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Abstract. Earthquake models can produce aftershock fore-
casts, which have recently been released to lay audiences.
While visualization literature suggests that displaying fore-
cast uncertainty can improve how forecast maps are used,
research on uncertainty visualization is missing from earth-
quake science. We designed a pre-registered online exper-
iment to test the effectiveness of three visualization tech-
niques for displaying aftershock forecast maps and their un-
certainty. These maps showed the forecasted number of after-
shocks at each location for a week following a hypothetical
mainshock, along with the uncertainty around each location’s
forecast. Three different uncertainty visualizations were pro-
duced: (1) forecast and uncertainty maps adjacent to one an-
other; (2) the forecast map depicted in a color scheme, with
the uncertainty shown by the transparency of the color; and
(3) two maps that showed the lower and upper bounds of the
forecast distribution at each location. We compared the three
uncertainty visualizations using tasks that were specifically
designed to address broadly applicable and user-generated
communication goals. We compared task responses between
participants using uncertainty visualizations and using the
forecast map shown without its uncertainty (the current prac-
tice). Participants completed two map-reading tasks that tar-
geted several dimensions of the readability of uncertainty
visualizations. Participants then performed a Comparative
Judgment task, which demonstrated whether a visualization
was successful in reaching two key communication goals:
indicating where many aftershocks and no aftershocks are
likely (sure bets) and where the forecast is low but the uncer-

tainty is high enough to imply potential risk (surprises). All
visualizations performed equally well in the goal of commu-
nicating sure bet situations. But the visualization with lower
and upper bounds was substantially better than the other de-
signs at communicating surprises. These results have impli-
cations for the visual communication of forecast uncertainty
both within and beyond earthquake science.

1 Introduction

Clear communication of uncertainty in forecasts of natu-
ral hazards can save lives; likewise, when uncertainty is
not communicated, consequences can be disastrous. On
6 April 2009, a magnitude 6.3 earthquake struck L’Aquila,
Italy, and killed 309 people. The week prior, a senior of-
ficial from Italy’s Civil Protection Department had urged
calm, mischaracterizing the potential for damaging after-
shocks triggered by recent earthquakes near L’Aquila. He
was later sentenced to 6 years in prison, along with six lead-
ing seismologists1, with the court concluding that they pro-
vided “inexact, incomplete and contradictory information”
to the public – in particular, failing to account for the un-
certainty in their seismic forecast (Imperiale and Vanclay,
2019).

1This ruling was later overturned for the seismologists but not
for the civil protection official.
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1.1 Aftershock forecasts and their uncertainty

When a large earthquake occurs, more seismic activity is
likely. Aftershocks are earthquakes triggered by an earlier
earthquake (the mainshock) that can put people at additional
risk of harm, for example, by destroying buildings already
destabilized by the mainshock (Hough and Jones, 1997). Af-
tershocks can have a magnitude even larger than their main-
shock and can also trigger their own sequences. The spatial
rate of earthquakes (the number of earthquakes per unit area)
during an aftershock sequence thus follows a highly skewed
distribution (Saichev and Sornette, 2007), where many more
earthquakes may occur if aftershocks trigger their own se-
quences of additional aftershocks. The scientific study of af-
tershock sequences has resulted in sophisticated statistical
models (e.g., Ogata, 1998) that can probabilistically describe
the expected numbers, locations, times and magnitudes of af-
tershocks following a mainshock. These models can provide
a distribution for the number of aftershocks at each location
in a region.

Forecasts built from these models are highly sought after
by diverse user groups, such as emergency managers and the
media (Gomberg and Jakobitz, 2013), in order to inform de-
cisions about disaster declarations and crisis information de-
livery (Becker et al., 2020; McBride et al., 2020). Recently,
several national scientific agencies, including New Zealand’s
GNS Science (Institute of Geological and Nuclear Sciences
Limited; Becker et al., 2020) and the United States Geolog-
ical Survey (Michael et al., 2020), also began releasing af-
tershock forecasts to the public. In these public communica-
tions, the forecast distribution has been represented in tables
of either (1) the expected number of earthquakes above some
magnitude for a fixed time period (e.g., 1 d or 1 week) after
the mainshock or (2) the probability of an event above some
magnitude occurring within a time period.

While state-of-the-art models can forecast aftershocks
with some degree of accuracy (Schorlemmer et al., 2018),
these forecasts also have substantial uncertainty. Aftershock
models are built on datasets of observed earthquakes in a
given seismic region; however, aftershock sequences can
vary substantially even within a region, contributing to a
large spread in the forecasted number of aftershocks follow-
ing any mainshock. Forecast uncertainty can be communi-
cated by directly giving this spread for the forecasted num-
ber of aftershocks. It can also be communicated implicitly by
giving the probability that an aftershock above some magni-
tude may occur, where a very high or low probability can im-
ply lower uncertainty and a middle probability (e.g., 50 %)
can imply higher uncertainty. Uncertainty has already been
communicated for tabular forecasts by providing these prob-
abilities and ranges of the expected number of aftershocks
across the entire forecast region (e.g., Becker et al., 2020).

Aftershock activity varies over space (Zhuang, 2011), and
forecast maps are commonly requested by users (Michael
et al., 2020). Figure 1 shows example maps following the

L’Aquila earthquake and the magnitude 7.8 earthquake in
2016 in Kaikōura, New Zealand. Aftershock forecast mod-
els will be better calibrated in areas with frequent aftershock
sequences than where aftershock activity is sparse (Harte,
2018), meaning that forecast uncertainty also varies over
space. But the uncertainty of the forecast distribution is usu-
ally not communicated in aftershock forecast maps. For ex-
ample, the map in Fig. 1a shows the expected number but
not its spread; the probability map in Fig. 1b does not make
uncertainty explicit. Specifically, the green zone in the center
of the map, representing >30 % probability of a damaging
aftershock, could be due to either a low forecast with high
uncertainty or a higher forecast with low uncertainty.

As evident in the response to the L’Aquila earthquake,
omitting uncertainty from forecasts can affect people’s per-
ceptions and responses to the associated risks. When uncer-
tainty is not displayed, users tend to form their own under-
standing of where uncertainty is higher or lower, which may
not coincide with its actual patterns (Ash et al., 2014; Mul-
der et al., 2017). Aftershock forecasts that do not communi-
cate uncertainty may therefore result in users misunderstand-
ing the forecast (Fleischhut et al., 2020; Spiegelhalter et al.,
2011); for example, in previous studies in the weather do-
main, users incorrectly expected wind and snow to be lower
than forecasted when these had high forecasts but not when
the forecast was low (Joslyn and Savelli, 2010). Misinterpret-
ing a forecast could become particularly problematic when,
due to the skewed distributions of aftershock rates, high un-
certainty means there is a greater chance that many more af-
tershocks will occur than forecasted; see Fig. S1 in the Sup-
plement for example distributions that illustrate this point.

While studies across multiple domains have found that dis-
playing uncertainty when communicating forecasts can im-
prove responses related to judgment and decision-making
(Kinkeldey et al., 2017; Joslyn and LeClerc, 2012; Nadav-
Greenberg and Joslyn, 2009), there is a paucity of literature
on uncertainty visualization for spatial aftershock forecasts
or other seismic communications (Pang, 2008). Thus, de-
spite recommendations to incorporate uncertainty into com-
munications from earthquake models (Bostrom et al., 2008),
there are currently no guidelines on how to do so or on
what visualization techniques could help users to understand
and incorporate uncertainty to inform their judgments (Doyle
et al., 2019). The purpose of the present study is to develop
and evaluate different approaches to visualizing uncertainty
in the distribution of spatial aftershock forecasts. These ap-
proaches may also be useful for other natural hazards whose
forecasts follow a similarly skewed distribution.

1.2 Visualizing uncertainty for natural hazards

Aftershock forecasts maps can show how many aftershocks
are expected for some time period at different locations
throughout a region (e.g., Fig. 1a). Uncertainty visualiza-
tions have already been designed for similar maps for
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Figure 1. Two examples of aftershock forecasts. (a) A map showing the expected daily number of aftershocks above magnitude 2.0 several
weeks after the L’Aquila, Italy, earthquake of 2006 (reprinted from Murru et al., 2015). (b) A map showing the forecasted probability of a
damaging aftershock (defined as having a Modified Mercalli Intensity – MMI – score above 7) in the month following the Kaikōura, New
Zealand, earthquake of 2016, released to the public by New Zealand’s GNS Science (reprinted from Becker et al., 2020). As damaging earth-
quakes are rare, even probabilities above 10 % may constitute a significant risk, though disentangling the uncertainty around this forecasted
probability is not possible from this map.

other geohazards and evaluated using task-based experiments
(Kinkeldey et al., 2014). These previous studies can serve as
a natural starting point for visualizing uncertainty for after-
shock forecast maps. We review the literature that evaluates
uncertainty visualizations in geoscientific domains.

One approach to representing uncertainty in geospatial
forecasts is by plotting the center of the forecast distribution
(e.g., the median or mean) and uncertainty as the spread of
the distribution (e.g., the standard deviation or margin of er-
ror). The uncertainty is typically represented either (1) in ad-
jacent maps, where the center and uncertainty are displayed
in separate maps, or (2) within the same map, using, for ex-
ample, color, patterns, opacity or symbols to visualize the
uncertainty (Pang, 2008). When the forecast and its uncer-
tainty are represented within the same map, designs using
color lightness or transparency (i.e., fading the color to a
background color like white or gray) have been found to be
effective. For instance, Retchless and Brewer (2016) evalu-
ated nine designs for forecast maps of long-term tempera-
ture change. They tested an adjacent design against designs
that varied color properties (hue, lightness and saturation)
or used textured patterns to display the uncertainty together
with the forecast in a single map. Participants had to rank sev-
eral zones on the map(s), first by their forecasted temperature
change and then by their uncertainty. Visualizations where
the transparency of the color increased with uncertainty led
to more accurate uncertainty rankings than other color-based
designs, although the adjacent approach was most accurate.

When forecast uncertainty is represented using the proba-
bility of exceeding a threshold value (such as Fig. 1b), stud-
ies have also found visualizations using transparency to work
well. For instance, Ash et al. (2014) found that a forecast
map using red shades of decreasing lightness to depict the
forecasted probabilities of a tornado’s location were associ-
ated with a greater willingness to take protective action than
forecast maps using rainbow hues or a deterministic map
showing only the boundary of the zone of elevated tornado
probability (which omitted uncertainty altogether). Similarly,
Cheong et al. (2016) found that maps using color hue or light-
ness to represent the probability, in this case of a bushfire, led
to better decisions about whether to evacuate from marked
locations on a map (based on realizations of bushfires from a
model), compared to a boundary design that omitted uncer-
tainty. A review of dozens of geospatial uncertainty visual-
ization evaluations has similarly concluded that color trans-
parency or lightness can be effective in communicating un-
certainty (Kinkeldey et al., 2017).

A third approach to communicating the uncertainty in a
forecast distribution is by visualizing the bounds of an inter-
val describing the distribution (e.g., a 95 % confidence inter-
val). Although such interval-based maps have recently been
used, for instance, to communicate public snowfall forecasts
by the US National Oceanic and Atmospheric Administra-
tion (Waldstreicher and Radell, 2020), there are few stud-
ies evaluating the effectiveness of this approach. Nadav-
Greenberg et al. (2008) tested uncertainty visualizations that
paired a map of median wind speed forecasts with either an
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adjacent map of the forecast’s margin of error, a “worst-case”
map showing the 90th percentile of the forecast distribution
or boxplots of the forecast distribution at multiple locations.
Participants tended to predict higher wind speeds at a given
location when using the worst-case map, relative to the other
visualizations. We are not aware of any other studies that
have investigated the effects of interval-based uncertainty vi-
sualizations for forecast maps.

In the present study, we evaluate three approaches to vi-
sualizing uncertainty in aftershock forecast maps. We focus
on representing the distribution’s spread rather than proba-
bility of exceedance because there has been less research on
this way of communicating forecast uncertainty (Spiegelhal-
ter et al., 2011) and it is of general interest to other natural
hazard forecasts as well. Specifically, we compare a novel
interval-based approach where uncertainty can be inferred
from the bounds of a 95 % confidence interval, a commonly
used approach that uses color transparency to display the un-
certainty within the forecast map and the classic adjacent dis-
play. These uncertainty visualizations are compared against
a forecast depicted without uncertainty, which is most com-
mon in practice and thus the natural baseline (see Fig. 1).

1.3 Evaluating the effectiveness of uncertainty
visualizations

An effective uncertainty visualization should not only fa-
cilitate the reading of the forecast and uncertainty off of a
map but also help users to apply this information appropri-
ately. While designing map-reading tasks is more straight-
forward (e.g., asking users to read particular areas off a
map), previous judgment or decision-making tasks have not
been designed to systematically evaluate how users interpret
uncertainty given different designs (Hullman et al., 2018;
Kinkeldey et al., 2017). Further, without defining tasks in line
with specific communication goals, it is not possible to iden-
tify what constitutes an effective uncertainty visualization.

First, tasks should be designed such that the effect of the
uncertainty visualization can be disentangled from other fea-
tures of the maps or the task. For instance, Viard et al. (2011)
asked participants to rank the risk of overpressure based on
adjacent or pattern-based uncertainty visualizations of the
estimated pressure of oil reservoirs. Several locations were
compared that varied both in mean pressure and uncertainty.
While a difference in rankings was found between the visual-
ization conditions, it was impossible to conclude whether ei-
ther visualization led to more reasonable responses, as the se-
lected locations did not vary systematically and as no norma-
tive ranking was specified. Other studies have implemented
similar ranking tasks using locations that do not uncover how
different designs affect how users understand forecast uncer-
tainty (e.g., Deitrick and Edsall, 2006; Scholz and Lu, 2014).
Additional issues include tasks that ask for forecast and un-
certainty information to be used separately (Retchless and
Brewer, 2016) or results that are aggregated across many tri-

als without accounting for the locations’ forecast/uncertainty
levels (e.g., Cheong et al., 2016).

Second, evaluation tasks should be designed to link to spe-
cific communication goals relevant across user groups, in or-
der to inform designs that could serve a wider audience. In
Padilla et al. (2017), participants had to decide whether to
move an oil rig in the face of an oncoming hurricane, receiv-
ing the hurricane track forecast with either a cone of uncer-
tainty or an ensemble of possible hurricane track curves. By
systematically moving the oil rig’s location across trials, the
authors found that decisions were influenced by whether the
oil rig was inside the cone of uncertainty or directly on top of
an ensemble hurricane track. But the generalizability of these
results outside of this highly specific decision task is debat-
able. Other studies similarly evaluate uncertainty visualiza-
tions with well-designed decision tasks inspired by special-
ist use cases, but it is unclear what their results indicate for
designing public forecast maps (Seipel and Lim, 2017; Cor-
rell et al., 2018). In contrast, other experimental literature on
uncertainty communication (e.g., Burgeno and Joslyn, 2020;
Joslyn and LeClerc, 2012; Van Der Bles et al., 2019) works
with tasks that are relevant across user groups and designed
to reveal how the communication was understood. Visual-
ization scholars have also urged more generalizable tasks in
evaluation experiments for uncertainty visualizations (Crisan
and Elliott, 2018; Meyer and Dykes, 2019).

Building off this literature, we seek to improve how un-
certainty visualizations are evaluated, using an experimental
task framed around ubiquitous goals that an uncertainty vi-
sualization should ideally achieve. We frame our task around
targeted needs that users have from aftershock forecast maps.

1.4 Communication needs for aftershock forecasts

To understand the informational needs of a common user
group for aftershock forecasts, we interviewed five emer-
gency management officials in the United States (see de-
tailed summary in Supplement S1). The interviews focused
on decision-making for crisis response during natural disas-
ters and on how forecasts could help these decisions, even
when this information is uncertain. After synthesizing the
interviews, we isolated two commonly mentioned questions
that an aftershock forecast should facilitate answering and
posited that these communication needs would also be rele-
vant to a general user audience:

1. Where is it likely that aftershocks will or will not take
place (“sure bets”, i.e., areas with high/low forecasted
aftershock rates and low uncertainty)?

2. Where is a bad surprise possible due to the high uncer-
tainty of the forecast (“surprises”, i.e., areas with high
uncertainty that could yield an aftershock rate higher
than forecasted)?

Using these communication needs as a guide, we de-
signed a Comparative Judgment task to evaluate how dif-
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ferent visualization approaches can support these commu-
nication needs. Within this task (see Sect. 2.3), participants
judged two locations with systematically varying forecasted
aftershock rates and uncertainty levels.

Given locations with equally low uncertainty but different
forecasted rates, users should be able to correctly identify
that more aftershocks are expected at the location with the
higher forecasted rate. We refer to this as a sure bet trial (ad-
dressing communication goal 1). Locations with high fore-
cast uncertainty can result in both fewer or more aftershocks
than forecasted. However, given locations with equal fore-
casted rates but different uncertainty, it is more likely that
more aftershocks than forecasted will occur at the location
with higher uncertainty, compared to the location with lower
uncertainty. This is due to the skewness of the distribution of
aftershocks (see Fig. S1). As this could lead to a bad surprise,
we refer to this as a surprise trial (addressing communication
goal 2).

For surprise trials, the forecast level determines whether a
response exists that can be considered “correct”. When both
locations have low forecasted rates, users should identify the
location with low uncertainty (a sure bet to have few after-
shocks) as having less potential for aftershocks compared to
the location with high uncertainty. This is because high un-
certainty means that in the long run, much higher aftershock
rates are possible than what was forecasted. When both loca-
tions have higher forecasted aftershock rates, it is not possi-
ble to define a correct answer for where users should expect
fewer or more aftershocks. In this case, comparing locations
with lower uncertainty (where high rates are more certain)
to locations with higher uncertainty (where even higher rates
are possible) may be subjective to each user, for instance,
based on their risk preferences. It is thus even more important
to understand how different uncertainty visualizations affect
user judgments within this situation and which visualizations
lead users to recognize that forecasts with high uncertainty
could result in more aftershocks than forecasts with low un-
certainty.

Using the Comparative Judgment task, we methodically
investigate how effectively different uncertainty visualiza-
tions fulfill both communication needs. Unlike previous tasks
in the uncertainty visualization literature, our task allows for
inferring which uncertainty visualizations produce responses
about uncertainty that are consistent with the forecast dis-
tribution and for communication needs relevant across user
groups.

1.5 Research aims and contributions

In the present experiment, we test three uncertainty visual-
izations for aftershock forecast maps to evaluate which vi-
sualization approach best serves the above communication
goals. Specifically, we seek to answer the following research
questions:

1. How well can people read off the forecasted aftershock
rate and its level of uncertainty from the different visu-
alizations?

2. How do the visualizations affect people’s judgments
about where to expect more aftershocks?

a. How accurate are people’s expectations when com-
paring locations with varying forecasted rates but
low uncertainty, and how does accuracy differ by
visualization?

b. Where do people expect more aftershocks when
comparing locations with the same forecasted rates
but different uncertainty, and how does this differ
by visualization?

We evaluate the aftershock forecast visualizations in an
online experiment using a broad sample of participants from
the United States. Our experiment allows for inferring how
both classical and novel uncertainty visualizations affect po-
tential lay users’ perceptions of aftershock forecasts. More-
over, our work adds to the literature on visualizing uncer-
tainty for natural hazards by using a systematic judgment
task based on user needs which may be applicable across
hazards.

2 Method

2.1 Participants

Participants were recruited via Amazon Mechanical Turk
(MTurk) to complete an online study about map reading and
judgments about future aftershocks using different forecast
visualizations. We restricted recruitment to the western US
states of California, Oregon and Washington, as these states
are seismically active and participants would likely have
some earthquake awareness. While the MTurk population
we sample does not match these states’ populations, com-
parisons between MTurk-based and probability-based sam-
ples of the US population often yield similar results (Zack
et al., 2019), and MTurk has been used to recruit participants
in previous uncertainty visualization evaluations (Retchless
and Brewer, 2016; Correll et al., 2018). MTurk workers
were eligible to participate if they had an approval rating of
≥99 % and were using a computer screen ≥ 13 in. in diag-
onal. We also required participants to answer four multiple-
choice control questions about the study, based on initial in-
structions. Participants were given two attempts to answer
the questions.

Of the 1392 participants who consented to participate in
the experiment, 941 passed the control questions, 908 com-
pleted one or multiple tasks and 893 completed the full ex-
periment. Seven participants self-reported to have an age less
than 18 and were excluded from analysis, and two partici-
pants were excluded because they took too many attempts
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at control questions, leaving a final sample of 884 partici-
pants (46.7 % female, median age of 32 years (range: 18–
77 years)), split evenly across conditions. The sample size
per condition was pre-specified by a power analysis, using
effect sizes found in a pilot study.

The experiment was incentivized, and participants were
informed of this before consenting to the experiment. To
calculate incentive bonuses, we randomly drew two map-
reading trials and three Comparative Judgment trials per
participant (see Sect. 2.3). We gave a bonus USD 0.10 for
each correct map-reading response and for each judgment
response that matched the outcome of a hypothetical week
of aftershock activity simulated from the presented forecast
map. Including the baseline payout (USD 1.80), participants
could earn over US minimum wage for just two correct trials
(e.g., the map-reading trials), matching community standards
(Paolacci et al., 2010).

We pre-registered the experiment and analysis plan in the
Open Science Framework (https://osf.io/2svqk, last access:
11 April 2022). The study was approved by the Max Planck
Institute for Human Development ethics committee.

2.2 Materials

2.2.1 Creating forecast maps from earthquake model
output

Each uncertainty visualization (UV) showed a weekly fore-
cast for the number of aftershocks following a major earth-
quake, together with its estimated model uncertainty. These
hypothetical forecasts were created from the output of a
spatially explicit seismicity model (Schneider and Guttorp,
2018), for a seismic zone in the United States. We cropped
an area of roughly 2000 km2 from this model output (esti-
mated seismicity rates) to represent a forecast for the num-
ber of aftershocks above magnitude 2.5. Though probabilis-
tic aftershock forecasts would typically be computed from
many simulations from a forecast model, our model output
was based solely on one run, using the most likely parameter
values; however, it still maintained characteristic spatial fea-
tures of aftershock forecasts. In particular, it showed a rapid
and isotropic spatial decay from higher to lower forecasted
aftershock rates, fading into a low (but non-zero) background
rate (e.g., Marzocchi et al., 2014; Zhuang, 2011; Fig. 1). We
scaled the model output up to achieve aftershock rates simi-
lar to recent major sequences (e.g., 2018 Anchorage, Alaska,
and 2019 Ridgecrest, California, which had 500–1000 after-
shocks above magnitude 2.5 in similarly sized zones around
the mainshock).

We cropped two distinct ∼ 2000 km2 areas of the map
to represent forecasts with different spatial patterns (here-
after referred to as “forecast regions”). Maps were labeled
with “longitude” and “latitude” along the axes, without tick
marks. We randomized experimental trials between these
forecast regions to avoid memory effects and allow for more

trials, due to expected variability in task response within par-
ticipants. As the focus of the study was on how to visualize
a forecast and its uncertainty, geographical features (e.g., to-
pography, cities and roads) were omitted in forecast maps to
avoid these potentially confounding task responses (Nadav-
Greenberg et al., 2008).

2.2.2 Visualization of forecasted rate

To visualize forecasted rates, the spatial rate distribution de-
rived from the model was mapped onto a grid of 20×20 cells
(each grid cell thus represented an area of approximately
2.8km×1.8km). We then binned the numeric rates into cate-
gories, as is commonly done for natural hazard forecasts and
recommended by the visualization literature (Correll et al.,
2018; Thompson et al., 2015). We binned rates into five cat-
egories to keep complexity manageable while maintaining
sufficient information to display realistic trends. A sixth (up-
permost) category was subsequently added that was solely
used in the Bounds UV (see below). The category cutoffs
came from quantiles of the scaled rate distribution. These
cutoff values thus revealed the skewed and concentrated na-
ture of aftershock rates. We refer to this map as the most
likely forecast map and labeled it “forecasted number of af-
tershocks”. We interpreted each location’s most likely fore-
casted aftershock rate as the center (i.e., the median) of that
location’s forecast distribution of aftershock rates (we here-
after abbreviate “most likely forecast of aftershock rate” sim-
ply to “rate”). Rates were visualized using a six-color palette
with colors increasing uniformly from yellow to red and end-
ing with brown (see Supplement S2 for additional detail on
color selection).

Figure 2a shows the Rate Only condition, which omits
forecast uncertainty. This is the current manner of display-
ing aftershock forecasts to public audiences, when maps are
used (see Fig. 1).

2.2.3 Visualization of forecast uncertainty

To visualize forecast uncertainty, we created uncertainty
maps that followed realistic patterns and would also have
design features needed for experimental tasks. Uncertainty
maps had the same dimensions as the rate maps. Uncertainty
values were generated for each grid cell (location) using ran-
dom number generators and interpreted as the standard de-
viation of that location’s forecast distribution. These maps
adhered to the smoothly varying patterns expected of fore-
cast uncertainty, with higher uncertainties sometimes, but not
always, corresponding to areas of a higher rate. These uncer-
tainty values were then binned into three categories (“low”,
“medium” and “high”) to allow for sufficient information to
display the above-described patterns. In the present article,
we present maps and describe experimental materials using
an “uncertainty” framing for consistency with terminology
used in the uncertainty visualization literature. However, in

Nat. Hazards Earth Syst. Sci., 22, 1499–1518, 2022 https://doi.org/10.5194/nhess-22-1499-2022

https://osf.io/2svqk


M. Schneider et al.: Effective uncertainty visualization for aftershock forecast maps 1505

the experiment, the uncertainty information was presented
under a “certainty” framing (e.g., “the forecast is more cer-
tain for some locations than for others”), based on feedback
from participants during the extensive piloting of study ma-
terials.

The following three UVs were constructed using the rate
and uncertainty maps.

2.2.4 Adjacent uncertainty visualization

Uncertainty was presented in a separate map adjacent to the
rate map (Fig. 2b). To display uncertainty, we used the hue–
saturation–lightness color model to select three perceptually
uniform shades of gray, with constant hue and uniformly in-
creasing lightness.

2.2.5 Transparency uncertainty visualization

The Transparency UV (Fig. 3) was developed from the rate
map by changing the alpha levels of grid cells’ rate colors
based on their uncertainty level. Alpha is a graphical param-
eter that alters color lightness by fading to white at mini-
mal alpha levels. As described in Sect. 1.3, many previous
UV evaluations for natural hazards have found this aspect of
color to be an effective visual metaphor for uncertainty. We
chose the three alpha levels visually to maximize discrim-
inability of the transparency levels across all colors. We in-
cluded these in the legend by adding columns of colors with
corresponding alpha values for each uncertainty level.

2.2.6 Bounds uncertainty visualization

To create the Bounds UV (Fig. 4), we developed two maps:
one for the lower bound (most likely forecast minus 2 stan-
dard deviations) and one for the upper bound (most likely
forecast plus 2 standard deviations) of an approximately
95 % confidence interval for each location’s forecasted af-
tershock rate. While this assumes the forecast distribution is
symmetric rather than skewed, it was the most reasonable
approximation available to us without a complete forecast
distribution to draw percentiles over. The lower- and upper-
bound maps were labeled “optimistic forecast: lowest num-
ber of aftershocks reasonably likely” and “pessimistic fore-
cast: highest number of aftershocks reasonably likely”, re-
spectively. In this visualization, uncertainty is not conveyed
explicitly but can be inferred from the color differences be-
tween the lower- and upper-bound maps (i.e., a large color
difference at a given location represents greater uncertainty
about its forecast). Participants were informed of this inter-
pretation of large color differences in a short tutorial preced-
ing the study (see Sect. 2.3). A location with high uncertainty
corresponded to a color difference of at least four to five col-
ors between the lower- and upper-bound maps, regardless of
its rate level in the most likely forecast. That is, for areas of
high uncertainty, the pessimistic forecasted rate was much
higher than the optimistic forecasted rate. The exception was

in areas where both the most likely forecast and uncertainty
is high (see caption of Fig. 4).

2.3 Design and procedure

Following consent, participants were randomly assigned
to one of the four visualization conditions in a between-
participants design (Rate Only: n= 217, Adjacent: n= 221,
Transparency: n= 221 and Bounds: n= 225). Participants
were presented with some basic introductory information
about aftershocks, how they are forecasted and why forecasts
can be uncertain. In particular, participants were informed
that, in areas where forecast uncertainty is high, many more
aftershocks than forecasted could actually occur. This aligns
with the skewed nature of the distribution of aftershock rates
for spatial grid cells. To ensure they understood this intro-
duction, participants had to correctly answer four multiple-
choice questions about the information provided. One of
these questions related to this interpretation of high uncer-
tainty.

Participants then received a visual tutorial explaining how
to read the visualization that they were randomly assigned to.
We explained the maps as displaying a forecast of how after-
shocks will be distributed across a region in the week follow-
ing a major earthquake. We used arrows and highlighting to
sequentially introduce the elements of the visualization (rate
levels, uncertainty levels and legend) in a standardized way
across all conditions.

Following this introduction, participants completed three
tasks (see Table 1). Two map-reading tasks evaluated how
well participants could retrieve and integrate the rate and un-
certainty levels from the map(s). A Comparative Judgment
task then tested how participants utilized the depicted fore-
cast, together with its uncertainty, to make judgments about
future aftershock activity.

Within each participant, we randomized forecast region
across the two map-reading tasks to counter-balance any po-
tential effects of forecast region on reading the visualizations.
For the Comparative Judgment task, forecast region was ran-
domized across trials within participants. To isolate the ef-
fect of the rate level on judgment, we repeated trials for low,
medium and high rate levels (across both forecast regions),
which we set at 0.59, 1.11 and 25.59 aftershocks per grid
cell in the most likely forecast map, respectively. To reduce
the number of trials, we only focused on low and high uncer-
tainty levels. The rate and uncertainty levels were also ran-
domized across trials within participants.

2.3.1 Read Off task

The first map-reading task required participants to provide
the rate level or uncertainty level of a marked location.
For the Bounds UV, we asked participants to provide the
rate level for the marked location on the upper-bound map.
Each participant provided the rate level for three trials (low,
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Figure 2. Adjacent uncertainty visualization: map of most likely forecasted aftershock rates (a) next to a map of its model uncertainty (b).
Figures 2–4 show UVs for one of the two forecast regions. In the experiment, the color palette for the right map (showing certainty rather than
uncertainty) proceeded from light to dark for areas of lower to higher certainty, matching the color direction of the rate map. (See experiment
screenshots in Figs. S2–S4.)

Table 1. Tasks to evaluate effects of UVs on map reading (tasks 1 and 2 for research question 1) and judgment (task 3 for research question 2)
with aftershock forecast maps.

Task Instruction Rate/uncertainty levels for trials

1. Read Off
(rate/uncertainty)

For a marked location on the map, return its rate
or uncertainty level.

Rate: low (0.59 aftershocks per grid cell), medium
(1.11) and high (25.59) rates, with low uncertainty only
(3 trials)
Uncertainty: low, medium and high rates, with low and high
uncertainty (6 trials)

2. Read Between
(rate/uncertainty)

Mark a location on the map with a particular
rate and uncertainty level.

Low, medium and high rates, with low and high uncertainty
(6 trials)

3. Comparative
Judgment

Given the aftershock rate and uncertainty level,
in which marked location will there be more af-
tershocks in the next week?

Depending on judgment type (see Table 2), systematically
varied forecast or uncertainty levels of the location pairs
(22 trials)

Figure 3. Transparency uncertainty visualization: most likely fore-
casted aftershock rate in color and uncertainty levels shown by
transparency (alpha level) of rate color.

medium and high rates for low-uncertainty locations) and un-
certainty levels for six trials (full factorial; see Table 1). Par-
ticipants in the Rate Only condition were not asked to pro-
vide the uncertainty level, as this was not depicted in their
map. To increase difficulty, we used locations that bordered
other rate or uncertainty levels.

Participants answered using multiple-choice response op-
tions, and responses were scored against the correct answer.
Each participant’s accuracy (calculated separately for the
three rate and six uncertainty level responses) was averaged
within the visualization condition.

2.3.2 Read Between task

The second map-reading task required participants to inte-
grate over both rate and uncertainty levels. In this task, par-
ticipants were asked to click on a location that matched spe-
cific rate and uncertainty combinations. Participants in the
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Figure 4. Bounds uncertainty visualization: lower- and upper-bound maps of a 95 % confidence interval around the most likely forecasted
aftershock rate. The forecast uncertainty at each location can be inferred through its difference in colors between the maps. Locations with
high uncertainty have a difference of four to five colors, regardless of their most likely forecasted rate (e.g., lower-left and middle-right
zones). We designed another scenario for when both the most likely forecasted rate and forecast uncertainty are high: the lower and upper
bounds showed red and brown, respectively (e.g., several grid cells in the upper left zone). This scenario represents a case where the forecast’s
lower bound is very high but, due to high uncertainty, the upper bound is extremely high.

Bounds condition were asked for a specific lower-bound2–
uncertainty combination, and participants in the Rate Only
condition were asked only for a specific rate level. We asked
for six locations (full factorial; see Table 1) and switched the
forecast region from the one randomly assigned for the Read
Off task.

We scored participants’ responses on whether the clicked
location’s rate and uncertainty levels matched what was re-
quested. We again averaged participant accuracy within the
visualization condition, separately for rate and uncertainty
levels.

2.3.3 Comparative Judgment task

In the final experimental task, two marked locations were
shown, and participants were asked to select in which one
they would expect more aftershocks to occur in the following
week. Specifically, we asked the following question. “Where
will there be more aftershocks next week: Location 1 or Lo-
cation 2? Please make a prediction.” We further asked par-
ticipants to rate their confidence in each judgment, using a
six-point scale with the following equidistantly spaced ver-
bal labels: “completely guessing”, “mostly guessing”, “more
guessing than sure”, “more sure than guessing”, “mostly
sure” and “completely sure” (coded as 1–6, respectively).

We varied the rate and uncertainty levels of locations
across trials to evaluate three distinct types of judgment.
Baseline trials assessed how map features determined judg-
ments. In these trials, participants chose between two low-
uncertainty locations with identical rate levels (see Fig. S2 in
the Supplement for an experiment screenshot of an example

2Since there were no high and medium lower-bound locations
that also had high uncertainty, we asked for those two trials on the
upper-bound map.

baseline trial). While we do not analyze these to answer our
research questions, they provide a control against which to
understand the next trials.

Surprise trials tested how a change in uncertainty led to
a change in judgment. For these trials, we moved one of the
baseline trial locations from low to high uncertainty but kept
the same rate (Fig. S3). Thus, each baseline trial yielded two
distinct repetitions for each surprise trial (see Table 2), where
one of the baseline locations remained constant and the other
moved to a high-uncertainty zone. Lastly, sure bet trials were
used to test how a change in rate level led to a change in
judgment. Participants compared two locations with low un-
certainty, where the rate is higher for one and lower for the
other (Fig. S4). Thus, sure bet and surprise judgments corre-
spond directly to communication needs 1 and 2, respectively
(see Table 2).

Each trial type had multiple trials, where we varied the
locations’ rate levels to assess how this affects the percep-
tion of their uncertainty (e.g., surprise trials 2 and 5 in Ta-
ble 2). This also allowed for multiple trials within a rate level
(e.g., surprise trials 2 and 3 in Table 2, with low rates). We
also repeated each trial in Table 2 across both forecast re-
gions to manage expected within-participant variability in
task response. There were thus (3× 2) baseline trial repe-
titions, (3× 2× 2) surprise trial repetitions and (2× 2) sure
bet trial repetitions. These 22 total trial repetitions were ran-
domized within participant, and the location labels (1 and 2)
were also assigned randomly (though recoded in our analysis
as described in Table 2).

For baseline and surprise judgments, we attempted to se-
lect location pairs with balanced distances to, as well as sym-
metry around, the map center and zones of high uncertainty
or high rate. For their trial repetitions, we sought to keep
distance between location pairs constant while covering dif-
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Table 2. Trials in the Comparative Judgment task by type. Two trial types correspond to UV communication goals. Participants had to judge
which of the two locations will have more aftershocks in the next week, given the forecast map(s). For each rate level, locations marked
with an asterisk/plus sign were identical between the baseline and surprise trials, meaning that only the other location was moved to create a
surprise trial.

Location 1 Location 2

Trial Type Rate Uncertainty Rate Uncertainty

1 Baseline Low∗ Low∗ Low+ Low+

2 Surprise Low High Low+ Low+

3 Surprise Low∗ Low∗ Low High

4 Baseline Medium∗ Low∗ Medium+ Low+

5 Surprise Medium High Medium+ Low+

6 Surprise Medium∗ Low∗ Medium High

7 Baseline High∗ Low∗ High+ Low+

8 Surprise High High High+ Low+

9 Surprise High∗ Low∗ High High

10 Sure bet High Low Medium Low
11 Sure bet Medium Low Low Low

ferent parts of the map. For sure bet judgments, we again
selected locations bordering other rate/uncertainty levels to
increase difficulty.

2.3.4 Response time and covariates

Since it may be faster to read and use forecast and uncer-
tainty information from particular designs, previous UV eval-
uations have measured participant response times (Kinkeldey
et al., 2017). To explore UV effects in response time, we
recorded response times for each trial across all tasks to com-
pare the response times of participants in the UV conditions
relative to those in the Rate Only condition.

Following the judgment task, participants were asked sev-
eral demographic questions (age, gender, education level and
state of residence). We also asked participants how many
earthquakes they previously experienced, as past experience
has been shown to affect earthquake forecast perception
(Becker et al., 2019).

2.4 Statistical analysis plan

We performed confirmatory analysis using confidence inter-
vals to answer our research questions about how UVs af-
fected map-reading accuracy and comparative judgment. In
the Read Off task, we aggregated average participant accu-
racy in responses about locations’ rate levels within each
condition. We calculated the 95 % simultaneous confidence
interval for the mean difference between each UV condition
and Rate Only. We used Bonferroni-corrected standard er-
rors and compared confidence intervals to zero to infer dif-
ferences between groups. We conducted the same confidence
interval analysis for responses about locations’ uncertainty
levels, comparing across the three UV conditions only. We

repeated this confirmatory analysis on rate and uncertainty
accuracies in the Read Between task. Across all analyses, we
used a 5 % significance level to determine statistically signif-
icant differences between conditions.

We evaluated comparative judgments by calculating the
percentage of trials where the participant selects the location
with the higher rate or uncertainty (see Table 2), which we
then averaged across participants and conditions. We com-
puted differences between these percentages for UV and Rate
Only conditions separately for sure bet and surprise judg-
ments. We again inferred differences between groups using
95 % simultaneous confidence intervals. For surprise judg-
ments, we computed differences between UVs and Rate Only
specifically for each rate level. This tests whether UV ef-
fects on judgments of high-uncertainty locations are consis-
tent when the forecasted rate is low, medium or high.

As an exploratory analysis, we explored whether indi-
vidual differences affected responses to forecast uncertainty.
We built multilevel logistic regression models of participant
judgments at the trial level, with the visualization condition
and rate level as fixed effects and a random intercept for the
participant. Model selection using model performance met-
rics determined other needed explanatory variables (see de-
tailed explanation in Supplement S5). We specifically inves-
tigated how participant covariates and characteristics of the
locations used for judgment trials (distance from map center
and from high rate or uncertainty zones; see detailed expla-
nations in Supplement S3) influenced judgment pattern.

Finally, ordinal confidence ratings were analyzed in ex-
ploratory fashion across sure bet and surprise judgments and
other trial subsets, comparing each UV group to the Rate
Only baseline. We also compared how patterns in response
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times differ by condition and between judgment and map-
reading tasks.

3 Results

3.1 Map-reading tasks

3.1.1 Read Off task

Accuracy in reading rate levels was high across all conditions
in both map-reading tasks; however, accuracy differed across
conditions in reading the uncertainty level (see Table 3 and
Fig. 5).

In the Read Off task, participants had a high accuracy in
reading off the rate in all conditions, giving correct responses
in between 88.8 %–92.8 % of trials. Accuracy for participants
in the UV conditions was thus statistically indistinguishable
from Rate Only, with differences of less than 2.0 percentage
points, on average (see Table 3).

Accuracy in reading off the uncertainty level was lower
in the Transparency and Bounds conditions, relative to the
Adjacent condition. Participants gave correct uncertainty re-
sponses in 82.7 %–94.9 % of trials, across all conditions.
Compared to the Adjacent condition, which was most accu-
rate, participants were on average 6.8 percentage points less
accurate (95 % confidence interval (CI) of 3.4–10.2) in the
Transparency condition and 12.2 percentage points less ac-
curate (95 % CI of 7.5–16.9) in the Bounds condition. Across
all conditions, the majority of inaccurate responses came
from misreading the location’s uncertainty level as medium,
rather than high or low. This was the case for 57.6 % to
80.9 % of inaccurate responses, when averaged separately
within the three UV conditions.

3.1.2 Read Between task

Results were similar for the Read Between task. Participants
identified locations with the correct rate across all conditions.
Participants in the Rate Only condition were most accurate
for the rate level, and accuracy in UV conditions was no more
than 3.9 percentage points lower, on average.

Just as in the Read Off task, fewer participants identified
locations with the correct uncertainty levels in the Trans-
parency and Bounds conditions than in the Adjacent con-
dition. There was a wider range in accuracy across condi-
tions for the Read Between task, with participants giving cor-
rect uncertainty responses in 70.0 %–95.7 % of trials. Com-
pared to the Adjacent condition, participants were 8.3 per-
centage points less accurate (95 % CI of 5.5–11.1) in the
Transparency condition and 25.7 percentage points less ac-
curate in the Bounds condition (95 % CI of 22.4–29.0). The
majority of inaccurate responses were again caused by iden-
tifying a location with medium uncertainty, across all condi-
tions.

3.2 Comparative Judgment task

In the Comparative Judgment task, participants compared
two locations that differed systematically in either rate or un-
certainty levels and judged where they would expect more
aftershocks. For locations with different rates but low uncer-
tainty (sure bet trials), almost all participants in all conditions
correctly selected the higher-rate locations (participants se-
lected the higher-rate location in 92.2 %–97.8 % of trials).
Yet for locations with differing uncertainty levels but identi-
cal rates (surprise trials), participants in the Bounds condi-
tion were more likely than participants in the other two UV
conditions to select the higher-uncertainty location (Table 4
and Fig. 6).

In surprise trials, participants compared two locations with
different uncertainty but identical rate levels. In the Rate
Only condition, participants selected the location of higher
uncertainty in 52.0 % of the trials, on average. Note that un-
certainty was not visualized in this condition, so participants
saw two locations of equal rate level but may nevertheless
infer differences between them based on other information
(Morss et al., 2010). Participants in the Bounds condition se-
lected the higher-uncertainty location 6.9 percentage points
more often (95 % CI of 3.2–10.5). In contrast, participants in
the Adjacent and Transparency condition selected this loca-
tion 29.3 (95 % CI of 23.8–34.7) and 39.2 (95 % CI of 35.3–
43.1) percentage points less than Rate Only, respectively.

Moreover, 68.0 % of the participants in the Adjacent and
75.7 % in the Transparency condition selected the lower-
uncertainty location in at least 11 of 12 surprise trials. In con-
trast, participants’ judgments in the Bounds and Rate Only
conditions were more variable, with at least 89.0 % of these
participants selecting both locations multiple times across the
12 trials.

Looking at the surprise trials separately for each of the
three rate levels (low, medium and high), the difference be-
tween Bounds and the other UV conditions was found for
each rate level but was considerably stronger for trials with
low rates and varying uncertainty (see Fig. 7). Participants in
the Rate Only condition selected the higher-uncertainty loca-
tion in 85.9 % of the low-rate trials and those in the Bounds
condition selected it 1.7 percentage points more often, on av-
erage (95 % CI of (-3.3)–7.2). In contrast, participants in the
Adjacent and Transparency conditions selected the higher-
uncertainty location 59.2 percentage points (95 % CI of 52.6-
65.9) and 72.1 percentage points (95 % CI of 66.7-77.5) less
often, respectively.

The surprise trials with high rates and varying uncertainty
contained cases where the higher-uncertainty location had a
possible extreme outcome (high lower bound and extremely
high upper bound), which was only visible in the Bounds
condition (see caption of Fig. 4). Participants using bounds
tended to select this higher-uncertainty location for extreme
cases (at least 79.0 % of participants selected it in these trials)
but not for the other high-rate trials (7.0 % or fewer selected
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Table 3. Percentage of trials answered correctly by condition for both map-reading tasks, separately for rate and uncertainty levels. Partici-
pants in the Rate Only condition were not asked to read uncertainty in either task.

Read Off Read Between

Rate Uncertainty Rate Uncertainty

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Rate Only 90.8 % (17.8) – – 97.7 % (8.0) – –
Adjacent 92.6 % (19.0) 94.9 % (15.3) 94.7 % (12.3) 95.7 % (13.2)
Transparency 92.8 % (17.3) 88.1 % (17.9) 93.8 % (13.1) 87.4 % (14.6)
Bounds 88.8 % (19.7) 82.7 % (29.1) 94.0 % (13.0) 70.0 % (19.0)

Figure 5. Accuracy in the Read Off (a) and Read Between (b) tasks. Boxplots are over the percentage of trials answered correctly by
participants, grouped by condition. Each dot represents the percentage correct of one participant, slightly jittered to increase visibility (as
such, some jittered dots lie above 100 and below 0). We show results for reading rate and uncertainty separately for both tasks. Participants
in the Rate Only condition were not asked to read uncertainty in either task.

Table 4. Comparative Judgment task: percentage of trials where
participants judged the higher-rate location (sure bet trials) or
higher-uncertainty location (surprise trials) to have more after-
shocks, per condition.

Sure bets Surprises

Mean (SD) Mean (SD)

Rate Only 97.8 % (10.9) 52.0 % (11.7)
Adjacent 92.2 % (18.1) 22.8 % (36.3)
Transparency 93.4 % (17.4) 12.8 % (24.6)
Bounds 95.0 % (14.0) 58.9 % (22.8)

it in these trials), resulting in their average percentage for all
high-rate trials to be near 50 % (Fig. 7, right).

3.3 Multilevel modeling of judgments

3.3.1 Accounting for variability within participants

The effect of visualization on judgments also held after we
accounted for variation in judgments on an individual level.
We built a multilevel logistic model for judgments in situ-
ations with varying uncertainty and identical rates (surprise
trials), with fixed effects for the visualization condition, rate
level and their interaction and a random intercept per partic-
ipant (see Supplement S5 for details on the model). Because
the confirmatory analysis found no evidence of an effect by
condition for sure bet trials, we report exploratory analysis
on models for judgments in surprise trials only.3

3We also built corresponding models using both judgment trials
with an interaction term for the trial type, and results were qualita-
tively similar to those for surprise trials only.
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Figure 6. Percentage of trials where the location of a higher rate (sure bet trials, turquoise) or higher uncertainty (surprise trials, orange) was
selected in the Comparative Judgment task. See example screenshots of sure bet and surprise trials in Figs. S4 and S3, respectively. Boxplots
are over mean percentages across participants, by condition. Each dot represents the mean percentage of one participant, slightly jittered to
increase visibility.

Figure 7. Percentage of trials where the higher-uncertainty location was selected between two locations of equal rate level (surprise trials),
grouped by condition and rate level. Boxplots are over mean percentages across participants, by condition. Each dot represents the mean
percentage of one participant, slightly jittered to increase visibility.

While using the Bounds UV slightly raised the probabil-
ity of selecting the higher-uncertainty location compared to
Rate Only, the opposite was true for Transparency and Ad-
jacent. These conditions had significantly negative estimated
coefficients (see Table S2 in the Supplement), suggesting, as
in Fig. 6, that participants in these conditions were much less
likely to select the higher-uncertainty location. This location

was more likely to be selected for trials with low rate over
medium rate (highly positive estimated coefficient) and high
rate, but this effect was dampened by the interaction terms
of low rate with Adjacent and Transparency visualizations
(highly negative estimated coefficients). These results match
those from the confirmatory analyses in the previous section.
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3.3.2 Effect of trial characteristics on judgments

Next, we explored whether the spatial patterns of the forecast
region and characteristics of the trial locations, such as their
distances to important map features, also influenced forecast
judgment. These trial-level features did have a measurable
effect on participants’ judgments, better explaining the vari-
ation in judgments than visualization and rate level alone.

To assess the importance of these variables, we included
the forecast region of each trial, the locations’ rate level, and
their distances to the map center and zones of high uncer-
tainty or rate as fixed effects into the model. We performed
a stepwise model comparison between the baseline model
and models with these additional fixed effects (see Supple-
ment S3 and S5 for details on the distance measures and the
model selection procedure and Table S3 for model selection
results). We again report results for surprise trials only, as
results for models including both trial types were qualita-
tively similar. The best-fitting model across all four metrics
included rate level and visualization, as well as having a lo-
cation which was closer to the map center or to a high-rate
zone (Table 5).

The UV effects on judgment did not change even when
considering the other important variables in this optimal
model. The estimated coefficients for visualizations were
similar to the baseline model (compare Table S2 to Table 5).
Similarly, the coefficients for rate level and its interaction
with UV group were equivalent to the baseline model, re-
flecting the findings in Fig. 7. The best-fitting model also
found that in trials where the lower-uncertainty location was
closer to the center or to a high-rate zone, participants tended
to select the higher-uncertainty location (highly positive esti-
mated coefficients), though these variables only minorly im-
proved model performance (see Table S3).

Participants also seemed to use features of the map to
make consistent judgments between two locations of the
same rate and uncertainty levels (baseline trials). Figure S6
in the Supplement shows that even though these locations
have the same characteristics, participants tended to select
one or the other for some trials, sometimes differently across
conditions. Judgments in these trials had no consistent pat-
tern based on forecast region or locations’ distances to map
features.

3.3.3 Individual differences between participants’
judgments

To explore whether the participant-level variables we mea-
sured could account for differences in surprise judgments, we
considered additional fixed effects for the number of earth-
quakes participants previously experienced, education, age,
gender and state of residence, performing the same model
comparison as described above. None of these individual dif-
ferences improved the model fit across multiple metrics (see
model comparison in Table S4 in the Supplement). Thus, dif-

ferences in visualization and rate level explain participants’
judgments better than any of these participant-level variables.

We also found no systematic differences in these variables
between participants who consistently selected either loca-
tion in 11 out of 12 trials and those with more variation in
judgments.

3.4 Confidence and response time

3.4.1 Confidence ratings

We asked participants to rate their confidence after each judg-
ment, and we investigated these by visualization condition
and between sure bet and surprise judgments.

We calculated median confidence ratings for each partici-
pant within each trial type. Confidence did not differ by con-
dition for the sure bet judgments, with identical medians and
equivalent distributions. For the surprise judgments, partic-
ipants in the Rate Only condition (who did not see the dif-
ference in uncertainty between the two locations) were gen-
erally less confident than participants in the three UV condi-
tions. The median confidence rating was two points lower for
Rate Only compared to all UVs.

We also investigated whether surprise judgments were
made more confidently in favor of higher- or lower-
uncertainty locations, as suggested in Hullman et al. (2018).
Again, we calculated median confidence ratings per partici-
pant for those trial subsets. Participants using Rate Only and
Bounds had similar confidence regardless of their judgment;
however, confidence appeared to differ by judgment for par-
ticipants using Adjacent and Transparency (see Fig. S7 in the
Supplement). When they selected the higher-uncertainty lo-
cation, participants in these two conditions had median con-
fidence ratings that were at least one point lower than when
they selected the lower-uncertainty location. The spread of
their confidence ratings was also lower (shorter boxplots) in
the trials where they selected the lower-uncertainty location.

3.4.2 Response times

We also investigated trial response times by calculating me-
dians within participants across trials, separately for each of
the three tasks. There was no meaningful difference across
the UV conditions in the Comparative Judgment and Read
Off tasks, with differences in median response times to Rate
Only of less than 1.5 s, across all trial types (figure omit-
ted). In the Read Between task, response times were slightly
shorter for participants in the Rate Only condition (who were
only asked to identify a particular rate level) than participants
in the UV conditions (who were asked to identify a particular
rate and uncertainty level).
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Table 5. Most likely estimates and 95 % confidence intervals using Wald standard errors for fixed effects in the best-fitting multilevel model.
The intercept is the logistic of the probability of selecting the higher-uncertainty location for the Rate Only condition and medium-rate trials,
with both locations being equidistant from map features (reference level for visualization, rate level and the map feature variables). Each
fixed effect gives the change in probability of selecting this location from Rate Only to UV conditions, from medium rate to other rate levels
or from equidistant locations to one location being closer to the map feature (all else being held equal).

Fixed effect Estimated 95 % CI
coefficient

Intercept −2.56 [−2.95, −2.16]

Visualization

Adjacent −1.65 [−2.18, −1.11]
Transparency −2.01 [−2.54, −1.48]
Bounds 0.68 [0.22, 1.13]

Rate level

Low 4.77 [4.39, 5.15]
High 1.12 [0.87, 1.38]

Visualization*rate level

Adjacent∗low −2.51 [−2.95, −2.06]
Adjacent∗high −0.92 [−1.36, −0.49]
Transparency∗low −3.37 [−3.82, −2.91]
Transparency∗high −1.61 [−2.07, −1.16]
Bounds∗low 0.03 [−0.39, 0.45]
Bounds∗high −0.61 [−0.94, −0.29]

Location closer to center

Higher-uncertainty location closer −0.05 [−0.26, 0.17]
Lower-uncertainty location closer 1.89 [1.68, 2.10]

Location closer to high-rate zone

Higher-uncertainty location closer −0.17 [−0.43, 0.09]
Lower-uncertainty location closer 1.01 [0.71, 1.31]

Random effects

Intercept σ 2 4.37

4 Discussion

Uncertainty visualization is critical for forecast communi-
cation, as studies have shown that communicating uncer-
tainty improves user decision-making and prevents users
from building their own representation of where uncertainty
is high or low (Joslyn and LeClerc, 2012; Ash et al., 2014).
We compared three visualizations of uncertainty for after-
shock forecast maps against a visualization of the forecast
without uncertainty. The experimental tasks were designed
to systematically evaluate how well users could read off
the forecasts and how effectively the visualizations served
two user-generated communication needs. In particular, af-
tershock forecast maps should communicate where the cer-
tainty is high that aftershocks will or will not occur, as well
as where outcomes worse than forecasted are possible, due
to high uncertainty.

The results show that all three uncertainty visualizations
led to correct judgments about where to expect more after-
shocks when both locations had low uncertainty and a differ-
ence in forecasted aftershock rate. However, the uncertainty
visualizations resulted in significantly different judgments
when the locations had forecasts where the uncertainty var-
ied. Although users of the visualization showing the bounds
of a forecast interval (Bounds UV) could read off the un-
certainty less accurately than the other visualizations, it was
the only one where users demonstrated an understanding that
forecasts with high uncertainty could have outcomes worse
than forecasted.

4.1 Effects of visualization

While there was no difference in how well participants could
read the rate information from the different visualizations,
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accuracy in reading the uncertainty information differed de-
pending on the visualization participants saw. Consistent
with previous research, the adjacent design was associated
with greater accuracy compared to the transparency-based
design (Retchless and Brewer, 2016) and the interval-based
design (Nadav-Greenberg et al., 2008). These differences
held across both map-reading tasks. The majority of in-
accurate responses in these tasks, across all visualizations,
were in misreading the uncertainty level as being medium
rather than high or low. For the Transparency UV, partic-
ipants may have had difficulty distinguishing between the
non-transparent version of one color (low uncertainty) and
the more transparent version of the next darker color (one
transparency level lighter, i.e., medium uncertainty). For the
Bounds UV, since uncertainty was not depicted explicitly in
the legend, participants may have had trouble classifying a
location into the correct uncertainty category. As shown in
past research, aftershock forecast users were most accurate
reading uncertainty information off adjacent displays com-
pared to those that used transparency or represented uncer-
tainty implicitly through a forecast interval.

In the judgment task, there were differences by visual-
ization in how participants judged higher-uncertainty loca-
tions compared to lower-uncertainty locations. Most users
of the adjacent and transparency visualizations expected the
lower-uncertainty location to have more aftershocks than the
higher-uncertainty location. This judgment pattern was so
consistent that the majority of these participants selected the
lower-uncertainty location in at least 11 of the 12 trials. In
contrast, users of the Bounds UV were more likely to expect
that the higher-uncertainty location would have more after-
shocks, relative to the Adjacent and Transparency UVs.

Users of the Bounds visualization may have had judgment
patterns that differed from users of the other visualizations
because Bounds explicitly displays the extremes of the fore-
cast distribution rather than its spread; the spread must be
inferred by comparing the lower- and upper-bound maps.
The word uncertainty was also not used in the legend in the
Bounds visualization, and we instructed participants that lo-
cations with higher uncertainty can only be identified by their
large color differences between the two maps. In contrast, the
other uncertainty visualizations explicitly depicted the un-
certainty and required users to infer where high uncertainty
could yield extreme outcomes.

There are three potential explanations for why explicitly
depicting the extremes rather than the uncertainty could ac-
count for our results. First, consistent with the findings of
Nadav-Greenberg et al. (2008), the upper-bound map may
have served as an anchor point that biased users’ perceptions
towards higher values. Users of the Bounds visualization
may have expected more aftershocks in higher-uncertainty
locations because they focused on the worst-case scenario
map (the upper bound) and did not even pay attention to dif-
ferences in color to infer the spread.

Second, the explicit depiction of uncertainty in the adja-
cent and transparency designs may have led users to associate
high uncertainty with low forecast quality. That is, despite the
study instructions explaining that locations with high uncer-
tainty could have worse outcomes due to the skewed distri-
bution of aftershock rates (which participants had to answer
correctly before continuing to the study), participants may
have nevertheless interpreted lower-uncertainty locations as
being more reliable. Furthermore, uncertainty may have been
interpreted differently based on whether the visualization
presented it with words or numbers. Consistent with previous
research (e.g., Retchless and Brewer, 2016), we used an or-
dinal uncertainty scale with verbal labels (low, medium and
high) in the adjacent and transparency designs. In contrast,
the interval-based Bounds design used numeric legends in
both lower- and upper-bound maps. Previous experiments in
non-spatial uncertainty communication have found that ver-
bal labels can lower perceptions of forecast reliability com-
pared to numeric ranges (Van Der Bles et al., 2019), which
might explain the difference in judgments between the un-
certainty visualizations.

Third, differences in judgment patterns between the vi-
sualizations may have resulted from differences in how the
uncertainty visualizations used color to signify uncertainty.
Higher-uncertainty areas are always marked by darker col-
ors in the upper-bound map than lower-uncertainty areas of
the same rate level. In contrast, higher uncertainty is marked
by lighter colors in both the adjacent and transparency visu-
alizations. These differences in color lightness may have af-
fected how participants interpreted higher uncertainty in the
visualizations. Previous studies have reported a dark-is-more
bias in how people interpret color scales (Silverman et al.,
2016; Schloss et al., 2018). Users of the adjacent and trans-
parency visualizations may have thus perceived the lighter-
colored zones of high uncertainty as having a lower potential
of aftershocks.

4.2 Effects of rate level

While users of the adjacent and transparency visualizations
had the same patterns of selecting the higher-uncertainty
location regardless of its most likely aftershock rate (rate
level), judgment differed by rate level for the Bounds visu-
alization. When the compared locations had low rate lev-
els (most likely aftershock rate of 0.59 aftershocks per grid
cell; yellow color), the majority of participants using the
Bounds visualization correctly expected more aftershocks at
the higher-uncertainty location, which had the much higher
upper bound. That is, in these comparisons, the lower bounds
of both locations were of equal color (both yellow), but their
upper bounds showed a near-maximal color difference (from
yellow to red), indicating the higher-uncertainty location’s
potential for much higher rates.

When the compared locations had medium rate levels
(most likely aftershock rate of 1.11 aftershocks per grid
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cell; middle-orange color), participants’ judgments varied
between the lower-uncertainty (showing a medium rate in
both lower- and upper-bound maps) and higher-uncertainty
(showing a low rate in the lower-bound map and a high rate
in the upper-bound map) locations. When the compared lo-
cations had high rate levels (most likely aftershock rate of
25.59 aftershocks per grid cell; dark-red color), participants
only selected the higher-uncertainty location when the up-
per bound had an extremely high rate (38.51 aftershocks per
grid cell; brown color; see Fig. 4). In these situations, the
lower-uncertainty location always showed a high rate (dark-
red color) across both lower- and upper-bound maps, indi-
cating that a high number of aftershocks is very likely to oc-
cur there. When the upper bound for the higher-uncertainty
location showed an extremely high rate (brown color), par-
ticipants were likely to select it. However, when the upper
bound of the higher-uncertainty location only showed a high
rate (red color) and the lower bound showed a low rate (yel-
low color), they almost never selected the higher-uncertainty
location.

These results indicate that the Bounds visualization led to
judgments that recognized the relationship between high un-
certainty and the potential for outcomes that could be worse
than forecasted. For judgments where the higher-uncertainty
location was much higher in the upper bound than the lower-
uncertainty location, the majority of users of the Bounds
UV selected the higher-uncertainty location. Users of the
other uncertainty visualizations, who did not see the ex-
tremes explicitly, made the opposite judgment. This differ-
ence between uncertainty visualizations held even when ac-
counting for within-participant variability and other potential
participant-level determinants of judgments. Thus, the esti-
mated visualization effects held across the sampled popula-
tion, with respect to the studied covariates.

If highlighting the potential for (even) higher aftershock
rates in cases of high forecast uncertainty is critical for a
decision at hand (for example, in the emergency response
context), then our results support displaying forecast uncer-
tainty with maps showing forecast intervals. Where locations
have the same low uncertainty, the higher-rate location may
be interpreted to have more aftershock potential, and where
locations have the same rate level, the higher-uncertainty lo-
cation may be interpreted to have more aftershock potential.
In contrast, adjacent and transparency-based displays appear
to lead to an opposite response to high uncertainty.

4.3 Effects of map features

Previous studies have found that risk perception about a loca-
tion can be impacted by its distance to risky areas (Ash et al.,
2014; Mulder et al., 2017). We also found some evidence
indicating that map features of the trial locations influenced
judgments using aftershock forecasts. The model selection
analysis found that when a lower-uncertainty location was
closer to the map’s center or to a high-rate zone, the higher-

uncertainty location was slightly more likely to be selected,
regardless of visualization (see Table 5). Furthermore, par-
ticipant selections were not evenly split when comparing lo-
cations of equal rate and uncertainty, with clear differences
by visualization in some trials (see Fig. S6). It is possible
that other map-related features that we did not measure could
account for these differences in judgments. Future research
could explore systematically how judgments are affected by
map features or location characteristics.

4.4 Judgment confidence and response time

We found only minor differences between visualizations in
user confidence in judgments. Not surprisingly, confidence
ratings were higher when comparing low-uncertainty loca-
tions with different rates than when comparing locations with
different uncertainties. In general, participants using the fore-
cast depicted without uncertainty made judgments between
locations with different uncertainties with lower confidence
than those using UVs. This suggests that omitting uncer-
tainty lowers confidence for judgments between two loca-
tions when uncertainty differs but rate does not. We observed
higher and less variable confidence ratings for judgments in
favor of the lower-uncertainty location, compared to those
for the higher-uncertainty location, but only for users of the
adjacent and transparency visualizations. These designs ap-
pear to encourage a consistent interpretation of uncertainty,
leading lower-uncertainty locations to be confidently associ-
ated with more aftershocks. Response time distributions were
equivalent between visualizations, meaning that no evidence
was found to suggest visualizing uncertainty increases the
time needed for map reading or making comparative judg-
ments. This result mirrors findings summarized in a review
of previous UV evaluations (Kinkeldey et al., 2017).

4.5 Limitations and future research

Our study sought to examine the effects of UV designs on
specific communication needs for aftershock forecast maps.
To do so systematically, we had to fix one variable, either the
forecasted aftershock rate or its uncertainty, in the Compar-
ative Judgment task. In real-world decisions, locations must
often be compared where both the rate and uncertainty vary,
for example, comparing a location of medium rate and low
uncertainty against one of low rate and high uncertainty. Fu-
ture studies should explore these comparisons by system-
atically testing location pairs with meaningful differences,
as recommended in prior reviews (Hullman et al., 2018;
Kinkeldey et al., 2017).

Geographical features, such as roads and landmarks, were
omitted from our maps in order to avoid potential con-
founding effects on judgments, as in Nadav-Greenberg et al.
(2008). However, omitting these features lowers the similar-
ity between our study and real public forecast communica-
tions, which generally include geographical features. Future
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experiments could add standard map layers to visualizations
and evaluate their effects on interpretations of the forecast
made using an uncertainty visualization. We found some ev-
idence that map features influenced forecast perception, es-
pecially when locations were compared with the same fore-
casted rate and uncertainty. Controlled experiments should
target the effects of map features on task response, both with
and without additional map layers.

Finally, our evaluation experiment combined map-reading
tasks with a single judgment task. As we did not separately
test how accurately visualizations could be read before test-
ing their effects on judgment, we could not address issues
in map reading in the visualizations’ design. This could be
done in future studies in separate experiments that elucidate
other effects of candidate uncertainty visualizations, espe-
cially using tasks that move beyond judgment and towards
decision-making. For example, if aiding resource allocation
is a communication goal, participants could be asked to al-
locate search and rescue teams across the map, based on
the forecasted rate and its uncertainty. As aftershock and
other natural hazard forecasts are increasingly released via
public portals with interactive capabilities (Marzocchi et al.,
2014), tasks with interactivity can assess how this moder-
ates an uncertainty visualization design’s effects. A greater
variety of uncertainty visualizations can also be evaluated,
particularly designs that represent uncertainty using patterns
or other overlays easier to separate from the forecast’s color
than color transparency. Expressing uncertainty in a way that
does not use color lightness could investigate whether the
dark-is-more bias or something else affects the interpretation
of high uncertainty.

5 Conclusions and practical implications

Our experiment found that the three approaches for visual-
izing uncertainty in an aftershock forecast map differed sub-
stantially in their effects on map reading and judgment re-
sponses. These visualizations included one of the most ef-
fective designs from the visualization literature (the Trans-
parency visualization) and a newer approach with recent op-
erational use (the Bounds visualization showing forecast in-
tervals). Our work suggests several practical implications for
the design of aftershock forecast maps for broad audiences.
If the accurate reading of uncertainty is the most important
aim (e.g., for technical users who may need the aftershock
forecast distribution as a direct input into their own models),
our results support communicating this explicitly and with a
separate and adjacent map. Map-reading accuracy was high
across all visualizations, but uncertainty was read most ac-
curately for adjacent designs, compared to transparency- and
interval-based designs.

If instead the aim is to communicate that higher-
uncertainty locations could lead to more rather than fewer
aftershocks and some inaccuracy in the (implicit) communi-

cation of uncertainty is acceptable, then our results support
representing uncertainty using forecast intervals. While all
visualizations were able to convey that higher-rate locations
are sure bets to have more aftershocks when uncertainty is
low, only the intervals-based design communicated that high-
uncertainty locations were potential surprises to have more
aftershocks than were forecasted. As this interpretation of
high uncertainty is consistent with the skewed distribution
of aftershock rates, the intervals-based visualization may im-
prove judgments or decisions by non-technical users. For ex-
ample, emergency managers rely on aftershock forecasts to
decide whether to issue a disaster declaration during an af-
tershock sequence or not, as in the case of L’Aquila, Italy.
The intervals-based design may help these decisions to be
more consistent with the skewed distributions of these fore-
casts. Thus, in a crisis management situation, providing a
pessimistic map may be useful for rapid risk assessment, a
hypothesis which should be tested in future research. Further-
more, our results can inform visualizations for other natural
hazard forecasts that also follow such skewed distributions,
though this also merits further study.
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