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Abstract. The incorporation of specific regional hydrolog-
ical characteristics in empirical statistical landslide thresh-
old models has considerable potential to improve the quality
of landslide predictions towards reliable early warning sys-
tems. The objective of this research was to test the value of
regional groundwater level information, as a proxy for wa-
ter storage fluctuations, to improve regional landslide predic-
tions with empirical models based on the concept of thresh-
old levels. Specifically, we investigated (i) the use of a data-
driven time series approach to model the regional ground-
water levels based on short duration monitoring observations
and (ii) the predictive power of single variable and bilinear
threshold landslide prediction models derived from ground-
water levels and precipitation. Based on statistical measures
of the model fit (R2 and RMSE), the groundwater level dy-
namics estimated by the transfer function noise time series
model are broadly consistent with the observed groundwa-
ter levels. The single variable threshold models derived from
groundwater levels exhibited the highest landslide prediction
power with 82 %–93 % of true positive alarms despite the
quite high rate of false alarms with about 26 %–38 %. The
further combination as bilinear threshold models reduced the
rate of false alarms by about 18 %–28 % at the expense of
reduced true alarms by about 9 %–29 % and is thus less ad-
vantageous than single variable threshold models. In contrast
to precipitation-based thresholds, relying on threshold mod-
els exclusively defined using hydrological variables such as
groundwater can lead to improved landslide predictions due
to their implicit consideration of long-term antecedent con-
ditions until the day of landslide occurrence.

1 Introduction

Landslide and other natural hazard prediction models are de-
veloped with the purpose of being implemented into early
warning systems (LEWSs) (Fathani et al., 2016; Pecoraro et
al., 2019; Piciullo et al., 2018). LEWSs are defined as tools to
monitor the long-term hydrological and short-term meteoro-
logical variations to predict and timely inform about the im-
minent periods of landslide danger. Most landslide prediction
approaches and development of early warning criteria rou-
tinely rely on meteorological threshold level concepts which
define the typical precipitation characteristics like event rain-
fall volume, event rainfall intensity, and event duration that
initiate landslides (e.g., Guzzetti et al., 2008; Brunetti et al.,
2010; Rosi et al., 2016; Peruccacci et al., 2017). However,
this exclusive reliance on meteorological data is problematic
for several reasons. The most common problem attributed
to these meteorological threshold level concepts is the fre-
quent lack of considering pre-event hydrological processes
and specific characteristics of the studied region that predis-
poses the slope to near failure (Bogaard and Greco, 2014,
2018; Mostbauer et al., 2018; Peres et al., 2018). These ap-
proaches are therefore known to generate high rates of false
and missed alarms and thus reduce the quality of landslide
early warning systems. Hydrology, being an important aspect
in landslide hazard assessment, is still not sufficiently ex-
plored, although many landslides are hydrologically caused
and meteorologically triggered (Bogaard and Greco, 2018).
While landslides are hydrologically caused by elevated pre-
event subsurface water storage, they are meteorologically
triggered by the input of precipitation and snowmelt during
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a specific event that leads to a further increase in pore water
pressure and a decrease in frictional forces between particles
that reduces the effective shearing resistance and thus creates
slope instability (van Beek, 2002; Bishop, 1954; Kuriakose,
2010). According to Bogaard and Greco (2014, 2015), the
integration of hydrological processes into large-scale mod-
els is still incomplete and therefore limits the application in
landslide prediction models. The need for landslide hydro-
meteorological-based thresholds was highlighted and further
postulated that both false and missed alarms could be signif-
icantly reduced if the wetness state is incorporated in land-
slide prediction models through direct measurements of soil
water content or groundwater levels. However, various ways
of including such hydrological state information into land-
slide hydro-meteorological thresholds have been recently at-
tempted. These include the direct use of in situ hydrological
data through standard observation networks such as stream
flow or local soil moisture observations (e.g., Mirus et al.,
2018b; Wicki et al., 2020) but also data from satellite-derived
hydrological measurement (e.g., Zhuo et al., 2019; Thomas
et al., 2019; Marino et al., 2020; van Natijne et al., 2020),
as well as hydrological variables estimated from hydrolog-
ical models (e.g., Ciavolella et al., 2016; Mostbauer et al.,
2018; Prenner et al., 2018, 2019; Wang et al., 2019; Zhao
et al., 2020). It should be noted that research that incorpo-
rates hydrological parameters into landslide prediction mod-
els using in situ data is scarce due to the absence of long-
term hydrological monitoring of sufficient spatial and tem-
poral coverage in most regions worldwide. This is in partic-
ular true for many African countries, where the underlying
problem limiting landslide research is the lack of sufficient
local data. Freely available satellite and global hydrological-
model-derived information is also still poorly explored. In
Rwanda, many river catchments have been recently equipped
with groundwater observation wells, piezometers, and river
water level gauges. However, frequently, the recorded data
are insufficient to build historical time series that match the
time period of landslide inventories and that could be in-
corporated into a landslide hydro-meteorological threshold
model. Recently, Uwihirwe et al. (2020) published the first
empirical landslide hazard assessment relation for Rwanda,
which is an important step forward in landslide early warn-
ing in that country. The defined precipitation-based landslide
threshold included the antecedent precipitation conditions as
an indirect proxy for hydrological conditions. However, it
still suffers from an elevated number of false and missed
alarms. Recent research suggests that the number of false
alarms can be reduced once the hydrological state informa-
tion is incorporated in landslide prediction models. Several
papers reported significant improvement of landslide fore-
cast quality for early warning systems by replacing the an-
tecedent rainfall component with soil moisture data (Mirus
et al., 2018b; Mostbauer et al., 2018; Prenner et al., 2018,
2019; Zhuo et al., 2019; Thomas et al., 2019; Wang et al.,
2019; Marino et al., 2020; Zhao et al., 2020; van Natijne et

al., 2020; Wicki et al., 2020). The need for landslide hydro-
meteorological thresholds is therefore widely acknowledged.
However, the functional relationship between hydrological
and meteorological conditions potentially linked to landslide
initiation is not yet standardized. Traditional precipitation-
based threshold models commonly used power-law functions
between precipitation variables like intensity–duration (I–
D) and event–duration (E–D) (e.g., Caine, 1980; Guzzetti
et al., 2007, 2008; Ma et al., 2015; Hong et al., 2017) us-
ing the threshold model line as the best separator for land-
slide and no-landslide conditions sometimes defined based
on expert judgment. More advanced statistical approaches
that include the frequentist, probabilistic, and receiver op-
erating characteristics methods have been adopted and have
replaced the deterministic method. The frequentist method
(Brunetti et al., 2010; Melillo et al., 2018; Peruccacci et al.,
2017; Piciullo et al., 2018) also defines the threshold line sep-
arating landslide from no-landslide conditions based on the
targeted exceedance probabilities. The probabilistic method
(Berti et al., 2012; Robbins, 2016) fundamentally relies on
Bayes’ prior and marginal probabilities for landslide occur-
rence. The probabilistic methods are criticized for the biased
prior and marginal probabilities due to the incompleteness of
typical landslide inventory data (Berti et al., 2012), while fre-
quentist methods are constrained by their high dependency
on a large and well-distributed dataset to achieve significant
results (Brunetti et al., 2010; Monsieurs et al., 2019b). The
receiver operating characteristic (ROC) curve method com-
pares the landslide and no-landslide conditions based on the
area under the curve (AUC) while indicating the trade-off
between true and false positive rates associated with each
level of the tested predictor variable or model. In landslide
studies, the ROC approach has been mostly used to eval-
uate the performance of landslide prediction models (Hong
et al., 2017; Wicki et al., 2020) despite its capability to de-
fine the landslide initiation thresholds once associated with
other statistical metrics like the true skill statistics and radial
distance. Some research that incorporates the hydrological
parameters in landslide prediction models also used the ex-
ponential or power-law function (e.g., Crozier, 1999; Mon-
sieurs et al., 2019a, b). Monsieurs et al. (2019a) used the fre-
quentist statistical method to define the landslide power-law
threshold model line between antecedent rainfall and land-
slide susceptibility in the western branch of the East African
Rift region. Similarly, Crozier (1999) defined the exponential
function between antecedent water status and daily rainfall in
Wellington, New Zealand. However, recent research (Mirus
et al., 2018a; Uwihirwe et al., 2020) used the ROC curve
and other statistical metrics (true skill statistics, radial dis-
tance, and threat score) to define the landslide threshold for
each tested landslide predictor variable. These thresholds in-
dicate the optimum levels in one dimension (1D) of either the
hydrological or meteorological condition potentially linked
to landslide initiation at local, regional, and global scales.
Hereafter, these thresholds are therefore referred to as sin-
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gle variable threshold models. The combination of the op-
timum thresholds from two landslide predictor variables in
two dimensions (2D) asX–Y pairs is referred to as a bilinear
threshold model, first proposed by Mirus et al. (2018a). Some
landslide studies discussed different effects that groundwater
systems may have on landslide initiation (Bronnimann, 2011;
Cascini et al., 2010; Corominas et al., 2005; Duan et al.,
2019; Hong and Wan, 2011; Trigo et al., 2005; Zhao et al.,
2016). However, the asset that regional groundwater level in-
formation may have in predicting landslide initiation on a re-
gional scale is still underexplored. It is hypothesized that the
more water stored in the catchment, the higher the probability
is that a certain rain event will trigger landslides in a catch-
ment. Therefore, estimates of catchment water storage could
be used as a pre-event hydrological process that predispose
a slope to near failure and thus be among the hydrological
landslide predictor variables. However, as this information is
scarce in the study area, we presuppose the regional ground-
water level to be a potential proxy of the relative regional
catchment storage which can be used as a hydrological land-
slide predictor variable and could be useful once incorpo-
rated in landslide threshold model definitions. This research
aims to include regional groundwater level information into
hydro-meteorological landslide threshold models and assess
their predictive capabilities. As this type of information is
not fully available, we used a parsimonious model to tem-
porally extend regional groundwater level information to the
full time period covered by the Rwanda landslide inventory.
More specifically, we here tested the hypothesis that the in-
corporation of model-derived groundwater levels in empiri-
cal landslide hazard assessment thresholds could improve the
landslide warning capability in Rwanda.

2 Study area description

This study was conducted using data from three catchments
– Kivu, upper Nyabarongo, and Mukungwa (Nieuwenhuis et
al., 2019) – located in the northwestern region of Rwanda,
a landlocked country geographically located between 1–3◦ S
and 28–31◦ E in central East Africa (Fig. 1). The northwest-
ern region is geomorphologically characterized by rounded,
angular hills and headlands, mountains, and volcanoes with
an elevation of up to about 4500 m and steep slopes of up to
55 % (Fig. 2).

The total area of Kivu catchment is about 7323 km2,
2425 km2 of which is located in Rwanda. The mean annual
rainfall is around 1500 mmyr−1, while potential evaporation
is estimated at about 860 mmyr−1 (Fig. 3). The Kivu catch-
ment is dominated by basaltic aquifers (volcanic rock) in the
north and southwest, fractured granite and gneiss aquifers in
the center and southeast, and schists and mica schists in the
center and south, while pegmatite is found in intermediate
areas. The upper Nyabarongo catchment is located entirely
within Rwanda with an area of about 3348 km2. The mean

annual rainfall is around 1200 mmyr−1, and potential evap-
oration is estimated at around 870 mmyr−1 (Fig. 3). Granite
and gneiss aquifers are dominant in the southern and to a
lesser amount northwestern parts, while quartz-rich schists
and mica schists dominate in central parts of the catchment
(Fig. 1). The Mukungwa catchment covers a total area of
1949 km2 and is topographically dominated by the volcanic
highlands region that receive abundant rainfall with a long-
term mean annual rainfall of around 1200 mmyr−1 with an
estimated actual evaporation of about 800 mmyr−1 (Fig. 3).
The hydrogeology of the catchment (Fig. 1) is characterized
by volcanic deposits with basalt in the north. Granite and
pegmatite basement aquifers are found in the southwestern
areas, while quartzite and mica schist are in the southeast-
ern and eastern parts of the catchment. Landslides are most
dominant in granite and mica schist units, while basaltic units
seem to be quite resistant to landslide activities as shown
in Fig. 1. This can be explained by the weathering prod-
ucts of volcanic rocks that produce a relatively permeable top
layer but tend to form a layer of brecciated or intruded sills
of low permeability at shallow depths, thus hampering deep
groundwater recharge and being less prone to groundwater-
induced landslides. Contrarily, the weathering products of
granites are generally coarse-grained and tend to develop
and preserve open-joint systems that increase permeability
and thus the fast groundwater response that leads to land-
slide hazards. The weathering product of mica schists in-
cludes clay minerals that tend to fill up the fractures and
thus slow the permeability. However, mica schists are prone
to landslides due to rapid weathering, easy splitting along
the joints and bedding planes, and loss of strength induced
by the high content of mica. A field-based landslide inven-
tory in the northwestern region indicated that these land-
slides are classified as rotational slide (34 %), flow (26 %),
translational slide (17 %), fall (15 %), and complex type of
mass movement (7 %) involving debris, earth, and rock ma-
terials. The typical landslides are deep with estimated areal
extents between 2.8× 101–4.4× 105 m2, failure volume be-
tween 1.3×101–5.8×106 m3, and mobilization rate of about
21 mmyr−1 (Uwihirwe et al., 2020).

3 Methodology

3.1 Groundwater modeling: data and methodology

3.1.1 Meteorological data and selection of
landslide-representative meteorological stations

The rainfall dataset was accessed from the Rwanda meteorol-
ogy agency, while potential evaporation time series were cal-
culated with the Thornthwaite method (Thornthwaite, 1948)
using the mean daily temperature and monthly heat index.
We used time series of daily rainfall and potential evapo-
ration from nine meteorological stations located within the
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Figure 1. Location of the study catchments: Kivu, upper Nyabarongo, and Mukungwa in Rwanda and Africa; hydrogeology of the study
catchments; spatial and temporal distribution of landslides with light to dark red dots indicating old to new landslides recorded from 2006–
2018 (Uwihirwe et al., 2020); and groundwater stations in yellow symbols and meteorological stations in light green symbols.

Figure 2. Geomorphological characteristics of the study catchments and landslides: (a) landforms and (b) slope; spatial and temporal distri-
bution of landslides with light to dark red dots indicating old to new landslides recorded from 2006–2018 (Uwihirwe et al., 2020).

studied catchments for a period of 13 years from 2006–2018.
The meteorological stations (Fig. 1) spatially distributed in
the three studied catchments were selected based on their
relative proximity to the observed locations of the landslides
and include Rubengera, Kanama, and Gisenyi meteorologi-
cal stations in the Kivu catchment; Byimana, Kibangu, and
Rwaza stations in the upper Nyabarongo catchment; and

Ruhengeri, Bigogwe, and Rwankeri meteorological stations
in the Mukungwa catchment, as presented in Fig. 1.

3.1.2 Groundwater data and selection of
landslide-representative groundwater stations

The time series of groundwater levels used for this
study were accessed from the Rwanda water portal
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Figure 3. Mean catchment annual rainfall and potential evaporation in (a) Kivu, (b) upper Nyabarongo, and (c) Mukungwa catchments.

(https://waterportal.rwb.rw/data/ground_water, last access:
2 June 2021). We selected three groundwater observation sta-
tions (Fig. 1) with a temporal resolution of 1 d and a min-
imum continuous duration of 1 year. The three groundwa-
ter observation stations, Nyamyumba, Rugabano, and Cyuve,
located within the Kivu, upper Nyabarongo, and Mukungwa
catchments, respectively, recorded data from December 2016
till December 2018. However, the intrinsic limitation of this
database is linked to the coarse spatial resolution of the
data recording equipment, and the recorded data are insuf-
ficient to build historical time series that match the time pe-
riod of landslide inventories (2006–2018). Nevertheless, this
database has been previously used for the computation of wa-
ter balance and catchment storage and proved to be useful in
Rwanda (Nieuwenhuis et al., 2019; RWFA, 2019).

3.1.3 Transfer function noise (TFN) time series model

A transfer function noise (TFN) time series model describes
the dynamic relationship between a single output series and
one or more input series. The TFN model was used in this
research to simulate groundwater levels (model output) us-
ing both rainfall and potential evaporation as model inputs
(Bakker and Schaars, 2019; Collenteur et al., 2019). With
TFN modeling, the groundwater response to both rainfall and
evaporation is simulated with a scaled gamma response func-
tion. The structure of a TFN model to simulate groundwater
levels is expressed with Eq. (1):

ht =

S∑
s=1

hs(t)+ d + r(t), (1)

where ht is the groundwater levels (m) at time t , hs(t) is
the contribution of stresses s at time t (md−1), S is the to-
tal number of stresses (–) that contribute to the groundwater
level change here represented by rainfall and evaporation, d
is the base elevation of the model (–), and r(t) is the residuals

(m). Each model can have an arbitrary number of stresses S
that contribute to the head; hydrological stresses may include
rainfall, evaporation, river levels, and groundwater extrac-
tions. The contribution of stress s to the groundwater level
at time t is computed through convolution with Eq. (2):

hs(t)=

t∫
−∞

ss(τ )θs(t − τ)dτ, (2)

with ss denoting the time series of stress s and θs expressing
the groundwater impulse response function for stress s. The
groundwater response is estimated using the scaled gamma
response function that indicates the relationship between the
variation in the input time series (rainfall and evaporation)
and the variation in the groundwater levels as in Eq. (3):

θ(t)= A
tn−1

and(n)
e−

t
a , (3)

with A denoting the scaling factor (–); a and n are shape
parameters (–), while d expresses the gamma function.

3.1.4 Groundwater modeling approach

We used the TFN time series model implemented in “Pastas”,
a new open-source Python package for analysis of ground-
water time series. The TFN modeling explains an observed
time series (here the observed groundwater levels) by one
or more other time series (here rainfall and potential evapo-
ration time series). The TFN model input time series, rain-
fall, and potential evaporation were available for the entire
study period 2006–2018, whereas the observed groundwater
level was available for December 2016 to December 2018.
We have therefore used the 2 years of available groundwa-
ter observation time series, and these short-term data were
only used for model calibration, and no validation was car-
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ried out due to the data limitations. By using the TFN mod-
eling approach, we aimed for hindcasting and thus the re-
construction of past groundwater levels to overlap with the
time period of the recorded landslide inventory in Rwanda
(2006–2018) by using the fully available time series of rain-
fall and evaporation as model inputs or model stresses. Each
model can have an arbitrary number of hydrological stresses
that contribute to the groundwater level changes. These hy-
drological stresses include rainfall, evaporation, river levels,
and groundwater extractions. For this study, however, we
used rainfall and potential evaporation and assumed runoff
and groundwater pumping to be negligible, although they
were not assessed in our study area. The impulse ground-
water response function to the stresses was fitted with the
scaled gamma distribution function, and the calibrated pa-
rameters were A, n, a, and d , as described in Sect. 3.1.3 and
summarized in Appendix A. The output of the TFN model
was then daily groundwater levels ht (m) over the entire 13-
year study period from 2006–2018. Apart from hindcasting,
the TFN model spatially extrapolated the groundwater in-
formation and accounted for different precipitation and po-
tential evaporation inputs from the nine spatially distributed
meteorological stations – Rubengera, Kanama, Gisenyi, Byi-
mana, Kibangu, Rwaza, Ruhengeri, Bigogwe, and Rwankeri
– shown in Fig. 1. The extrapolation was undertaken by
changing the model inputs and model parameters at the lo-
cation of each of the meteorological stations and by implic-
itly relying on the main assumption here that other hydro-
geomorphological parameters do not exhibit spatial variabil-
ity within the individual catchment. This is an assumption
made given the data scarcity and some intrinsic limitation
of the database in the East African Rift region in general
(Monsieurs et al., 2018) and Rwanda in particular. The mod-
eled groundwater levels were standardized and used in the
regional hydro-meteorological hazard assessment threshold
definition. The standardization was computed with Eq. (4):

ys =
xi − x

σ
, (4)

where ys is the standardized value of groundwater time series
(–), xi is the value of time series (m) at time step i, x is the
average value of time series (m), σ is the standard deviation
of time series (m), and i is the subsequent time step in a time
series.

3.2 Regional landslide assessment: data and
methodology

3.2.1 Landslide inventory

The available landslide inventory for Rwanda contains
landslides recorded from 2006–2018. It was accessed from
the NASA global landslide catalogue (https://data.nasa.
gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4,
last access: 26 June 2019) uploaded by the Landslide

Inventory for the central section of the Western branch of
the East African Rift (LIWEAR) project. The catalogue
was further extended by Uwihirwe et al. (2020) through
the compilation of additional rainfall-induced landslides as
reported from local newspapers, blogs, technical reports,
and field observations. Between 2006–2018, the catalogue
counts 42 accurately dated landslides located within the
studied region (Fig. 1). However, the detailed characteristics
of these landslides such as the accurate size, types, cause,
and triggers are frequently not recorded by the landslide
hazard reporters.

3.2.2 Definition of landslide hydrological and
meteorological conditions

The outputs from the TFN model, including groundwater lev-
els, were used to define the landslide hydrological conditions
in each of the studied catchments. The landslide hydrolog-
ical conditions consist of standardized groundwater levels
modeled on landslide day ht and day prior to the landslide-
triggering event ht−1 and were here considered as landslide-
causing or landslide-predisposing conditions. The meteoro-
logical conditions used here include event rainfall volume E
(mmE−1), event rainfall intensity I (mmd−1), and event du-
ration D (d) and were considered as landslide triggers. The
event duration D was defined as individual periods of days
with recorded rain interrupted by dry periods of at least 2 d.
The event rainfall volume E was computed as the accumu-
lated rainfall during each individual event period of duration
D. The event rainfall intensity was then computed as a ratio
of E and D. Both hydrological and meteorological condi-
tions were binary classified into landslide and no-landslide
conditions depending on whether they resulted in a landslide
or not.

3.2.3 Quantification of landslide predictor variables

The landslide predictor variables which include the predis-
posing conditions ht and ht−1, as well as the triggering con-
ditions E, I , and D, were tested for their relevance using
ROC curves and the AUC metrics. ROC is used as a sta-
tistical tool indicating the trade-off between false positive
rate (FPR) and true positive rate (TPR) associated with each
threshold level on the curve (Hong et al., 2017; Postance and
Hillier, 2017; Mirus et al., 2018a; Prenner et al., 2018). In
landslide studies, the AUC is an indicator of the capacity
of the test variable to correctly distinguish landslide from
no-landslide conditions. It is therefore used as a statistical
metric that compares the test variables to random guess-
ing (AUC= 0.5) and thereby indicates their significance in
which the perfect test variable has an AUC equal to unity.
The TPR and FPR corresponding to each threshold level on
ROC curves are calculated with Eqs. (5) and (6):
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TPR=
TP

TP+FN
, (5)

FPR=
FP

FP+TN
, (6)

where TP signifies true positive or true alarm, which is the
number of landslides correctly predicted by the threshold
model, FN signifies false negative or missed alarm, which
is the number of landslides that occurred in reality but were
not predicted by the defined threshold, and FPs (false pos-
itives) or false alarms are incorrect predictions of landslide
occurrence by the threshold model, while in reality there was
no landslide reported. TNs (true negatives) are correct pre-
dictions of no landslide occurrence.

3.2.4 Landslide threshold definition techniques

The optimum or the most informative threshold level above
which landslides are highly likely to occur has been defined
using two statistical techniques, i.e., the maximum true skill
statistics (TSS) and minimum radial distance (Rad). The TSS
is expressed as a balance between the true positive rate and
false positive rate as indicated in Eq. (7):

TSS= TPR−FPR, (7)

where the maximum value of TSS indicates the optimum
threshold for landslide initiation. For a perfect threshold
model, the TSS reaches unity which indicates a zero FPR.

The radial distance (Rad) shows the relative distance from
the defined threshold level to the perfect model or optimum
point whose TPR is a unit and zero FPR and is computed
with Eq. (8):

Rad=
√
(FPR)2+ (TPR− 1)2. (8)

3.2.5 Single variable and bilinear threshold models and
landslide predictive capabilities

According to Postance and Hillier (2017), the optimum land-
slide threshold model is the one that maximizes the TP
alarms while minimizing FN and FP alarms. Based on these
criteria, the optimum threshold was here selected among the
ones defined either by maximum true skill statistics or by
minimum radial distance as stated in Sect. 3.2.4. These opti-
mum thresholds were first plotted in 1D, here referred to as
the single variable threshold model line beyond which land-
slides are highly likely to occur. Furthermore, these optimum
thresholds were combined and plotted in 2D, here referred
to as the bilinear threshold model line beyond which land-
slides are highly likely to occur. The bilinear threshold mod-
els made of hydrological and meteorological predictors were
formulated using x–y pairs such as ht–E, ht–I , ht−1–E, and
ht−1–I and are referred to as hydro-meteorological threshold
models. Furthermore, the thresholds from traditional land-
slide prediction models that exclusively rely on precipita-
tion, precipitation threshold models, such as event–duration

(E–D) and intensity–duration (I–D), were also defined in a
bilinear framework and used as benchmarks for comparative
performance evaluation. The predictive performance of these
threshold models was evaluated using a confusion matrix and
the resulting rate of positive (TP), false (FP), and failed (FN)
alarms and true negatives (TNs).

4 Results and discussion

4.1 Regional groundwater modeling

The outputs of the TFN time series model were daily ground-
water levels (m) simulated over 13 years from 2006–2018,
as presented in Fig. 4. The results demonstrate that the TFN
time series model can broadly reproduce the main features
of observed groundwater level fluctuations based on the met-
rics of goodness of the model fit, i.e., R2 and RMSE be-
tween observed and simulated groundwater levels. Overall,
the model explains between 60 %–87 % of the variance in
the observed groundwater data from the three studied catch-
ments. The RMSE values of groundwater levels (∼ 0.09–
1.84 m) similarly suggested a reasonable model fit across the
catchments. More specifically, while the TFN model cap-
tures groundwater fluctuations rather well in the Kivu and
Mukungwa catchments (RMSE values of groundwater levels
< 0.5 m), the model is somewhat less robust for the upper
Nyabarongo (RMSE values of groundwater levels > 0.5 m).
The weaker model fits observed in upper Nyabarongo catch-
ment are mostly the consequence of the relatively large dis-
tance between the groundwater well and the meteorological
stations, as was also highlighted as a potential source for poor
TFN model fits by Bakker and Schaars (2019). They further
postulated that TFN time series models are relatively simple
as they include only a handful of parameters and have the
greater skill to simulate groundwater levels than more de-
tailed models.

4.2 Catchment standardized groundwater levels and
landslide activities

The standardized daily groundwater levels and the linked
landslide hazards are presented in Fig. 5 for the Kivu, up-
per Nyabarongo, and Mukungwa catchments. The simulated
groundwater levels were standardized based on the assump-
tion that landslides occur when the groundwater levels posi-
tively deviate from the long-term mean up to a critical level
for landslide initiation. The comparisons of mean daily rain-
fall and standardized groundwater levels across the three
studied catchments, calculated by averaging data within each
catchment, indicate general similarities in terms of landslide
triggering and predisposing but also reveal systematic dif-
ferences between the groundwater responses. For example,
Mukungwa catchment is slowly responding and is also drier
from 2014–2018 than the other catchments despite its ele-
vated landslide hazard during that period. The results indi-

https://doi.org/10.5194/nhess-22-1723-2022 Nat. Hazards Earth Syst. Sci., 22, 1723–1742, 2022



1730 J. Uwihirwe et al.: Integration of groundwater levels in landslide thresholds in Rwanda

Figure 4. Groundwater simulation with TFN model. (a–c) TFN model calibrated with groundwater observations from Nyamyumba ground-
water observation well; rainfall and potential evaporation (Ep) time series as model inputs from three meteorological stations: (a) Rubengera
(b) Kanama, and (c) Gisenyi located in Kivu catchment. (d–f) TFN model calibrated with groundwater observations from Rugabano ground-
water observation well; rainfall and Ep time series as model inputs from three meteorological stations: (d) Byimana, (e) Kibangu, and (f)
Rwaza located in upper Nyabarongo catchment. (g–i) TFN model calibrated with groundwater observations from Cyuve groundwater obser-
vation well; rainfall and Ep time series as model inputs from three meteorological stations: (g) Ruhengeri, (h) Bigogwe, and (i) Rwankeri
located in Mukungwa catchment.

cated that landslides are likely to occur at a certain level
above the long-term mean groundwater level and thus jus-
tify the importance of groundwater and catchment wetness in
terms of slope failure predisposition. They also indicate that
landslides occur when the catchment groundwater reaches a
certain peak level above the long-term mean which is a func-
tion of the rainfall received in the past depending on the time
memory of each catchment. Even though the most hazardous
landslides in the studied catchments are shallow-seated land-
slides which are mostly rainfall induced, the conducted field-
based inventory indicated that the most frequently recorded
landslides in northwestern Rwanda are deep-seated land-
slides which are highly likely linked to the combined effects
of groundwater and other hydrogeological factors. The crit-
ical positive deviation of groundwater levels up to 3 m from
the mean was noticed to be the range in which most land-
slide activity happens in the studied region. However, Van

Asch et al. (1999) highlighted that deep-seated landslides at
about 5–20 m depth are induced by rising groundwater level,
with about 4 m below the ground surface being the critical
threshold for landslide reactivation. Hong and Wan (2011)
and Duan et al. (2019) forecasted the groundwater fluctua-
tion and indicated that landslides are likely to occur when
groundwater level increases by about 8 m from the datum.
Even so, these absolute threshold values were not statisti-
cally approved using appropriate landslide threshold defini-
tion techniques.

4.3 Landslide predictor variables and their
discriminatory power

The discriminatory power of each landslide predictor vari-
able was evaluated using ROC curves and AUC metrics, as
presented in Fig. 6. Based on the results, the standardized
groundwater levels ht modeled on a landslide day with AUC
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Figure 5. (a) Mean daily catchment rainfall and (b) catchment mean standardized groundwater simulated with TFN model using meteo-
rological data from Kivu catchment as model inputs, (c) mean daily catchment rainfall and (d) catchment mean standardized groundwater
simulated with TFN model using meteorological data from upper Nyabarongo catchment as model inputs, and (e) mean daily catchment
rainfall and (f) catchment mean standardized groundwater simulated with TFN model using meteorological data from Mukungwa catchment
as model inputs; landslides represented with red dots.
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Figure 6. Receiver operating characteristic (ROC) curves and area under the curve (AUC) for each landslide predictor variable in the studied
catchments: (a) Kivu, (b) upper Nyabarongo, and (c) Mukungwa. The optimum thresholds defined using the maximum true skill statistics
(TSS) are presented with square-shaped markers, while circle-shaped markers are thresholds defined with the minimum radial distance (Rad);
once TSS and Rad reveal different threshold values, the optimum (with maximum TPR and minimum FPR) is kept; once TSS and Rad reveal
similar threshold values, only the square-shaped marker (TSS) is kept. The corresponding balance of true and false positive rates is also
presented.

between 0.76–0.80 and the event rainfall volume E whose
AUC ranges from 0.74–0.93 were identified as the hydro-
logical and meteorological variables with the highest dis-
criminatory power to distinguish landslide from no-landslide
conditions and thus the most dominant control on landslide
occurrence in the studied region. The standardized ground-
water levels ht−1 recorded prior to the landslide triggering
event, with AUC ranging from 0.63–0.74, were not as sig-
nificant as ht . This is likely a consequence of the hydroge-
ological properties of soil such as soil texture, presence of
fissures, porosity, and permeability that contribute to aquifer
leakage, drainage, and seepage of longer cumulated ground-
water levels. Although the AUC metric was used to iden-
tify the variable with the highest skill to distinguish land-
slide from no-landslide conditions, it does not indicate the
optimum threshold levels above which landslides are highly

likely to occur. Therefore, the maximum true skill statistics
(TSS) and minimum radial distance (Rad) statistical metrics
were used to identify the optimum thresholds represented by
the dots on the ROC curves, and the corresponding balance
of TPR and FPR is presented in Fig. 6 and detailed in Table 1.
The maximum TSS and minimum Rad indicated, for exam-
ple, that landslides are highly likely to occur when standard-
ized groundwater levels ht positively deviate by about 0.21
to 0.48 from the long-term mean, and these threshold levels
resulted in about 82 %–93 % of correct predictions of land-
slides, i.e., true positive rate, and about 26 %–38 % of false
positive rate. Similarly, both TSS and Rad indicated 66.8 mm
per event as the optimum threshold rainfall volume E with
64 % of true positive rate and 15 % of false positive rate in
Kivu catchment. However, the optimum thresholds E be-
tween 44.7–63.5 mm per event were defined by Rad in upper
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Figure 7. Landslide warning capabilities of the hydro-meteorological and precipitation threshold models: (a) ht–E, (b) ht–I , (c) ht−1–E,
(d) ht–E, (e) E–D, and (f) I–D in Kivu catchment.

Nyabarongo and Mukungwa catchments and correctly pre-
dict about 73 %–92 % of landslides with a 18 %–24 % false
positive rate. These findings indicated that the statistical met-
rics TSS and Rad lead to quite similar results, expressing
their identical capabilities in landslide threshold definitions.

4.4 Comparative prediction power of single variable
and bilinear threshold models

This research identified the landslide thresholds for each pre-
dictor variable, including the hydrological variables ht and
ht−1 and meteorological variablesE, I , andD. The landslide
predictive capability was evaluated for each variable in 1D,
here considered as the single variable threshold models pre-
sented in Table 1 and each of the blue lines in Figs. 7–9. The
landslide predictive capability was also evaluated through
a combination of variables in 2D as X–Y pairs, here con-
sidered as the bilinear threshold models summarized in Ta-
ble 2 and the intersection of both blue lines in Figs. 7–9.
Postance and Hillier (2017) indicate that the basic strategy
for the selection of an accurate landslide threshold model is
to choose the one that offers the greatest level of TPR alarms
and that provides the lowest false negative rate (FNR) and
FPR. Therefore, the findings of this research indicated that
either hydrological or meteorological single variable thresh-
old models have the greatest landslide predictive capabil-
ity in terms of elevated true positive rate and low level of
failed alarms as compared to the bilinear threshold mod-

els. For example with groundwater level modeled on land-
slide day ht with threshold values between 0.2–0.48 above
the mean, 82 %–93 % of landslides were correctly predicted
(TPR), and 25 %–38 % were incorrectly predicted landslides
(FPR). Similarly, the event rainfall intensity I between 7.5–
12.5 mmd−1 as single variable thresholds was able to cor-
rectly predict 64 %–92 % of landslides with 25 %–37 % as
false alarms. Contrarily, the resulting bilinear threshold mod-
els ht–I were able to correctly predict 64 %–85 % with a
8 %–15 % FPR. The greatest landslide prediction capability
of single variable threshold models in terms of TPR was also
noticed in previously conducted research in Rwanda (Uwi-
hirwe et al., 2020). However, it was noticed that relying on
single variable threshold models that are exclusively defined
using precipitation variables like event rainfall volumeE and
event intensity I , considered as landslide triggers, could lead
to biased results due to the fact that many landslides occur
not only due to the trigger itself but rather to a combination of
both trigger and pre-event hydrological conditions. Contrar-
ily, relying on single variable threshold models exclusively
defined using hydrological variables like groundwater levels
ht could lead to unbiased landslide predictions due to their
high consideration of long-term antecedent conditions until
the day of landslide occurrence. The bilinear threshold mod-
els lead to a minimized level of FPR which is the main focus
behind the cause–trigger and bilinear threshold concepts pro-
posed by Bogaard and Greco (2018) and Mirus et al. (2018a)
with a rather reduced TPR.
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Table 1. Single variable landslide threshold definition with the maximum true skill statistics (TSS) and minimum radial distance (Rad) and
their predictive power.

Variables TSS TPR FPR FNR TNRf TSS RAD RAD TPR FPR FNR TNR TSS RAD
threshold threshold

Kivu catchment

ht
a 0.21 0.93 0.38 0.07 0.62 0.55 0.39 0.21 0.93 0.38 0.07 0.62 0.55 0.39

ht−1
b 0.05 0.93 0.43 0.07 0.58 0.50 0.43 0.05 0.93 0.43 0.07 0.58 0.50 0.43

E (mm)c 66.75 0.64 0.15 0.36 0.85 0.49 0.39 66.75 0.64 0.15 0.36 0.85 0.49 0.39
D (d)d 7.50 0.43 0.17 0.57 0.83 0.26 0.60 3.50 0.64 0.42 0.36 0.58 0.23 0.55
I (mmd−1)e 10.84 0.64 0.25 0.36 0.75 0.40 0.44 10.84 0.64 0.25 0.36 0.75 0.40 0.44

Upper Nyabarongo catchment

ht 0.46 0.82 0.26 0.18 0.74 0.56 0.32 0.46 0.82 0.26 0.18 0.74 0.56 0.32
ht−1 0.64 0.64 0.22 0.36 0.78 0.42 0.42 0.64 0.64 0.22 0.36 0.78 0.42 0.42
E (mm) 90.50 0.64 0.09 0.36 0.92 0.55 0.37 44.70 0.73 0.24 0.27 0.76 0.49 0.36
D (d) 12.50 0.46 0.06 0.55 0.95 0.40 0.55 12.50 0.46 0.06 0.55 0.95 0.40 0.55
I (mmd−1) 12.48 0.73 0.25 0.27 0.75 0.48 0.37 12.48 0.73 0.25 0.27 0.75 0.48 0.37

Mukungwa catchment

ht 0.48 0.85 0.35 0.15 0.65 0.50 0.38 0.82 0.69 0.20 0.31 0.80 0.49 0.37
ht−1 0.92 0.54 0.17 0.46 0.83 0.37 0.49 0.92 0.54 0.17 0.46 0.83 0.37 0.49
E (mm) 46.75 1.00 0.25 0.00 0.75 0.75 0.25 63.50 0.92 0.18 0.08 0.82 0.75 0.19
D (d) 7.50 0.85 0.22 0.15 0.79 0.63 0.26 7.50 0.85 0.22 0.15 0.79 0.63 0.26
I (mmd−1) 6.78 1.00 0.44 0.00 0.56 0.56 0.44 7.55 0.92 0.37 0.08 0.63 0.55 0.38

a Groundwater levels recorded on the day of landslide. b Groundwater levels recorded prior to landslide triggering event. c Event rainfall volume. d Event duration. e Event rainfall
intensity. f True negative rate.

Table 2. Landslide bilinear threshold model and warning capabilities.

Cause–trigger Bilinear threshold models TPR FPR FNR TNR TSS Rad

Kivu catchment

ht–E ht > 0.205, E > 66.75 0.57 0.07 0.43 0.93 0.50 0.43
ht–I ht > 0.205, I > 10.84 0.64 0.10 0.36 0.90 0.55 0.37
ht−1–E ht−1 > 0.052, E > 66.75 0.57 0.08 0.43 0.93 0.50 0.44
ht−1–I ht−1 > 0.052, I > 10.84 0.64 0.11 0.36 0.89 0.54 0.37
E–D D > 3.5, E > 66.75 0.57 0.14 0.43 0.86 0.43 0.45
I–D D > 3.5, I > 10.84 0.36 0.06 0.64 0.94 0.29 0.65

Nyabarongo catchment

ht–E ht > 0.457, E > 44.7 0.73 0.08 0.27 0.92 0.64 0.29
ht–I ht > 0.457, I > 12.48 0.73 0.08 0.27 0.92 0.65 0.28
ht−1–E ht−1 > 0.636, E > 44.7 0.55 0.07 0.45 0.93 0.48 0.46
ht−1–I ht−1 > 0.635, I > 12.48 0.64 0.07 0.36 0.93 0.56 0.37
E–D D > 12.5, E > 44.7 0.45 0.05 0.55 0.95 0.40 0.55
I–D D > 12.5, I > 12.48 0.36 0.01 0.64 0.99 0.36 0.64

Mukungwa catchment

ht–E ht > 0.483, E > 63.5 0.77 0.11 0.23 0.90 0.66 0.25
ht–I ht > 0.483, I > 7.55 0.85 0.15 0.15 0.85 0.70 0.21
ht−1–E ht−1 > 0.921, E > 63.5 0.46 0.03 0.54 0.97 0.43 0.54
ht−1–I ht−1 > 0.921, I > 7.55 0.54 0.06 0.46 0.94 0.48 0.47
E–D D > 7.5, E > 63.5 0.85 0.14 0.15 0.86 0.71 0.21
I–D D > 7.5, I > 7.55 0.77 0.06 0.23 0.94 0.71 0.24
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Figure 8. Landslide warning capabilities of the hydro-meteorological and precipitation threshold models: (a) ht–E, (b) ht–I , (c) ht−1–E,
(d) ht–E, (e) E–D, and (f) I–D in upper Nyabarongo catchment.

Figure 9. Landslide warning capabilities of the hydro-meteorological and precipitation threshold: (a) ht–E, (b) ht–I , (c) ht−1–E, (d) ht–E,
(e) E–D, and (f) I–D in Mukungwa catchment.
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4.5 Comparative analysis of the warning capabilities of
landslide hydro-meteorological thresholds and
precipitation-based thresholds

The landslide hydro-meteorological threshold models de-
fined as X–Y pairs in a 2D bilinear framework and their
warning capabilities in Kivu catchment are presented in
Fig. 7. The combined groundwater level–event rainfall inten-
sity (ht–I ; ht > 0.205, I > 10.84 mmd−1) threshold model
outperforms other combinations in terms of true positive
alarms with about 64 %. Comparing the predictive capabil-
ities of ht–I , a hydro-meteorological threshold model, to I–
D, a precipitation threshold model, a significant improve-
ment of about 28 % in terms of the rate of true alarms was
obtained from ht–I as compared to I–D. This confirms the
high landslide prediction and warning capability of hydro-
meteorological thresholds over precipitation-based thresh-
olds. However, there was no significant improvement from
E–D to ht–E and ht−1–E in terms of true alarms. This sug-
gests that the combinations involving event rainfall volumeE
have lower landslide warning skill than the ones that consider
the event rainfall intensity I . This may be explained by the
fact that rainfall event volume E is estimated over various
timescales D making E an unstandardized variable which
could be normalized by the respective time duration, thus fa-
voring the event rainfall intensity I . Unexpectedly, there was
no significant improvement in terms of reduced FPR alarms
by the tested landslide hydro-meteorological threshold mod-
els as compared to the precipitation-based threshold models
in Kivu catchment.

The defined landslide hydro-meteorological threshold
models in upper Nyabarongo catchment are presented in
Fig. 8. Similar to Kivu catchment, the landslide hydro-
meteorological threshold models ht–E, ht–I , ht−1–E, and
ht−1–I perform much better with 55 %–73 % of correctly
predicted landslides (TP) compared to precipitation thresh-
old models E–D and I–D with around 36 %–45 % of true
alarms. A significant reduction in the rate of failed/missed
alarms (FN) with about 37 % from I–D to ht–I and about
28 % from E–D to ht–E was also observed. Unexpectedly,
there was no significant improvement in terms of reduced
false alarms by the landslide hydro-meteorological thresh-
olds as compared to the landslide precipitation thresholds.

The defined landslide hydro-meteorological threshold
models in Mukungwa catchment are shown in Fig. 9.
Although there was no significant improvement in terms
of FP alarms reduction as expected, the best landslide
hydro-metrological threshold model ht–I outperforms the
precipitation-based threshold I–D models in terms of el-
evated rate of TP alarms with about 85 % as compared
to 77 % and low rate of FN alarms with 15 % compared
to 23 %. The highest prediction level in terms of true
alarms with 85 % was observed from both ht–I and E–
D hydro-meteorological and precipitation-based threshold
models. Contrary to Kivu and upper Nyabarongo catch-

ments, precipitation-based threshold models E–D and I–D
performed quite similar to ht–I and even better than other
tested hydro-meteorological threshold models in Mukungwa
catchment. This could be explained by the catchment-
specific hydrogeological characteristics that probably make
the catchment a very slow groundwater responding sys-
tem and thus a rather more precipitation-induced than
groundwater-induced landslide system.

4.6 Adaptability and limitation of the defined landslide
threshold models

Within the framework of this research, we defined the land-
slide empirical hydro-meteorological thresholds using con-
tinuous historical precipitation time series and groundwater
level time series as proxies for the catchment water stor-
age. We mainly analyzed the difference in landslide thresh-
olds and warning capabilities as a result of the differences
in catchment water storage, estimated from the groundwa-
ter responses to precipitation. It was observed that for the
catchment with a complex or slow groundwater respond-
ing system such as Mukungwa, the warning capability of
the groundwater-based thresholds has weaker performance
as compared to the fast and clear groundwater responding
systems like Nyabarongo and Kivu catchments. This is truly
owed to the catchment-specific hydrogeological and geomor-
phological characteristics. Nevertheless, the in-depth anal-
ysis of the hydrogeological and geomorphological differ-
ences between the three catchments and how they could be
among the explanatory factors of the observed difference
in landslide thresholds and the warning capabilities was not
fully conducted. However, with reference to Fig. 1 and Ap-
pendix B, Mukungwa catchment is hydrogeologically char-
acterized by a complex aquifer in volcanic rocks and is thus
a complex or slow groundwater responding system. This is
probably due to the weathering products of volcanic rocks
that produce a relatively permeable top layer but tend to form
a low-permeability layer of brecciated or intruded sills at
shallow depths, thus hampering deep groundwater recharge.
Contrarily, Nyabarongo and Kivu catchments are dominated
by fractured granites with overall high transmissivity and
recharge and are hence fast and clear groundwater respond-
ing systems (Appendix B). The weathering products of gran-
ites are generally coarse grained that tend to develop and
preserve open-joint systems that increase permeability and
thus fast groundwater response. In Nyabarongo and Kivu
catchments, therefore, the landslide warning capability of
groundwater-based thresholds performed higher than precip-
itation thresholds as opposed to Mukungwa catchment. This
is to say that in regions with very slow groundwater respond-
ing systems where rainfall-induced shallow landslides pre-
vail, precipitation-based thresholds can still practically be
useful for landslide prediction and warning. However, the
need for hydrological thresholds is true for both shallow- and
deep-seated landslides (Cascini et al., 2010; Corominas et
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al., 2005; Duan et al., 2019; Hong and Wan, 2011), which
are thus more powerful than precipitation-based thresh-
olds. More studies also confirm the high warning capability
of hydro-meteorological thresholds over precipitation-based
thresholds after incorporation of either soil moisture or catch-
ment storage (Ciavolella et al., 2016; Mirus et al., 2018a;
Prenner et al., 2018; Thomas et al., 2019; Wicki et al., 2020).
According to Uwihirwe et al. (2020), a study conducted in
Rwanda to define precipitation thresholds, the highest pre-
dictive capability of precipitation-based thresholds in a bilin-
ear framework that used the antecedent precipitation (API)
and event rainfall intensity (I ) as API30–I was about 68 %
of true alarms and 27 % of false alarms. However, this pre-
diction level was further improved through this research by
considering the catchment-specific groundwater levels where
the best predictor ht–I was able to correctly predict 85 %
of landslides (TP) and 15 % of false alarms. Although the
catchment water storage would have been a better landslide
predictor, this type of information is scarce. Therefore, the
groundwater level was considered as a proxy and used as a
hydrological landslide predictor variable in our research. The
component of groundwater has been on the one hand consid-
ered as a landslide triggering factor and on the other hand as
a landslide predisposing factor (Cascini et al., 2010; Coromi-
nas et al., 2005; Duan et al., 2019; Hong and Wan, 2011). Be-
ing a hydrological parameter, it was subjectively considered
as a landslide predisposing factor and plotted on the x axis
of a 2D plot as a cause in a cause–trigger framework. How-
ever, the neutral use of groundwater levels (neither trigger
nor cause) in a single variable threshold model ht provided
excellent prediction results of up to 93 % of correctly pre-
dicted landslide and only 7 % of failed alarms with a rather
high rate of false alarms of up to 38 %. The adopted approach
for a hydro-meteorological and/or bilinear threshold model
definition aimed to reduce the rate of false alarms associated
with single variable thresholds and follows the cause–trigger
concept (Bogaard and Greco, 2018) in which the groundwa-
ter levels as cause were combined with precipitation vari-
ables as trigger in a bilinear framework (Mirus et al., 2018a).
We have tested different combinations of the optimum hydro-
logical and meteorological threshold variables such as ht–E,
ht–I , ht−1–E, and ht−1–I , and the combination of ground-
water levels on the day of landslide and event rainfall in-
tensity ht–I proved to have higher skill for landslide pre-
diction and warning with a high rate of true alarms (64 %–
85 %) and reduced rate of false alarms (8 %–15 %) as com-
pared to other combinations. We remain convinced that the
combination of appropriate threshold variables into a cause–
trigger framework should consider the timescale of each vari-
able to avoid overlapping timescales between hydrological
and meteorological variables. However, the combinations of
ht–E and ht–I may lead to overlapping timescales between
groundwater levels and rainfall event. This would be very
true for longer timescale triggers and very fast groundwa-
ter responding systems with very short time memory, which

was not the case in our studied catchments. To account for
this constraint, we have also considered the groundwater
level recorded prior to landslide triggering event combina-
tions ht−1–E and ht−1–I , but the result was not as signif-
icant as ht–E and ht–I . In this research, the single vari-
able and bilinear threshold models were adopted rather than
power-law models commonly used in landslide precipitation
threshold like intensity–duration and event–duration. These
single variable and bilinear threshold models were selected
based on our dataset that displays most of the landslide con-
ditions in the upper-right corner of the plots shown in Figs. 7–
9 and the achieved landslide predictive capabilities summa-
rized in Tables 1 and 2. Although one is free to choose any
other model that fits the dataset, the single variable and bi-
linear threshold models proved to be more efficient for the
hydro-meteorological threshold model definition (Mirus et
al., 2018a; Uwihirwe et al., 2020). Furthermore, the TFN
time series model was used for groundwater modeling be-
cause of its simplicity, fewer data requirements, and above
all its higher skill in groundwater simulation (Bakker and
Schaars, 2019; Collenteur et al., 2019). However, like other
models, 100 % of the observed data cannot fit the model.
Therefore, the modeled groundwater data used to define the
hydro-meteorological threshold may be prone to minor er-
rors. Additionally, the spatial extrapolation of groundwater
information relied on the main assumption that other hydro-
geomorphological parameters do not exhibit spatial variabil-
ity within the individual catchment. This is an assumption
made given the data scarcity in the East African Rift re-
gion in general (Monsieurs et al., 2018) and Rwanda in par-
ticular. Lastly, the landslide inventory used for this study
relied largely on the information from government reports,
newspapers, and other media in which many landslide events
are likely to be missed. Although the reliance on these data
sources is likely to lead to a bias towards larger landslide
events and those with an impact on society, this landslide in-
ventory is the most comprehensive currently available in the
study area.

5 Conclusions

This research aimed to improve the landslide forecast qual-
ity by incorporating the catchment-specific groundwater lev-
els as a proxy for regional water storage. A parsimonious
transfer function noise (TFN) time series model was used
to simulate the groundwater levels that temporally match
with the available landslide inventory. Based on the statis-
tical measures of goodness of fit, the root mean square er-
ror (RMSE values of groundwater levels < 0.5 m), and the
explained variance (R2 > 60 %), the TFN time series model
demonstrates sufficient skill to simulate groundwater levels.
The standardized groundwater levels ht modeled on a land-
slide day with AUC between 0.76–0.80 and the event rainfall
volume E whose AUC ranges from 0.74–0.93 were identi-
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fied as the hydrological and meteorological variables with the
highest discriminatory power to distinguish landslide from
no-landslide conditions, and they are thus the most domi-
nant control on landslide occurrence in the studied region.
The single variable threshold model derived from groundwa-
ter levels ht indicated the highest landslide prediction and/or
warning capability with about 85 %–93 % of true positive
alarms despite the resulting rate of false alarms between
26 %–38 %. Similarly, the single variable threshold models
derived from precipitation intensity I and volume E reveal
also great landslide predictive skill in terms of true posi-
tive alarms at about 64 %–100 % and false alarms at 15 %–
44 %. However, it was noticed that relying on single variable
threshold models exclusively derived from precipitation vari-
ables like E and I considered as landslide triggers could lead
to biased results because of the fact that many landslides oc-
cur due to not only the trigger itself but rather a combina-
tion of both trigger and pre-event hydrological conditions.
Contrarily, relying on single variable threshold models ex-
clusively defined using hydrological variables like ground-
water ht leads to unbiased landslide predictions due to their
high consideration of long-term antecedent conditions until
the day of landslide occurrence. The further combination of
the optimum groundwater and precipitation thresholds as bi-
linear threshold models reduced the rate of false alarms by
about 18 %–28 % at the expense of a reduced rate of true
positive alarms by about 9 %–29 %, and it is thus less ad-
vantageous than single variable threshold models. However,
the hydro-meteorological threshold models defined in the bi-
linear framework as ht–I indicated greater landslide predic-
tive skill in terms of true positive alarms (64 %–85 %) than
the traditional threshold model I–D (36 %–77 %) that ex-
clusively relies on precipitation. Furthermore, the integration
of catchment-specific groundwater levels in landslide haz-
ard assessment in Rwanda improved the landslide predic-
tion and warning capabilities of the existing precipitation-
based threshold that used the API as a proxy for a hydro-
logical condition and event intensity I for a meteorological
condition. Overall, the incorporation of observed and model-
derived groundwater variables in an empirical statistical ap-
proach and the use of region-specific hydrological character-
istics improve the landslide prediction capacity as compared
to the exclusive use of global precipitation-based threshold
models.
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Appendix A

Table A1. Final values of the calibrated parameters.

Parameters Kivu catchment Upper Nyabarongo catchment Mukungwa catchment

Rubengera Kanama Gisenyi Byimana Kibangu Rwaza Ruhengeri Bigogwe Rwankeri

A 0.75 0.40 0.63 0.84 0.68 0.82 0.97 0.31 0.20
a 81.64 3.88 117.69 10.54 13.19 8.97 1000 257.23 128.23
n 3.45 5.63 2.34 4.92 3.78 5.64 0.79 0.92 0.91
d 1.11 0.092 −0.91 2.42 5.66 6.27 0.48 1.61 1.43

A denotes the scaling factor (–), a and n are shape parameters (–), and d is the base elevation of the model (–) as described in Sect. 3.1.3.

Appendix B

Figure B1. Groundwater response function (a) block response and (b) step response to both rainfall and potential evaporation recorded
from three landslide-representative meteorological stations in Kivu catchment, (c) block response and (d) step response to both rainfall and
potential evaporation recorded from three landslide-representative meteorological stations in upper Nyabarongo catchment, and (e) block
response and (f) step response to both rainfall and potential evaporation recorded from three landslide-representative meteorological stations
in Mukungwa catchment.
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