products. Our models do not con-
sider the soil hydraulic variability like tephra fall or intensely
weathered soft rocks. Recently, rainfall-induced landslides
affected active (Fustos et al., 2021) and older volcanic en-
vironments (Somos-Valenzuela et al., 2020). The new gen-
eration of RILEWSs will need a parameterization of these
environments from a geotechnical point of view. Moreover,
all RILEWSs must be able to be automated, which involves
computing capacities of various kinds; to mitigate the cal-
culation costs we suggest incorporating the available satel-
lite precipitation products, but at lower spatial resolution (∼
10 km). Satellite estimations require validation of these out-
puts in areas with complex topography, like southern Chile
(Zambrano-Bigiarini et al., 2017). Likewise, new geoscien-
tific data interfaces like GSMaP will allow better integration
with precipitation, complementing WRF products. One lim-
itation of the present study is the quality of the RIL inven-
tory used. South America presents a low density of recorded
events, despite the high density of their occurrence. Future
efforts should be directed towards generating RIL identifica-
tion records using remote sensor techniques (Guzzetti et al.,
2020; Fustos et al., 2017; Jia et al., 2019) or numerical identi-
fication (Chikalamo et al., 2020; Guzzetti et al., 2020; Fustos
et al., 2020a). To date, our database is the best available for
the spatial location and date of generation in the study area.
We suggest that alternatives should be considered in future
to strengthen the generation of RIL databases in the south-
ern Andes with a larger number of events. This could help
to strengthen future RILEWSs in this area, improving their
performance in terms of sensitivity and specificity.
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Figure 9. Zones susceptible to RILs for 8 January 2017. Results using Model 1 (logit). Hillshade based on SRTM data.

Figure 10. Zones susceptible to RILs for 8 January 2017. Results using Model 1 (probit). Hillshade based on SRTM data.

6 Conclusions

This work evaluates the implementation of a RILEWS based
on a logistic model and forced by geomorphological and at-
mospheric conditions in the southern Andes. For the first
time in the southern Andes, we showed how the WRF model
can be integrated into RILEWS operating systems without
the need to use ensembles, by use of bias correction pro-
cesses. Our findings suggest that the bias correction is a
useful alternative to numerical ensembles that increases the
computational cost at the operative scale. This opens the door
to the implementation of precipitation-based prediction mod-
els without costly computer iterations by ensembles of mod-
els (Yáñez-Morroni et al., 2018; Schumacher et al., 2020). A
WRF-corrected model could be used at the operational scale
in different countries if a weather network is available.

The logistic approach proposed in this study allows a
RILEWS to be rapidly implemented using a limited land-
slide catalogue in different countries in the future. Our results

and previous studies indicate that RILEWSs in the south-
ern Andes should be directed towards increasing the RIL
database currently available. In future we suggest evaluating
alternatives to strengthen better-quality RIL database gener-
ation in this segment of South America, completing the ex-
isting database from the records of the Chilean National Ge-
ological and Mining Service (Sernageomin). This could help
to strengthen future RILEWSs in the southern Andes, im-
proving their performance in terms of sensitivity and speci-
ficity. Logistic models proved their capacity to predict RIL
events, with AUC varying between 0.65 and 0.80, indicat-
ing their ability to represent RIL occurrence correctly. De-
spite the high relative sensitivity of M3, the models which
presented high sensitivity and specificity were those which
included precipitation on a daily scale (models 1, 2, and 4).
Using the precipitation of the previous 7 d could improve this
approach to representing soil moisture. There is no network
of moisture sensors in the area, so Model 4 should be incor-
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porated as it allows this factor to be represented. Finally, we
propose using models M1 and M4 in conjunction.

Our proposed RILEWS was developed under limited and
scarce atmospheric data. We expect that national emergency
authorities integrate this proposal into their routine activities,
disseminating the landslide warning information to the stake-
holders. The continual improvement will allow the perfor-
mance to be increased as well as allow correct alerting under
different precipitation scenarios. The real-time implementa-
tion will allow the precipitation representation to be tested
and the accurate precipitation estimation to be assessed.
We conclude that our RILEWS could become a promising
methodology for implementation in similar climatic zones in
different countries and latitudes. In future, global-scale prod-
ucts such as the Global Landslide database could support fu-
ture implementation of RILEWSs at a regional scale using
corrected precipitation products such as the WRF model or
satellite precipitation products.
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