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Abstract. Multivariate coastal flooding is characterized by
multiple flooding pathways (i.e., high offshore water lev-
els, streamflow, energetic waves, precipitation) acting con-
currently. This study explores the joint risks caused by the
co-occurrence of high marine water levels and precipitation
in a highly urbanized semi-arid, tidally dominated region.
A novel structural function developed from the multivariate
analysis is proposed to consider the implications of flood
control infrastructure in multivariate coastal flood risk as-
sessments. Univariate statistics are analyzed for individual
sites and events. Conditional and joint probabilities are de-
veloped using a range of copulas, sampling methods, and
hazard scenarios. The Nelsen, BB1, BB5, and Roch–Alegre
were selected based on a Cramér–von Mises test and gen-
erally produced robust results across a range of sampling
methods. The impacts of sampling are considered using an-
nual maximum, annual coinciding, wet-season monthly max-
imum, and wet-season monthly coinciding sampling. Al-
though annual maximum sampling is commonly used for
characterizing multivariate events, this work suggests annual
maximum sampling may substantially underestimate marine
water levels for extreme events. Water level and precipitation
combinations from wet-season monthly coinciding sampling
benefit from a dramatic increase in data pairs and provide a
range of physically realistic pairs. Wet-season monthly co-
inciding sampling may provide a more accurate multivari-
ate flooding risk characterization for long return periods in
semi-arid regions. Univariate, conditional, and bivariate re-
sults emphasize the importance of proper event definition as
this significantly influences the associated event risks.

1 Introduction

Coastal flooding is a significant human hazard (Leonard
et al., 2014; Wahl et al., 2015) and is considered a primary
health hazard by the US Global Change Research Program
(Bell et al., 2016). Coastal migration and utilization contin-
ues to increase (Nicholls et al., 2007; Nicholls, 2011). Over
600 million people populate coastal zones (Merkens et al.,
2016). Climate-change-induced sea level rise will substan-
tially increase flood risk (Church et al., 2013; Horton et al.,
2014) and negatively impact coastal populations (Bell et al.,
2016). Even relatively modest sea level rise will significantly
increase flood frequencies through the US (e.g., Tebaldi
et al., 2012; Taherkhani et al., 2020). Southern California is
particularly vulnerable to sea level rise. Small changes in sea
level (∼ 5 cm) double the odds of the 50-year flooding event
(Taherkhani et al., 2020), and the 100-year event is expected
to become annual by 2050 (Tebaldi et al., 2012). Regional
research has explored flood risks caused by sea level rise and
coastal forcing (e.g., Heberger et al., 2011; Hanson et al.,
2011; Gallien et al., 2015). However, accurately characteriz-
ing future, non-stationary coastal vulnerability requires con-
sidering the joint and potentially nonlinear impacts of com-
pound (marine and hydrologic) events (Gallien et al., 2018).

Compound coastal flooding considers the combined im-
pacts of marine and hydrologic forcings, typically within a
physically relevant time window, and are considered multi-
variate events. Typical events, such as precipitation or high
water levels, occurring simultaneously may combine to gen-
erate extreme events (Seneviratne et al., 2012). In urban
coastal settings multiple flooding pathways (i.e., high ma-
rine water levels, wave run-up and overtopping, large flu-
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vial flows, and pluvial flooding from precipitation) inter-
act with infrastructure (e.g., sea walls, human-made dunes,
and the storm system), potentially exacerbating hazards. No-
tably, multivariate events that share a common return period
may produce vastly different flooding outcomes. Tradition-
ally, the literature has focused on river-discharge- or storm-
surge-dominated multivariate events (Table 1).

From a flood risk perspective there are multiple meth-
ods to characterize events. A univariate approach is often
used where a single variable (e.g., water level) is considered.
For example, the Federal Emergency Management Agency
(FEMA) recommends characterizing multivariate events by
developing univariate water level and discharge statistics and
then adopting a smooth, blended result for transitional ar-
eas (FEMA, 2011, 2016c). This can lead to underestimating
flood risk because of the interplay between two flood path-
ways (i.e., a high tailwater forces fluvial flooding upstream).
Conditional probabilities represent an alternative where the
multivariate flood risk can be evaluated given available in-
formation on a primary variable (e.g., water level) to de-
termine the exceedance probability of a secondary variable
(e.g., precipitation) (Shiau, 2003; Karmakar and Simonovic,
2009; Zhang and Singh, 2012; Li et al., 2013; Mitková and
Halmová, 2014; Serinaldi, 2015, 2016; Anandalekshmi et al.,
2019). A third method uses copulas to analyze the depen-
dence of multiple flood drivers and develop joint statistics.

Numerous studies have used a copula-based approach to
study floods manifested by various combinations of vari-
ables (Table 1). Multivariate flood risks can be described and
quantified from previous copula studies (Salvadori, 2004;
Salvadori and De Michele, 2004, 2007; Salvadori et al.,
2011, 2013, 2016). Multivariate inland and coastal hydrol-
ogy analysis have primarily focused on a small group of cop-
ulas: Archimedean (Clayton, Frank, and Gumbel), Student t ,
and Gaussian copulas. Alternative copulas may more accu-
rately characterize urban coastal flooding (Jane et al., 2020).
Specifically, hazard scenarios provide various perspectives
on critical multivariate events (Salvadori et al., 2016). Ini-
tial studies were primarily focused on select hazard scenarios
(Table 1 in Salvadori et al., 2016).

Data sampling methods in multivariate studies influence
distribution fitting. Two primary sampling methods exist:
peaks over threshold (Jarušková and Hanek, 2006) and
block maxima (Engeland et al., 2004). Events selected us-
ing peaks over threshold sampling are above a predeter-
mined threshold defining an “extreme” event. Block maxima
sampling uses various block sizes (yearly, seasonal, semi-
annual, etc.) to separate and select the maximum event per
block. Engeland et al. (2004) report a significantly different
1000-year streamflow when using 12-month block sampling
(160 m3s−1) compared to using a threshold of 50 m3 s−1

(120 m3 s−1). Many studies utilize block maxima sampling
with a yearly block size, i.e., the annual maximum sampling
method (Baratti et al., 2012; Bezak et al., 2014; Wahl et al.,
2015). This method is specifically recommended by FEMA

(2016c) for evaluating coastal hazards. Alternatively, studies
identify extremes in the primary variable using annual max-
imum sampling and select a secondary variable which co-
occurs with the primary variable (Lian et al., 2013; Xu et al.,
2014; Tu et al., 2018), creating a “coinciding”-type sam-
pling. Multivariate applications relying upon annual maxi-
mum sampling generate events with severe flooding poten-
tials which may produce unrealistic variable combinations.
Coinciding sampling draws from physically realistic event
pairs. Although, multiple studies explore sampling effects on
fitted distribution parameters and univariate return periods
(Engeland et al., 2004; Jarušková and Hanek, 2006; Peng
et al., 2019; Juma et al., 2020), sampling effects for multi-
variate coastal flooding events are unknown.

Coastal flooding studies primarily focus on locations de-
fined by storm-surge-dominated oceanographic conditions
with warm, humid (Wahl et al., 2012; Lian et al., 2013; Xu
et al., 2014; Masina et al., 2015; Wahl et al., 2015; Mazas
and Hamm, 2017; Paprotny et al., 2018; Tu et al., 2018;
Bevacqua et al., 2019; Didier et al., 2019; Xu et al., 2019;
Yang et al., 2020), and monsoonal (Jane et al., 2020) cli-
matic conditions (i.e., Köppen-Geiger system, Beck et al.,
2018). In contrast, along the southern California coast typi-
cal tidal variability is 1.7 to 2.2 m (Flick, 2016), and storm
surge rarely exceeds ∼ 20 cm (Flick, 1998). Notably, during
the wet season (October to March), when precipitation typi-
cally occurs, spring tide ranges are relatively large (∼ 2.6 m).
Critically, few studies consider areas where coastal flooding
events are dominated by large tides and either precipitation
or wave events (Masina et al., 2015; Mazas and Hamm, 2017;
Didier et al., 2019; Jane et al., 2020). This study explores uni-
variate and multivariate flooding events in a semi-arid, tidally
dominated, highly urbanized region. Here, the dependency
between observed water levels and precipitation, impacts of
sampling methods and distribution fitting, and the resulting
flood values are explored.

2 Site description and data

This study considers observed water level and precipitation
influences for coastal multivariate events at Santa Monica
(SM), Sunset Beach (S), and LA Jolla (SD) areas in Los An-
geles, Huntington Beach, and San Diego, California (Fig. 1):
three semi-arid, tidally dominated sites in the United States.
All are low-lying estuarine or bay-backed highly urbanized
beach communities requiring extensive coastal management
to mitigate flooding events. For example, sea walls and ar-
tificial berms in Sunset Beach protect infrastructure from
high embayment water levels, wave run-up, and overtopping
along the open coast. The storm drain network is managed
to prevent back-flooding during high tides. Notably, Gallien
et al. (2014) suggested that when tide valves are closed, the
storm drain network cannot reduce pluvial flooding caused
by alternative flooding pathways (e.g., precipitation or wave
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Table 1. A non-exhaustive list of multivariate studies which utilized copulas to study the associated variables.

Variable pairs References

Waves and water level Masina et al. (2015); Mazas and Hamm (2017); Didier et al. (2019)

Waves and storm duration De Michele et al. (2007); Salvadori et al. (2014, 2015)

Waves and storm surge Wahl et al. (2012); Paprotny et al. (2018)

River discharge and water level White (2007); Bray and McCuen (2014); Sadegh et al. (2018); Ganguli
and Merz (2019a, b)

River discharge and storm surge Paprotny et al. (2018); Ganguli et al. (2020)

River discharge and volume Yue (2001a, b); Shiau (2003); Favre et al. (2004); De Michele et al.
(2005); Poulin et al. (2007); Li et al. (2013); Salvadori et al. (2013);
Requena et al. (2013); Aghakouchak (2014)

River discharge, rainfall, and water level Bray and McCuen (2014); Jeong et al. (2014)

Multiple river discharges Salvadori and De Michele (2010)

Rainfall and tide Lian et al. (2013)∗, Xu et al. (2014)∗, Tu et al. (2018)∗, Xu et al.
(2019)∗, Bevacqua et al. (2020), Yang et al. (2020)∗

Rainfall and water levels Jane et al. (2020)

Rainfall and storm surge Wahl et al. (2015); Paprotny et al. (2018); Bevacqua et al. (2019)

Rainfall intensity and depth Yue (2000a, b, 2002); De Michele and Salvadori (2003)

Rainfall and groundwater Anandalekshmi et al. (2019)

Rainfall and runoff Zhang and Singh (2012); Hao and Singh (2020)

Rainfall and river discharge Zhong et al. (2020)

Rainfall and temperature Zhang et al. (2017)

Rainfall and duration Salvadori and De Michele (2007)

Combinations of rainfall intensity, depth, and duration Zheng et al. (2014)

Combinations of river discharge, volume, and duration Karmakar and Simonovic (2009); Reddy and Ganguli (2012); Ganguli
and Reddy (2013); Gräler et al. (2013); Mitková and Halmová (2014)

∗ Note that these studies use the term tide measurement but actually represent observed water level measurements. Please refer to Sect. 2 for clarification.

overtopping). The Pacific Coast Highway (PCH) is heavily
utilized and is a primary transportation corridor along the
southern California coastline. All locations are densely ur-
banized and highly impacted by flooding.

Observed water levels from the Los Angeles (station
ID: 9410660), La Jolla (station ID: 9410230), and Santa
Monica (station ID: 9410840) tide gauges are available on
NOAA’s Tides and Currents for daily high–low, hourly, or
6 min intervals (NOAA, 2021d). Verified hourly water lev-
els (m NAVD88) had the longest record length at all three
stations and provided an additional 31 years of observations
overlapping precipitation data for Los Angeles and La Jolla,
and 6 years for Santa Monica. The resulting observations
windows are 22 November 1973 to 19 December 2013 for
Santa Monica, 1 July 1948 to 1 December 2012 for Sun-
set, and 1 July 1948 to 19 December 2013 for San Diego

(Table 2). It is worth noting that within the body of mul-
tivariate flooding literature, the terms tide and water level
may be interchanged (e.g., Lian et al., 2013; Xu et al., 2014;
Tu et al., 2018; Xu et al., 2019; Yang et al., 2020). This is
a key distinction since compound event dependencies may
change depending on water level selection. Recent efforts
have been made to standardize language where tide repre-
sents only the astronomical changes in water levels and storm
surge specifically excludes astronomical variability and con-
sists only of the inverse barometric effects along with wind
and wave setup (Gregory et al., 2019). In this study, the term
observed water level (OWL) is adopted. OWL is the water
level measured at the NOAA tide gauges, which includes all
tidal, storm, and climatic effects.

The US Hourly Precipitation Data dataset provided by
the NOAA’s National Centers for Environmental Informa-
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tion (NOAA, 2021c) at the Signal Hill (COOP:048230),
Los Angeles International Airport (COOP:045114), and San
Diego International Airport (COOP:047740) stations is used
as the precipitation inputs. Observations do not contain trace
amounts (< 0.25 mm) and are provided as cumulative pre-
cipitation (mm) per event. Precipitation measurements were
converted to a millimeters-per-hour rate by dividing the total
event precipitation by the event duration to match the hourly
OWL measurements. The final precipitation input is a 24 h
cumulative precipitation record made from the hourly obser-
vations. All data were transformed to UTC for analysis.

Multivariate flood probabilities are determined with com-
binations of sampling methods: annual maximum (AM),
annual coinciding (AC), wet-season monthly maximum
(WMM), and wet-season monthly coinciding (WMC). AM
sampling pairs the single largest precipitation and OWL
observations within a given year (without regard to co-
occurrence), where AC sampling pairs the single largest pre-
cipitation observation within a given year to the largest OWL
observation within its 24 h accumulation period. Each sam-
pling method samples from a unique probability space and
therefore will provide varying perspectives for a return pe-
riod. A summary of each sites’ associated gauges, observa-
tion windows, and number of pairs is provided in Table 2.
Southern California’s wet season is defined between October
to March and provides a majority of the total annual rainfall
(Cayan and Roads, 1984; Conil and Hall, 2006). It is likely
for extreme multivariate events to occur during this period.
Maximum sampling pairs the single largest precipitation and
OWL observations within each year or wet-season month.
A multivariate event created with the largest observed pre-
cipitation and OWL within a year or wet-season month can
result in an event with severe flooding potential. Although
strictly speaking maximum parings (annual or wet season)
do not technically represent an observed multivariate event,
they would represent a severe event and are consistent with
the blended approach recommended by FEMA (2016c). Co-
inciding sampling pairs the single largest precipitation obser-
vation within each year or wet-season month to the largest
OWL observation within its 24 h accumulation period, pro-
viding more realistic pairs compared to maximum sampling.

Distributions are fit with existing precipitation observa-
tions greater than zero consistent with previous studies (Swift
and Schreuder, 1981; Hanson and Vogel, 2008). Months with
no OWL measurements were excluded. In the case of co-
inciding sampling, pairs that had three or more OWL mea-
surements missing within the 24 h window were manually
reviewed and removed if their tidal peak was clearly missing.
Specifically for WMM sampling, months with more than half
their observations missing were also reviewed and removed
if the tidal peak was missing. The resulting data pairs are
shown in Fig. 2.

3 Methods

3.1 Univariate, bivariate, and conditional distributions

Potential flooding events are determined with three different
probability definitions: univariate, conditional, and bivariate.
Assuming X and Y are random variables, x and y are obser-
vations of these variables, and FX and F Y represent the vari-
ables’ respective cumulative distribution functions (CDFs).
Formulations for univariate (FX(x),F Y (y)) and bivariate
joint (FX,Y (x,y)) CDFs follow DeGroot and Schervish
(2014) (Eqs. 1 and 2). Conditionals (FX|Y≥y(x|Y ≥ y),
FX|Y≤y(x|Y ≤ y), and FX|Y=y(x|Y = y)) are developed
from Shiau (2003) (Eq. 3) and Serinaldi (2015) (Eqs. 4 and
5). Conditionals 1 (C1), 2 (C2), and 3 (C3) represent Eqs. (3),
(4), and (5) going forward. Univariate statistics are developed
using the appropriate continuous random variable distribu-
tion, while conditional and bivariate CDFs are determined
using copulas.

Copulas are functions that associate random variables’
univariate CDFs with their joint CDF (e.g., FX and F Y with
FX,Y (x,y)) according to Sklar’s theorem (Sklar, 1959; Sal-
vadori, 2004). There is no requirement for the univariate dis-
tributions to be the same. This is particularly advantageous
since the optimal univariate distributions may be used for
each variable. Bivariate probabilities for different hazard sce-
narios, which represent various multivariate events, and con-
ditional probabilities can be calculated using fitted copula
functions.

FX(x)= Pr(X ≤ x) (1)
FX,Y (x,y)= Pr(X ≤ x and Y ≤ y) (2)

FX|Y≥y(x|Y ≥ y)= Pr(X > x|Y ≥ y)

=
FX(x)−FX,Y (x,y)

1−FY (y)
(3)

FX|Y≤y(x|Y ≤ y)= Pr(X > x|Y ≤ y)

= 1−
FX,Y (x,y)
F Y (y)

(4)

FX|Y=y(x|Y = y)= Pr(X > x|Y = y)

= 1−
∂FX,Y (x,y)

∂y
(5)

3.2 Hazard scenarios

Notation and definitions from Salvadori et al. (2016), unless
otherwise stated, are used to define the upper set (S) and
scenario types. Salvadori et al. (2016) and Serinaldi (2015)
present figures of each scenario’s probability space. Further
discussion of hazard scenarios and copulas assume a bivari-
ate situation.
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Figure 1. Map displaying (a) Santa Monica, (b) Sunset, and (c) San Diego sites along with locations of tide gauges (triangle) and precipitation
stations (circle). The road drain (square) and boundary (yellow) at Sunset (∼ 2 km2) are for the structural scenario. Aerial imagery from
NOAA (2021a).

Figure 2. Data pairs for each sampling method. Annual maximum (AM; blue x), annual coinciding (AC; green +), wet-season monthly
maximum (WMM; black ·), and wet-season monthly coinciding (WMC; red 4) at (a) Santa Monica, (b) Sunset, and (c) San Diego.

3.2.1 “OR”

“OR” scenario events have one or both random variables
exceeding a specified threshold. That is, what is the prob-
ability of a water level or precipitation event exceeding a
given value? Standard univariate CDFs make up the asso-
ciated copula.

α∨x = P(X ∈ S∨x )= 1−C(F 1(x1), . . .,F d(xd)) (6)

3.2.2 “AND”

“AND” scenario events have both random variables exceed-
ing a specified threshold. In this case the fundamental ques-
tion is what the probability is of a particular water level and
precipitation rate exceeding specified values. The survival
copula (Ĉ(u,v)) is comprised of univariate survival CDFs
(F (x)= 1−F (x)), and the provided equation can be found
in Serinaldi (2015) and Salvadori and De Michele (2004).

α∧x = P(X ∈ S∧x )= Ĉ(F 1(x1), . . .,F d(xd)) (7)

Ĉ(u,v)= 1− u− v+C(u,v) (8)

3.2.3 “Kendall”

The “Kendall” (K) scenario highlights an infinite set of OR
events that separate the subcritical (i.e, “safe”) and supercriti-
cal (i.e., “dangerous”) statistical regions. In the OR scenario,
events along an isoline (t) share a common probability but
define separate regions. Events along a Kendall t represent
the same supercritical region (Serinaldi, 2015) and provide
a “safety lower bound” (Salvadori et al., 2011). Essentially
the Kendall scenario considers the minimum OR events of
concern. K(t) is estimated by a method outlined in Salvadori
et al. (2011).

K(t)= P(F(X1, . . .,Xd)≤ t)= P(C(F 1(X1),

. . .,F d(Xd))≤ t) (9)

αK
t = P(X ∈ SK

t )= 1−K(t) (10)

3.2.4 “Survival Kendall”

The “survival Kendall” (SK) scenario highlights an infinite
set of AND events which also separate safe and dangerous
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Table 2. Water level and precipitation observations at Santa Monica (SM), Sunset (S), and San Diego (SD) using annual maximum (AM),
annual coinciding (AC), wet-season monthly maximum (WMM), and wet-season monthly coinciding (WMC) samplings.

Site
Tide Precipitation Observation AM AC WMM WMC
gauge gauge window pairs pairs pairs pairs

SM 9410840 045114 22 November 1973 to 19 December 2013 40 38 193 191
S 9410660 048230 1 July 1948 to 1 December 2012 63 63 257 258
SD 9410230 047740 1 July 1948 to 19 December 2013 65 60 328 329

statistical spaces. AND events along a t also share a common
probability but define separate regions. Events along an SK t

represent the same supercritical region but provide an “(up-
per) bounded safe region” (Salvadori et al., 2013). The sur-
vival Kendall specifically considers the largest AND events
of concern and is estimated by the method outlined in Sal-
vadori et al. (2013).

K̂(t)= P(F(X1, . . .,Xd)≤ t)= P(Ĉ(F 1(X1),

. . .,F d(Xd))≤ t) (11)

αǨ
t = P(X ∈ SǨ

t )= 1− Ǩ(t)= K̂(t) (12)

3.2.5 “Structural”

The “structural” scenario considers the probability of an out-
put from a structural function, 9(X), exceeding a design
load or capacity (z) (Salvadori et al., 2016). For example,
De Michele et al. (2005) and Volpi and Fiori (2014) used
a structural function to evaluate a dam spillway, while Sal-
vadori et al. (2015) consider the preliminary design of rubble
mound breakwater. In this work, the structural failure func-
tion focuses on the question of what the probability is of a
water level forcing tide valve closure and subsequent flood-
ing during a precipitation event.

α9z = P(X ∈ S9z )= P(9(X) > z) (13)

3.3 MvCAT

The Multivariate Copula Analysis Toolbox (MvCAT) devel-
oped by Sadegh et al. (2017) is a publicly available MAT-
LAB toolbox that fits 25 different copula functions to user
data of two random variables. Copula parameters are opti-
mized through a local optimization or with Markov Chain
Monte Carlo methods (details in Sadegh et al., 2017). The
MvCAT framework is expanded to determine all scenar-
ios and conditionals in this study. While all copulas have
functional CDFs, the Cuadras–Auge, Raftery, Shih–Louis,
linear Spearman, Fischer–Hinzmann, Husler–Reiss, Cube,
and Marshall–Olkin copulas do not have a PDF function.
A PDF is required to determine the most likely value along
an isoline; therefore it was decided to remove those copulas
from the study. Copulas must also be computationally sim-
ple to derive or integrate to calculate Conditional 3 (Eq. 5).
Gaussian and Student t copulas’ partial derivatives cannot

be explicitly calculated, and estimates induce unrealistic er-
rors (i.e., produce negative probabilities). Seventeen different
copulas remain after eliminating those discussed above.

3.4 Return periods

Hydrologic events are commonly cast in the context of return
periods (e.g., De Michele et al., 2005, 2007; FEMA, 2011;
Wahl et al., 2012; Salvadori et al., 2014; Wahl et al., 2015;
Salvadori et al., 2015). Return periods (T ) provide a metric
describing the severity of an event and are the inverse of an
event’s probability of exceedance presented as F in Eq. (14)
(Tu et al., 2018). In Eq. (15),N is the data’s time window, n is
the number of considered events withinN , andNe is the aver-
age number of events per unit of time (monthly, yearly, etc.).
Therefore,Ne = 1 when considering singular events within a
year (Tu et al., 2018).

T = 1/(Ne ·F) (14)
Ne = n/N (15)

3.5 Goodness-of-fit metrics

Multiple goodness-of-fit metrics and correlations serve to
quantify the quality of distribution fits and dependencies be-
tween variables. Marginal fits are selected by the Bayesian
information criterion (BIC; Eq. 19) and must pass the chi-
squared goodness-of-fit test at standard significance levels
(α = 0.05), unless otherwise stated. Copulas are selected by
BIC and must pass the Cramér–von Mises test (Genest et al.,
2009; Couasnon et al., 2018; Sadegh et al., 2018; Ward et al.,
2018). Likelihood (L ∈ [0,∞)) measures how well a distri-
bution’s estimated parameters fit the sample data, with larger
values suggesting a better fit. Log likelihood (` ∈ (−∞,∞))
is the log transformation of Eq. (16) used to calculate BIC.
BIC (BIC ∈ (−∞,∞)) is similar to the likelihood but pe-
nalizes for the number of estimated parameters (D) and the
data’s sample size (n). Smaller BIC values represent a better
fit. Equations and definitions can be found in Sadegh et al.
(2017). Correlation measurements include Pearson’s linear
correlation, Kendall’s tau, and Spearman’s rho coefficients.

L(θ |Ỹ )=
n∏
i=1

1
√

2πσ̃ 2
exp{−

1
2
σ̃ 2
[ỹi − yi(θ)]

2
} (16)

σ̃ 2
=

∑n
i=1[ỹi − yi(θ)]

2

n
(17)
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`(θ |Ỹ )=−
n

2
ln(2π)−

n

2
ln σ̃ 2
−

1
2
σ̃ 2

n∑
i=1
[ỹi − yi(θ)]

2 (18)

BIC=Dln(n)− 2` (19)

4 Results

Univariate, conditional, and bivariate probabilities were de-
veloped using four sampling methods (AM, AC, WMM, and
WMC) and 17 different copulas. Two marginal distributions
do not pass the chi-squared test at the standard 0.05 level of
significance (San Diego AM OWL and Santa Monica WMM
OWL). These distributions pass at reduced significance lev-
els of 0.01. Four copulas almost always passed (Nelsen, BB1,
BB5, and Roch–Alegre) the Cramér–von Mises test and are
used for analysis. It is noted the Roch–Alegre (Roch.) did not
pass at Sunset for WMM sampling, and the BB1 and BB5
did not pass at San Diego for WMC sampling. Additionally,
Santa Monica’s AM data are slightly negatively correlated
(>−0.06). Copula and sampling effects differ significantly
at low (i.e., low return period) and high (i.e., severe return pe-
riod) probabilities of non-exceedance. In the case of annual
sampling, non-exceedance (exceedance) probabilities are 0.9
(0.1) and 0.99 (0.01) for the 10- and 100-year events, re-
spectively. In wet-season sampling, return period exceedance
probabilities vary depending on sampling type and location
due to the average number of event observations per year (Ne
from Eq. 15). For example, San Diego WMC sampling has
329 observations within the 65-year record (i.e., Ne = 5.06).
Therefore, the exceedance probabilities (F in Eq. 14) asso-
ciated with a 10- and 100-year event are 0.0198 and 0.0020
(non-exceedance probabilities at 0.9802 and 0.9980), respec-
tively. Table 3 presents wet-season (WMM and WMC) ex-
ceedance probabilities for all sites.

4.1 Marginals

The selected marginal distributions (Fig. 3, Table 4) were
tested and/or suggested fits in previous studies. Rainfall has
been widely fit with an exponential distribution (refer to Ta-
ble 2 in Salvadori and De Michele, 2007) but more recently
has been fit using a variety of distributions including Gamma
(Husak et al., 2007), Rayleigh (Pakoksung and Takagi, 2017;
Esberto, 2018), generalized Pareto, or Birnbaum–Saunders
(Ayantobo et al., 2021). In the case of annual precipitation
(coinciding or maximum sampling) Santa Monica was well
described by a Birnbaum–Saunders, Rayleigh best described
Sunset data, and a Gamma was the best fit for San Diego
data. Similarly, wet-season precipitation data (maximum or
coinciding sampling) were best described by the exponential
distribution for Santa Monica and Sunset, while the general-
ized Pareto best represented San Diego.

Historically, water levels have been described using a
number of distributions including normal (Hawkes et al.,
2002), generalized Pareto (Mazas and Hamm, 2017), log lo-

gistic and Nakagami (Sadegh et al., 2018), and Birnbaum–
Saunders (Sadegh et al., 2018; Didier et al., 2019; Jane et al.,
2020), along with Gamma, Weibull, and inverse Gaussian
(Jane et al., 2020). Observed water levels did not exhibit site-
specific patterns and were described by a range of distribu-
tions (Table 4).

4.2 Copulas

San Diego wet-season monthly coinciding conditional CDFs
display individual copulas’ effects (Fig. 4). The Nelsen,
Roch., and BB1 copulas consistently suggest similar OWL
(Fig. 4a, e) and precipitation values (Fig. 4b, f), while, in
this example, the BB5 suggests higher OWL and precipita-
tion values (solid black line, Fig. 4a, b, e, f). C1’s 100-year
pair in Table 6 displays an example of the BB5’s conservative
nature. Copula choice has nearly no effect on the Conditional
2 scenario (Fig. 4c, d). Most probable OWL and precipitation
values in Tables 5 and 6 further display the aforementioned
behaviors. These conditional patterns generally persist at all
locations with an additional note that the Nelsen can suggest
lower OWL values, and the BB5 can provide similar results
to the Roch. and BB1 copulas.

Figures 5 and 6 show the 10- and 100-year return periods,
respectively, for the four focused copulas using wet-season
monthly coinciding sampling at San Diego. Clearly the BB5
presents conservative results, suggesting higher OWL and
precipitation pairs in the AND and SK scenarios (Figs. 5a,
c and 6a, c), while the BB1, Nelsen, and Roch–Alegre cop-
ulas present similar OWL and precipitation values. The OR
and Kendall scenarios suggest quite similar isolines between
copulas, suggesting similar values, but the BB5 suggests less
severe OWL and larger precipitation values according to the
densest location along its isoline (Figs. 5b, d, and 6b, d).
Tables 5 and 6 further display the bivariate patterns. Again,
these bivariate patterns generally persist at all locations with
the following additional notes: the Nelsen may suggest lower
OWL values in the AND and SK scenarios, the BB5 typi-
cally has similar results to the Roch. and BB1 copulas in the
AND and SK scenarios, and the BB5 typically agreed with
the other copula results outside of San Diego for the OR and
K scenarios.

4.3 Sampling

San Diego conditional CDFs using the BB1 copula clearly
present sampling effects (i.e., maximum versus coinciding
and annual versus wet-season months). It should be noted
that each sampling method represents a unique probability
space and accordingly results in alternative realizations of
a given return period. Coinciding samplings exhibit similar
OWL CDFs (green and red lines, Fig. 7a, c, e), whereas wet-
season samplings exhibit similar precipitation CDFs (red and
black lines, Fig. 7b, d, f). OWL values can be larger for max-
imum samplings at lower non-exceedance probabilities (i.e
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Table 3. Santa Monica, Sunset, and San Diego exceedance probabilities at the 10- and 100-year return periods for wet-season monthly
maximum (WMM) and wet-season monthly coinciding (WMC) samplings.

Santa Monica Sunset San Diego

10-year 100-year 10-year 100-year 10-year 100-year

WMM 0.0207 0.0021 0.0245 0.0025 0.0198 0.0020
WMC 0.0209 0.0021 0.0244 0.0024 0.0198 0.0020

Figure 3. (a) OWL and (b) precipitation marginals for Santa Monica (SM; solid lines), Sunset (S; dashed lines), and San Diego (SD; dotted
lines) using annual maximum (AM; blue), annual coinciding (AC; green), wet-season monthly maximum (WMM; black), and wet-season
monthly coinciding (WMC; red) samplings.

Table 4. Best-fitting univariate distributions for each location and
sampling method (annual maximum, AM; annual coinciding, AC;
wet-season monthly maximum, WMM; wet-season monthly coin-
ciding, WMC).

Dataset Variable Santa Monica Sunset San Diego

AM
OWL L BS GP
Precipitation BS R G

AC
OWL N GP NA
Precipitation BS R G

WMM
OWL N W GEV
Precipitation E E GP

WMC
OWL G IG IG
Precipitation E E GP

BS – Birnbaum–Saunders, GP – generalized Pareto, E – exponential, R – Rayleigh, N
– normal, L – log logistic, G – Gamma, W – Weibull, IG – inverse Gaussian, NA –
Nakagami.

lower return periods) (Fig. 7a, c, e, blue and black lines; Ta-
ble 7). However, the extended tail from WMC sampling pro-
duces larger OWL at higher return periods (red line Fig. 7a,
c, e; Table 8). Annual coinciding sampling displays signifi-
cantly lower OWL values at low (Table 7) and high (Table 8)
return periods. Only minimal differences between annual and
wet-season precipitation exist at the 10- and 100-year return
periods (maximum difference of 1.06 and 4.56 mmd−1, re-

spectively; Tables 7 and 8). Annual (wet season) precipita-
tion CDFs appear similar as OWL measurements are chosen
subsequent to precipitation observations (Fig. 7b, d, f).

Figures 8 and 9 present the 10- and 100-year return periods
using the BB1 copula for all samplings (AM, AC, WMM,
and WMC). For the AND and K scenarios, AM sampling
results in the largest OWL compared to the other sampling
methods (Figs. 8a, d and 9a, d, Tables 7 and 8). Additionally
for the AND and K scenarios (Fig. 8a, d and 9a, d), max-
imum samplings (AM and WMM) provide more conserva-
tive OWLs compared to WMC OWL values (Tables 7 and 8).
When comparing maximum samplings (AM and WMM) to
WMC sampling in the OR and SK scenarios, maximum sam-
plings generally provide larger OWL values at lower return
periods (Fig. 8b, c, Table 7) but smaller or similar OWL at
larger return periods (Fig. 9b, c; Table 8). AC sampling gen-
erally results in the smallest OWL levels at all hazard scenar-
ios. These behaviors persist across all locations. Given that
wet-season monthly coinciding sampling results in larger
OWL values for the marginal, conditional, OR, and Kendall
scenarios, this suggests that maximum-type sampling may
not accurately reflect OWL at extreme return periods.

Tables 7 and 8 show the most probable 10- and 100-year
marginal and multivariate event values. AM OWL exceeds
AC OWL across all probability types and sites, which is ex-
pected given the (nonphysical) paring of the two largest in-
dividual OWL and precipitation events without regard to co-
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Figure 4. San Diego wet-season monthly coinciding OWL (left column) and precipitation (right column) (a, b) C1, (c, d) C2, and (e,
f) C3 CDFs using the Nelsen (blue), Roch–Alegre (Roch), BB1 (green), and BB5 (black) copulas. OWL and precipitation conditionals are
conditioned on the occurrence of a 25-year precipitation or OWL event.

Table 5. San Diego 10-year marginal (M), conditional (C), and bivariate OWL (m) and precipitation (mmd−1) values using wet-season
monthly coinciding sampling. Conditionals are conditioned on a 25-year event occurrence.

Nelsen Roch. BB1 BB5

OWL Precipitation OWL Precipitation OWL Precipitation OWL Precipitation

M 2.11 33.64 2.11 33.64 2.11 33.64 2.21 33.64
C1 2.19 36.79 2.18 36.27 2.16 35.41 2.62 48.65
C2 2.11 33.61 2.11 33.61 2.11 33.62 2.09 33.02
C3 2.19 36.76 2.18 36.24 2.15 35.37 2.46 44.92
AND 1.85 22.49 1.85 22.15 1.84 21.65 1.91 24.99
OR 2.20 37.06 2.17 38.29 2.20 37.06 2.12 43.47
K 2.22 37.67 2.22 37.67 2.05 32.52 2.14 44.11
SK 2.15 35.13 2.15 35.11 2.15 35.04 2.21 37.88

occurrence. For example, in the 10-year return period annual
maximum OWLs are at least 30 cm higher than AC (Table 7).
In the 100-year return period annual maximum OWLs ex-
ceed annual coinciding OWLs by at least 17 cm (Table 8).
Precipitation is generally consistent across sampling types

with only minor variations observed. AM and WMM sam-
pling generally produced similar OWL results at both the 10-
and 100-year return periods with a maximum difference of
6 cm across all conditionals and copulas.
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Figure 5. San Diego wet-season monthly coinciding (a) AND, (b) OR, (c) SK, and (d) K hazard scenarios with the Nelsen, Roch–Alegre
(Roch), BB1, and BB5 10-year isolines. Copula labels point to the mostly likely value on their respective isolines.

Table 6. San Diego 100-year marginal (M), conditional (C), and bivariate OWL (m) and precipitation (mmd−1) values using wet-season
monthly coinciding sampling. Conditionals are conditioned on a 25-year event occurrence.

Nelsen Roch. BB1 BB5

OWL Precipitation OWL Precipitation OWL Precipitation OWL Precipitation

M 2.40 43.34 2.40 43.34 2.40 43.34 2.40 43.34
C1 2.47 45.26 2.46 44.95 2.44 44.48 2.89 52.72
C2 2.40 43.32 2.40 43.32 2.40 43.34 2.35 42.11
C3 2.47 45.26 2.46 44.92 2.44 44.42 2.68 49.72
AND 2.04 30.77 2.03 30.45 2.02 29.93 2.20 37.42
OR 2.47 45.53 2.48 45.39 2.47 45.53 2.40 49.17
K 2.22 31.79 2.22 31.79 2.17 40.13 2.14 38.59
SK 2.31 40.97 2.33 41.53 2.32 41.26 2.46 45.25

4.4 Structural failure

A structural scenario is presented to consider flood sever-
ity along the Pacific Coast Highway (PCH) in Sunset
Beach. PCH road elevation ranges from 1.7–2.4 m NAVD88
(Fig. 10), below typical spring tide (∼ 2.13 m) and more ex-
treme (∼ 2.3 m) water levels (NOAA, 2021b), requiring tide
valves along the PCH for flood prevention. Tide valve clo-
sures prevent back-flooding from high bay water levels com-
ing up through subsurface storm drains that (normally) dis-

charge to the bay. Additionally, closed tide valves enable
precipitation pooling since water cannot be drained to the
bay. Severe pooling may result in a critical highway closure,
which can further damage property and inhibit emergency
service operations.

Areal precipitation flooding extent and depth can be esti-
mated for water levels exceeding tide valve closure elevation.
A water level equal to or greater than 1.68 m NAVD88 forces
valve closures and frames the structural failure as a Condi-
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Figure 6. San Diego wet-season monthly coinciding (a) AND, (b) OR, (c) SK, and (d) K hazard scenarios with the Nelsen, Roch–Alegre
(Roch), BB1, and BB5 100-year isolines. Copula labels point to the mostly likely value on their respective isolines.

tional 1-type event. The local watershed is convex and drains
an area of 94 897 m2. Water pools in the low-elevation areas
along the PCH (Fig. 10). When pluvial water levels exceed
the sea wall elevation, water overflows the sea wall and exits
to the harbor. The maximum pool storage is 11 342 m3. The
percent of flooding is then calculated with Eq. (20) as the
structural function.

Structural scenario precipitation and percent flooding (9)
values utilizing the Nelsen, Roch–Alegre, and BB1 copulas
are shown in Table 9. Rows and columns separate the uti-
lized sampling methods and return periods of interest, re-
spectively. Figure 11 shows 9 as a function of precipitation
for the Nelsen, Roch–Alegre, and BB1 copulas along with
the 5- (square), 10- (circle), and 100-year (diamond) return
periods. All copulas display similar values across sampling
methods (Fig. 11, Table 9). For example, the 10-year pre-
cipitation with wet-season monthly coinciding sampling is
82.49, 81.95, and 81.09 for the Nelsen, Roch–Alegre, and
BB1 copulas, respectively. Again, AC sampling severely un-
derestimates precipitation and flooding.

% flooding=
precipitation× area

volume
× 100 (20)

5 Discussion

Previous multivariate studies typically use a small, popular
group of copulas (e.g., Clayton, Frank, Gumbel, Student t ,
and Gaussian). Gaussian and Student t copulas were ex-
cluded from this study due to their lack of a computationally
simple derivative or integral, while the Clayton, Frank, and
Gumbel failed to pass the Cramér–von Mises test. Nelsen,
BB1, BB5, and Roch–Alegre copulas generally present sim-
ilar values, with the BB5 occasionally presenting more con-
servative pairs (Fig. 6). Well-fit copulas concentrate probabil-
ities around more centralized OWL and precipitation values
for multivariate events. This is most pronounced at higher
(i.e., 100-year) return periods (Fig. 6). The fact that the
resulting copulas exhibit agreement between values (for a
given sampling) suggests that choosing a reasonable copula
may be sufficient to provide a robust characterization of con-
sidered multivariate flooding events.

The choice in sampling imparts a significant influence on
event risk interpretation. When maximum versus coincid-
ing sampling is considered, maximum samplings (AM and
WMM) tend to provide the largest OWL at low return pe-
riods (Figs. 7a, c, e and 8, Table 7). At larger return pe-
riods, wet-season monthly coinciding then provides signif-
icantly larger OWLs (Figs. 7a, c, e and 9, Table 8). This is
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Figure 7. San Diego OWL (left column) and precipitation (right column) (a, b) C1, (c, d) C2, and (e, f) C3 CDFs for annual maximum
(AM; blue), annual coinciding (AC; green), wet-season monthly maximum (WMM; black), and wet-season monthly coinciding (WMC; red)
samplings using the BB1 copula. OWL and precipitation conditionals are conditioned on the occurrence of a 25-year precipitation or OWL
event.

Table 7. San Diego 10-year marginal (M), conditional (C), and bivariate OWL (m) and precipitation (mmd−1) values using the BB1 with
annual maximum (AM), annual coinciding (AC), wet-season monthly maximum (WMM), and wet-season monthly coinciding (WMC)
samplings. Conditionals are conditioned on a 25-year event occurrence.

AM AC WMM WMC

OWL Precipitation OWL Precipitation OWL Precipitation OWL Precipitation

M 2.22 33.38 1.83 33.76 2.20 33.61 2.11 33.64
C1 2.24 35.20 1.86 35.03 2.21 34.39 2.16 35.41
C2 2.22 33.31 1.83 33.70 2.20 33.60 2.11 33.62
C3 2.23 34.50 1.86 34.99 2.21 34.31 2.15 35.37
AND 2.14 26.13 1.66 26.79 2.09 20.89 1.84 21.65
OR 2.25 37.03 1.91 37.71 2.22 38.48 2.20 37.06
K 2.24 36.02 1.89 36.44 2.18 32.10 2.05 32.52
SK 2.25 38.45 1.94 38.70 2.21 35.06 2.15 35.04
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Figure 8. San Diego (a) AND, (b) OR, (c) SK, and (d) K hazard scenarios for annual maximum (AM; cross), annual coinciding (AC; plus),
wet-season monthly maximum (WMM; dot), and wet-season monthly coinciding (WMC; triangle) data and 10-year isolines using the BB1
copula. Sampling labels point to the mostly likely value on their respective isolines.

Table 8. San Diego 100-year marginal (M), conditional (C), and bivariate OWL (m) and precipitation (mmd−1) values using the BB1
with annual maximum (AM), annual coinciding (AC), wet-season monthly maximum (WMM), and wet-season monthly coinciding (WMC)
samplings. Conditionals are conditioned on a 25-year event occurrence.

AM AC WMM WMC

OWL Precipitation OWL Precipitation OWL Precipitation OWL Precipitation

M 2.27 45.07 2.08 45.65 2.26 43.32 2.40 43.34
C1 2.27 48.54 2.10 46.76 2.27 43.98 2.44 44.48
C2 2.27 44.90 2.08 45.60 2.26 43.30 2.40 43.34
C3 2.27 46.35 2.10 46.69 2.27 43.79 2.44 44.42
AND 2.23 34.01 1.85 34.39 2.17 29.29 2.02 29.93
OR 2.27 48.15 2.14 48.83 2.27 45.52 2.47 45.53
K 2.26 42.81 2.02 42.45 2.22 39.68 2.17 40.13
SK 2.27 46.20 2.08 45.65 2.25 40.90 2.32 41.26

observed in the conditionals and bivariates (minus the AND
and K hazard scenarios, whose maximum samplings dis-
play the largest OWLs) at all sites. From a logical perspec-
tive, coinciding sampling provides a more realistic view of
multivariate events (by definition these are pairs that have
co-occurred to produce a multivariate flooding event). At
long return periods annual coinciding sampling may require
a long data record, which is often unavailable. Notably, in

this study annual coinciding produced OWL samplings that
were substantially lower than any of the other samplings.
For example when comparing 100-year OWLs with annual
and wet-season monthly coinciding samplings, the marginal
was 32 cm lower, and the AND scenario was 17 cm lower
(Table 8). Given that sea-wall-protected urban coastal ar-
eas are highly sensitive to even minor elevation differences
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Figure 9. San Diego (a) AND, (b) OR, (c) SK, and (d) K hazard scenarios for annual maximum (AM; cross), annual coinciding (AC; plus),
wet-season monthly maximum (WMM; dot), and wet-season monthly coinciding (WMC; triangle) data and 100-year isolines using the BB1
copula. Sampling labels point to the mostly likely value on their respective isolines.

Figure 10. Elevations within the Pacific Coast Highway boundary ranging from low (purple) to high (blue). Background imagery from
NOAA (2021a).

(e.g., Gallien et al., 2011), this suggests that with limited data
records annual coinciding sampling should be avoided.

An important note is that each probability type appropri-
ately describes a unique event, characterized by OWL and
precipitation. Serinaldi (2015) suggests that inter-comparing
univariate, multivariate, and conditional probabilities and re-
turn periods is misleading as each probability type describes
its associated event. Events where only extreme OWL or pre-

cipitation is of concern should simply utilize marginal statis-
tics and follow current FEMA guidelines. Multivariate event
analysis may utilize a variety of scenarios. Conditional-type
distributions become useful when future information on one
variable is known (e.g., predicted OWL levels). AND sce-
narios may be applied when both variables exceeding given
limits are of concern. The survival Kendall scenario is an al-
ternative to the AND scenario using a more conservative ap-

Nat. Hazards Earth Syst. Sci., 22, 2145–2167, 2022 https://doi.org/10.5194/nhess-22-2145-2022



J. T. D. Lucey and T. W. Gallien: Characterizing multivariate coastal flooding events 2159

Figure 11. Structural scenario 5- (square), 10- (circle), and 100-year (diamond) return periods for annual maximum (AM; blue), annual
coinciding (AC; green), wet-season monthly maximum (WMM; black), and wet-season monthly (WMC; red) data using the (a) Nelsen,
(b) Roch–Alegre, and (c) BB1 copulas.

Table 9. Precipitation and percent flooding (9) associated with the 5-, 10-, and 100-year return periods (T ) using the Nelsen, Roch–Alegre,
and BB1 copulas to determine C1 values with annual maximum (AM), annual coinciding (AC), wet-season monthly maximum (WMM), and
wet-season monthly coinciding (WMC) samplings. Precipitation values are in millimeters per day, and 9 is a percentage. Values are based
off an OWL of ≥ 1.68 m, which forces tide valve closure.

T
5-year 10-year 100-year

Precipitation 9 Precipitation 9 Precipitation 9

Nelsen

AM 63.51 53.14 75.97 63.56 107.44 89.89
AC 34.45 28.82 47.41 39.66 89.39 74.79
WMM 64.51 53.97 79.27 66.32 128.26 100.00
WMC 67.71 56.65 82.49 69.02 131.44 100.00

Roch–Alegre

AM 63.51 53.14 75.97 63.56 107.44 89.89
AC 33.70 28.19 46.57 38.97 88.50 74.05
WMM 64.57 54.02 79.34 66.38 128.44 100.00
WMC 67.17 56.20 81.95 68.56 130.92 100.00

BB1

AM 63.51 53.14 75.97 63.56 107.44 89.89
AC 33.30 27.86 46.41 38.83 89.44 74.83
WMM 64.60 54.05 79.38 66.42 128.44 100.00
WMC 66.34 55.50 81.09 67.84 130.03 100.00

proach to develop events of concern (Salvadori et al., 2013).
An OR scenario should be applied when either multivariate
variable exceeding a limit is of concern, whereas the Kendall
scenario provides minimum OR events of concern (Salvadori
et al., 2011). The benefit of the Kendall and survival Kendall
is that all the events along their isolines describe a similar
probability space versus the AND, and OR isolines describe
events with similar probabilities of non-exceedance. It is crit-
ical for practitioners and future studies to define concerning
flood events within a region since the associated probability

will result in varying event risk estimates, as seen within this
work. The selected probability type will have significant in-
fluence on flood risk studies and modeling efforts. A majority
of previous studies focus on specific probability types and
do not consider multiple flooding pathways. Only a single
study explores all the probabilities associated with different
extreme events (Serinaldi, 2016).

From a regulatory perspective, FEMA recommends
individual (univariate) analysis to develop return peri-
ods for multivariate coastal flooding applications (FEMA,
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2011, 2016c, 2020) and blending the two hazard mapping re-
sults. Fundamentally, this type of approach assumes (event)
independence and may underestimate multivariate flood haz-
ards (e.g., Moftakhari et al., 2019; Muñoz et al., 2020).
FEMA provides guidelines for coastal-riverine- (FEMA,
2020), tide-, surge-, tide-surge- (FEMA, 2016a), surge-
riverine- (FEMA, 2016c), and tropical-storm (or hurricane)-
type flooding events (FEMA, 2016b). Currently, FEMA does
not provide specific guidance for considering high marine
water levels and precipitation. However, this work suggests
that at high return periods the sampling method is critical to
characterizing both univariate and joint probabilities.

Structural scenarios provide a quantitative context to
frame flood vulnerability. In the structural failure context, an-
nual coinciding sampling significantly underestimates flood-
ing at all return periods, and annual maximum sampling un-
derestimates severe (i.e., 100-year) events, echoing previ-
ous annual maximum and coinciding sampling issues. Simi-
lar values between most copulas support the suggestion that
choosing a reasonable copula will provide robust results in
these types of applications. Precipitation events in the struc-
tural scenario (Table 9) range between 33.30 mmd−1 and
131.44 mmd−1, resulting in between 27.86 % and complete
(100 %) backshore flooding. This significant flooding at all
return periods suggests severe flood vulnerability, which is
validated by frequent closures of the PCH. This structural
function provides a quick and simple alternative to poorly
performing bathtub flood models (e.g., Bernatchez et al.,
2011; Gallien et al., 2011, 2014; Gallien, 2016) to quanti-
tatively explore flood severity while accounting for infras-
tructure and joint probabilities.

The maximum OWL and precipitation observations within
the record are 2.33 m and 118.93 mmd−1 for Sunset,
2.27 m and 42.11 mmd−1 for San Diego, and 2.45 m and
76.83 mmd−1 for Santa Monica. Most likely precipitation
and OWL pairs in high return periods often exceed the cur-
rent data record’s maximums (e.g., Table 8). This study is
limited to the available data records, and sea level rise clearly
imparts a non-stationary trend. Current water level values re-
stricted to today’s distribution tails will become more fre-
quent in the next century (Taherkhani et al., 2020). For ex-
ample, Wahl et al. (2015) suggest that a previously 100-year
event in New York is now a 42-year event based on the in-
creasing correlation between extreme precipitation and storm
surge events. Similarly, our results suggest increasing precip-
itation and, particularly, OWL levels.

6 Conclusions

Univariate and multivariate event risks from OWL and/or
precipitation were explored at three sites in a tidally domi-
nated, semi-arid region. Seventeen copulas were considered.
Previous studies typically relied upon a small number of cop-
ulas (e.g., Clayton, Frank, Gumbel, Student t , and Gaussian)

for multivariate flood assessments. In this case, the Nelsen,
BB1, BB5, and Roch–Alegre copulas passed the Cramér–von
Mises test and produced similar, quality fits across all sam-
pling methods. However, in some cases, the BB5 produced
conservative results. Copulas exhibit similar most probable
pairs (e.g., Figs. 5, 6), suggesting that a number of poten-
tial copulas may provide a robust multivariate analysis. The
impact of sampling and distribution choice on uni- and mul-
tivariate return period values are presented; however un-
certainties deserve further characterization. This work fo-
cused solely on exploring conditional and joint probabilities
of OWL and precipitation in a tidally and wave-dominated
semi-arid region and would not be applicable to regions ex-
periencing multiple flooding seasons (e.g., Couasnon et al.,
2022). Although wave impacts were not included in this as-
sessment, they are fundamental to coastal flooding, particu-
larly in regions subjected to long-period swell. Joint prob-
ability methods explicitly including wave contributions to
multivariate event risk characterizations are needed for fu-
ture work.

The annual maximum method is widely recognized for
hazard assessments (FEMA, 2011, 2016c) and is common
practice in flood risk analysis (e.g., Baratti et al., 2012; Bezak
et al., 2014; Wahl et al., 2015). Concerningly, this work sug-
gests that annual maximum sampling does not characterize
severe flooding potential for extreme events. Water levels are
substantially underestimated as annual sampling neglects a
large portion of observations (Table 8). Generally, maximum
samplings produced larger values at minor return periods but
significantly underestimated water levels at longer return pe-
riods than wet-season monthly coinciding sampling. Simi-
larly, annual-coinciding-type sampling (Tables 7, 8) grossly
underestimates OWLs. Wet-season sampling quadruples data
pairs (Table 2), providing additional historical joint event
information. Further investigation into monthly coinciding
and, where appropriate, water year coinciding is needed to
develop optimal sampling strategies for given regional con-
ditions.
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Appendix A: Additional BICs

Figure A1. Marginal OWL BIC values per fitted copula for Santa Monica (left column), Sunset (middle column), and San Diego (right
column) using annual maximum (a, b, c), annual coinciding (d, e, f), wet-season monthly maximum (g, h, i), and wet-season monthly
coinciding (j, k, l). The y axis is oriented to display best BIC (top) to worse BIC (bottom).
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Figure A2. Marginal precipitation BIC values per fitted copula for Santa Monica (left column), Sunset (middle column), and San Diego
(right column) using annual maximum (a, b, c), annual coinciding (d, e, f), wet-season monthly maximum (g, h, i), and wet-season monthly
coinciding (j, k, l). The y axis is oriented to display best BIC (top) to worse BIC (bottom).

Data availability. NOAA precipitation data are available for
download at https://www.ncei.noaa.gov/metadata/geoportal/rest/
metadata/item/gov.noaa.ncdc:C00313/html# (NOAA, 2021c). Tidal
data are available for download on NOAA’s Tides & Currents web-
site (https://tidesandcurrents.noaa.gov, NOAA, 2021d).
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