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Abstract. In the last decade, DEM-based classifiers based
on height above nearest drainage (HAND) have been widely
used for rapid flood hazard assessment, demonstrating satis-
factory performance for inland floods. The main limitation is
the high sensitivity of HAND to the topography, which de-
grades the accuracy of these methods in flat coastal regions.
In addition, these methods are mostly used for a given return
period and generate static hazard maps for past flood events.
To cope with these two limitations, here we modify HAND,
propose a composite hydrogeomorphic index, and develop
hydrogeomorphic threshold operative curves for rapid real-
time flood hazard assessment in coastal areas. We select the
Savannah River delta as a test bed, calibrate the proposed hy-
drogeomorphic index on Hurricane Matthew, and validate the
performance of the developed operative curves for Hurricane
Irma. The hydrogeomorphic index is proposed as the mul-
tiplication of two normalized geomorphic features, HAND
and distance to the nearest drainage. The calibration pro-
cedure tests different combinations of the weights of these
two features and determines the most appropriate index for
flood hazard mapping. Reference maps generated by a well-
calibrated hydrodynamic model, the Delft3D FM model, are
developed for different water level return periods. For each
specific return period, a threshold of the proposed hydroge-
omorphic index that provides the maximum fit with the rel-
evant reference map is determined. The collection of hydro-
geomorphic thresholds developed for different return periods
is used to generate the operative curves. Validation results
demonstrate that the total cells misclassified by the proposed
hydrogeomorphic threshold operative curves (summation of

overprediction and underprediction) are less than 20 % of the
total area. The satisfactory accuracy of the validation results
indicates the high efficiency of our proposed methodology
for fast and reliable estimation of hazard areas for an upcom-
ing coastal flood event, which can be beneficial for emer-
gency responders and flood risk managers.

1 Introduction

Densely populated coastal areas are some of the most pro-
ductive ecosystems on Earth. Coastal wetlands provide im-
portant services to society, including flood attenuation, wa-
ter storage, carbon sequestration, nutrient cycling, pollutant
removal, and wildlife habitat (Barbier, 2019; Land et al.,
2019; Wamsley et al., 2010). Characterizing the hydrologi-
cal processes unique to coastal areas is tremendously impor-
tant for ensuring the sustainability of these ecosystem ser-
vices. Endangered coastal ecosystems are threatened by an-
thropogenic effects, including direct impacts of human ac-
tivities (i.e., urbanization and navigational development) or
indirect impacts (e.g., sea level rise (SLR) and hydroclimate
extremes (e.g., floods) exacerbated by climate change; Al-
izad et al., 2018; Kirwan and Megonigal, 2013; Wu et al.,
2017). Nearly 70 % of global wetlands have been lost since
the 1900s, and rates of wetland loss increased by a factor of 4
in the late 20th and early 21st century (Davidson, 2014). Ur-
banization hinders wetland migration toward upland areas in
an effort to cope with rising water levels (WLs) (Schieder
et al., 2018). Likewise, moderate to high relative sea level
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rise (RSLR) rates can influence the fate of sediments and
nutrient availability to coastal wetlands (Schile et al., 2014)
and eventually transform low marsh regions into open-water
or mudflat areas (Alizad et al., 2018). SLR and navigational
development can alter the tidal regime and longwave propa-
gation characteristics inside estuaries/bays and subsequently
change the flooding inundation patterns (Familkhalili et al.,
2020; Khojasteh et al., 2021a, b). Similarly, hurricane im-
pacts can create interior ponds, trigger shoreline erosion,
and denude marshes (Morton and Barras, 2011). People and
assets located in low-lying coastal regions and river deltas
are frequently exposed to compound flooding. Challenges
for flood hazard assessment unique to these systems include
compounding effects of multiple flooding mechanisms, com-
plex drainage systems with relatively low slopes, and period-
ically saturated soils. It is expected that between 0.2 %–4.6 %
of the global population may be exposed to coastal flooding if
no strategic adaptation takes place (Kulp and Strauss, 2019).

Efficient risk reduction strategies require accurate real-
time assessment of flood hazards (Gutenson, 2020; USGS
Surface Water Information, 2021). To simulate the coastal
flood hazard in wetlands, two-dimensional (2D) hydrody-
namic models are commonly used for flood inundation map-
ping as they allow for simulating complex oceanic, hydro-
logical, meteorological, and anthropogenic processes based
on process-based numerical schemes. The advanced circu-
lation model (ADCIRC) (Luettich et al., 1992), DELFT3D
(Roelvink and Banning, 1995), and LISFLOOD-FP (Bates
et al., 2010) are among the most commonly used 2D hydro-
dynamic models for coastal flood hazard assessment in low-
lying areas at local and regional scales (Bates et al., 2021;
Muis et al., 2019; Thomas et al., 2019). Nonetheless, hydro-
dynamic modeling approaches require huge computational
resources to conduct flood hazard assessments at a large
scale. This is even more challenging when emergency re-
sponders need timely flood risk information at a desirable ac-
curacy and resolution on a real-time basis. Therefore, while
2D hydrodynamic models are still a key component in many
frameworks for detailed analyses of the flood hazard, the
use of low-complexity flood mapping (LCFM) methods is
essential for the preliminary estimation of areas exposed to
flooding in a short time. Applying LCFM methods together
with detailed hydrodynamic models provides a more com-
prehensive set of information for emergency responders and
improves the efficiency of flood risk management in practice.

The advent of DEMs has led to the development of a se-
ries of GIS-based LCFM methods for rapid estimation of
flood hazard in the last couple of decades (Afshari et al.,
2018; Dodov and Foufoula-Georgiou, 2006; Manfreda et al.,
2011; McGlynn and McDonnell, 2003; McGlynn and Seib-
ert, 2003; Nardi et al., 2006; Samela et al., 2016; Teng et al.,
2015; Williams et al., 2000). Among these methods, binary
classification of a hydrogeomorphic raster has been shown
to be an efficient approach for reliable delineation of flood-
plains (Degiorgis et al., 2012; Manfreda et al., 2014). In a

binary hydrogeomorphic classification approach, the study
area is examined as a grid of cells and then a threshold of a
hydrogeomorphic feature, typically calculated from a DEM,
is chosen. Comparing the hydrogeomorphic feature value of
cells with the threshold, the entire study area is classified into
flooded and non-flooded cells.

The Federal Emergency Management Agency (FEMA)
provides flood hazard maps across the United States. These
maps, also referred to as flood insurance rate maps (FIRMs),
identify flood-prone areas corresponding to specific return
periods. While these hazard maps provide useful information
for a few recurrence intervals, they are no longer reliable for
extreme flood events characterized by lower frequencies or
longer return periods. In 2015, the National Water Center In-
novators Program initiated the National Flood Interoperabil-
ity Experiment (NFIE) for real-time flood inundation map-
ping across the United States (Maidment, 2017; Maidment
et al., 2014). The plan highlighted the tendency for event-
based flood mapping, which is more valuable and practical
for emergency response and warning systems. Unlike past
DEM-based methods that mostly focused on flood hazard
mapping, Zheng et al. (2018b) proposed the development
of DEM-based synthetic rating curves for real-time flood
inundation mapping. In most current real-time flood map-
ping methods, the forecasted river flows and/or water sur-
face elevation are typically fed into flood inundation libraries
to simulate the upcoming flood inundation areas (IWRSS,
2015, 2013; Maidment, 2017; Wing et al., 2019; Zheng et al.,
2018a). The computationally intensive and time-consuming
nature of detailed hydrodynamic models to numerically route
flood waves typically restricts their usage in supporting emer-
gency response activities (Gutenson et al., 2021; Longe-
necker et al., 2020).

An LCFM method based on height above nearest drainage
(HAND) has been widely used and recognized as one of
the best classifiers for identifying flood hazard areas (De-
giorgis et al., 2012; Jafarzadegan et al., 2018; Jafarzadegan
and Merwade, 2019; McGrath et al., 2018; Samela et al.,
2017; Zheng et al., 2018a). The performance assessment of
HAND classifiers in different topographic settings suggests,
despite an acceptable performance in most locations, the ac-
curacy of hazard maps is significantly lower in low-lying
coastal regions (Jafarzadegan and Merwade, 2017; Samela
et al., 2017). While the majority of DEM-based flood haz-
ard mapping methods have been developed and tested for
inland floods, access to an appropriate DEM-based method
for coastal flooding is lacking in the literature. Since coastal
flooding occurs rapidly and the time for hydrodynamic mod-
eling and designing flood mitigation strategies is limited,
especially in data-scarce regions, efficient DEM-based ap-
proaches can be significantly beneficial for emergency and
response-related decision makers.

The overarching goal of this study is to propose a DEM-
based LCFM method for coastal wetlands, estuaries, and
deltas. To our knowledge, this is the first study that inves-
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tigates the application of hydrogeomorphic binary classifiers
for flooding in semi-flat coastal zones. We modify the HAND
commonly used for riverine inland flooding (Degiorgis et al.,
2013; Jafarzadegan et al., 2020; Samela et al., 2017) and pro-
pose a composite hydrogeomorphic index for tidally influ-
enced coastal regions. We enhance the applicability of the
proposed method by developing hydrogeomorphic threshold
operative curves for coastal flood hazard mapping. Unlike
previous studies that rely on binary classifiers for specific re-
turn periods, the operative curves here offer a unique oppor-
tunity for rapid assessment of hazardous areas in real time.
These curves have substantial benefits for emergency respon-
ders when wetlands are prone to coastal flooding.

2 Study area and data

We study the Savannah River delta located at the border of
Georgia and South Carolina in the southeast United States
(Fig. 1a). The Savannah River originates at the confluence
of the Tugaloo and Seneca rivers and drains the lower Sa-
vannah watershed (HUC8_03060109) comprising an area of
2603.96 km2. The morphology of this region is relatively
complex due to the existence of a braided river followed by
a dense drainage network of interior rivers and tidal creeks.
The average slope, length, and annual discharge of the Savan-
nah River are 0.00011 mm−1, 505 km, and 320 m3 s−1, re-
spectively (Carlston, 1969). Moreover, the river bathymetry
was deepened to up to 12 m for increasing the capacity of
cargo transportation (U.S. Army Corps of Engineers, 2017).
This region is mostly characterized by its unique ecology, in-
cluding vast wetlands and salt marsh ecosystems. We obtain
detailed drainage network data including river streams, tidal
channels, and creeks within wetland areas from the US Na-
tional Wetlands Inventory (https://www.fws.gov/wetlands/
data/Mapper.html, last access: 23 September 2021).

To simulate the flood hazard in this region, a mesh bound-
ary encompassing the Savannah River delta, surrounding
areas, and a portion of the Atlantic Ocean is generated
(Fig. 1b). Two US Geological Survey (USGS) gauges, lo-
cated at the Savannah River (nos. 02198500 and 02198690)
and the Fort Pulaski station of the National Oceanic and At-
mospheric Administration (NOAA) are used as upstream and
downstream boundary conditions, respectively, of the hydro-
dynamic model. The Fort Pulaski station (NOAA – 8670870)
provides an 85-year length of records (since 1935) that en-
ables a proper characterization of coastal flooding for design
levels at lower frequencies or relatively large return periods.
We select this region as a test bed because of (1) frequent
coastal flooding induced by large semidiurnal tidal ampli-
tudes at the estuary mouth (Cowardin et al., 2013) and (2) ex-
posure of more than 20 000 people settled in four developed
areas, the Whitemarsh, Talahi, Wilmington, and Tybee is-
lands located in this region (Fig. 1c).

The high-resolution DEM used as the base of our proposed
hydrogeomorphic index is a 3 m light detection and ranging
(lidar) that includes topographic and bathymetric (topobathy-
metric) data. This dataset has been developed by NOAA’s
National Centers for Environmental Information (NCEI)
and is available at NOAA’s Data Access Viewer repository
(https://coast.noaa.gov/dataviewer/, last access: 23 Septem-
ber 2021). The topobathymetric data were further corrected
for wetland elevation error using the DEM-correction tool
developed by Muñoz et al. (2019) to minimize vertical
bias errors commonly found in lidar-derived coastal DEMs
(Alizad et al., 2018; Medeiros et al., 2015; Rogers et al.,
2018). The vertical and horizontal accuracies of the DEM
are 50 and 100 cm, respectively, and its vertical datum is
the North American Vertical Datum 1988 (NAVD 88). Land
cover maps are obtained from the 2016 National Land Cover
Database (NLCD) available at https://www.mrlc.gov/ (last
access: 23 September 2021). River discharge and WL records
are obtained from the USGS (https://maps.waterdata.usgs.
gov/mapper/index.html, last access: 23 September 2021)
and NOAA (https://tidesandcurrents.noaa.gov/, last access:
23 September 2021), respectively. In addition, post-flood
high-water marks (HWMs) of Hurricane Irma and Hurri-
cane Matthew are obtained from the USGS Flood Event
Viewer platform (https://stn.wim.usgs.gov/FEV/, last access:
23 September 2021). These high-water marks are used
for calibration and validation of the Savannah model in
Delft3D FM. Specifically, we used the 2021 Delft3D FM
suite package to model the complex interactions between
riverine, estuarine, and intertidal flat hydrodynamics. The
suite package can provide detailed information on water
level, flow rates, and velocity (Delft3D Flexible Mesh Suite,
2021).

3 Methods

We propose a DEM-based LCFM approach for the rapid as-
sessment of flood hazard areas in real time. The proposed
approach consists of two phases (Fig. 2). In Phase 1, a 2D
hydrodynamic model is calibrated based on observed WLs at
USGS gauges and HWMs that were available during Hurri-
cane Matthew in 2017. We then use the calibrated hydrody-
namic model to generate a flood inundation map that serves
as a reference map in the next phase. In addition, for flood
frequency analyses, we perform a block maxima sampling
approach to select the annual WL maxima at the Fort Pulaski
station. The selected samples are then used to estimate WLs
for six return periods of 10-, 50-, 100-, 200-, 500-, and 1000-
year floods. Using these estimated WLs as the main bound-
ary conditions of the hydrodynamic model, we also generate
six flood inundation maps corresponding to these return peri-
ods. In Phase 2, we use a high-resolution DEM together with
the drainage network data to calculate the hydrogeomorphic
index. Subsequently, the flood inundation map generated for
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Figure 1. Map of the study area and mesh boundary of the hydrodynamic model. (a) The geographic location of the study area in the
southeast USA. (b) The mesh boundary used by the hydrodynamic model (blue) for flood inundation mapping as well as the location of
upstream (orange), downstream (yellow), and calibration/validation (green) gauges, and (c) the boundary of Savannah wetlands used as the
case study along with urbanized areas (Esri 2018).

Hurricane Matthew in Phase 1 is used as a reference map
to calibrate the hydrogeomorphic index. Then, the calibrated
index uses the flood inundation maps provided for different
return periods in Phase 1 to develop the operative curves.
These curves form the basis for the rapid assessment of flood
hazard areas for any upcoming coastal flood event in the fu-
ture. To validate the effectiveness and reliability of the devel-
oped operative curves, we use them to identify hazard areas

corresponding to Hurricane Irma, and then we compare their
accuracy with the reference map provided by the hydrody-
namic model for this flood event. In the following sections,
we further explain the hydrodynamic model, flood frequency
analysis, and hydrogeomorphic method.
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Figure 2. Flowchart of the proposed approach for generating hydrogeomorphic threshold operative curves. In Phase 1, the 2D hydrodynamic
model is calibrated and generates the required reference maps for the next phase. In Phase 2, the reference maps are used in conjunction with
the hydrogeomorphic index to generate the operative curves for fast and real-time coastal flood hazard assessment.

3.1 Hydrodynamic model

3.1.1 Model setup

We use the 2019 Delft3D FM suite package (Delft3D Flex-
ible Mesh Suite, 2019) to model the complex riverine, es-
tuarine, and intertidal flat hydrodynamics in the Savannah
River delta and wetland regions. The suite package has been
used with satisfactory results in similar coastal studies char-
acterized by vast wetland regions (Fagherazzi et al., 2014;
Kumbier et al., 2018; Sullivan et al., 2019). Moreover, the
model developed for the Savannah has been used in other
studies to simulate extreme and non-extreme events includ-
ing Hurricane Matthew, which hit the southeast Atlantic
coast in October 2016 (Muñoz et al., 2021, 2020). The 2D
hydrodynamic model comprises nearly 85 km of the Savan-
nah River extending from the Fort Pulaski station (NOAA –
8670870) at the coast up to the Clyo station (USGS –
02198500) and covers an area of 1178 km2 approximately.
The model consists of an unstructured triangular mesh to en-
sure a correct representation of geomorphological settings in-
cluding sinuous and braided river waterways and relatively
narrow tidal inlets. Furthermore, the mesh has a spatially
varying cell size ranging from 1.5 m in the upstream river-
ine area, 10 m over wetland regions, 120 m along the coast,
to up to 1.4 km over the Atlantic Ocean (Fig. 1b).

3.1.2 Model calibration

For calibration purposes, the model was forced with time se-
ries of river flow obtained from the Clyo station as an up-
stream boundary condition (BC); the coastal WL from the
Fort Pulaski station as a downstream BC; and with spatially
varying Manning’s roughness values (n) classified into open-
water, wetland, urban, and riverine areas. The optimal (or cal-
ibrated) set of n values was inferred from 200 model simula-
tions of Hurricane Matthew as this event reported the high-
est peak WL at the Fort Pulaski station since the year 1935
(2.59 m with respect to NAVD 88). Each simulation was
conducted in a high-performance computing system and in-
cluded a 1-month warm-up period and a unique set of n val-
ues for each land cover generated with the Latin hypercube
sampling (LHS) technique (Helton and Davis, 2003). The
advantage of LHS over traditional Monte Carlo approaches
is that the former results in a denser stratification over the
range of each sampled parameter and is therefore superior to
random sampling. LHS leads to more stable results that are
closer to the true probability density function of the parame-
ter and has been used in similar studies (Jafarzadegan et al.,
2021; Muñoz et al., 2022). The range of n values was derived
from pertinent literature and included hydrodynamic model-
ing and open-channel flow studies (Arcement and Schneider,
1989; Chow Ven, 1959; Liu et al., 2019). The set of values
achieving both the lowest root mean square error (RMSE)
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and the highest Kling–Gupta efficiency (KGE) around the
peak WL (e.g., 7 d window) was selected as the optimal one
and further used for coastal flood simulations. KGE is a ro-
bust evaluation metric that accounts for correlation, bias, and
the ratio of variances and can take values between−∞ and 1
(Gupta et al., 2009). An efficiency of 1 indicates a perfect
match between model simulations and observations. In addi-
tion to those metrics, we evaluate the model’s performance
using the Nash–Sutcliffe efficiency (NSE) and mean abso-
lute bias (MAB). NSE measures the relative magnitude of
the error variance of model simulations compared to the vari-
ance of observational data (Nash and Sutcliffe, 1970). NSE
ranges between−∞ and 1, where an efficiency of 1 indicates
a perfect match. MAB quantifies the bias of model simula-
tions with respect to observational data. MAB of 0 suggests
an absence of bias in the simulation. The calibrated n values
used in the Savannah model are open-water (n= 0.027), wet-
land (n= 0.221), urban (n= 0.03), and downstream and up-
stream riverine (n= 0.037 and n= 0.086, respectively) ar-
eas.

3.2 Flood frequency analysis

Preliminary model simulations indicate a negligible influ-
ence of river flow on coastal wetland inundation as com-
pared to storm surge on Wassaw Sound and Wilmington
and Tybee islands (Fig. 1c). This can be explained by the
proximity of the islands to the Atlantic Ocean as well as
freshwater runoff regulation and flood controls by three
large dams located upstream of the Clyo station (USGS –
02198500), namely J. Strom Thurmond, Richard B. Rus-
sell, and Hartwell (Zurqani et al., 2018). In addition, bi-
variate statistical analysis via copulas suggests no significant
correlation between river flow at the Clyo station (USGS –
02198500) and coastal water levels at the Fort Pulaski station
(NOAA – 8670870). The latter was also reported in Ghan-
bari et al. (2021) and Muñoz et al. (2020). Furthermore, our
analysis demonstrated that high river flow does not affect the
inundation area in wetlands. This indicates that flood inun-
dation is highly dominated by coastal forcing as tides prop-
agate into the Savannah River and lead to flow reversal at
upstream gauge stations (see Fig. 1 below). The high prox-
imity of wetlands to the Atlantic Ocean shows that the transi-
tional zone, i.e., the area affected by both coastal and inland
drivers, is located upstream of the Port Wentworth station
(USGS – 02198920) where the Savannah River trifurcates
into the Back River, Middle River, and Front River. Consid-
ering the dominant role of the seawater level in coastal flood-
ing as well as the negligible effect of river discharge on wet-
land inundation from the previous analyses, we can justify
the proposed univariate flood frequency analysis. We, there-
fore, conduct a univariate flood frequency analysis based on
annual block maxima sampling of WLs observed at the Fort
Pulaski station. We use the “allfitdist” tool in MATLAB to
find the best parametric probability distribution fit to the data,

based on the maximum likelihood, Bayesian information cri-
terion (BIC), or Akaike information criterion (AIK).

3.3 Hydrogeomorphic index

Among different hydrogeomorphic features used for flood
hazard mapping, HAND (sometimes also referred to as fea-
ture H ) has been widely used as one of the best indicators
of floodplains. However, due to the weakness of this fea-
ture for proper characterization of floodplains in flat regions
and coastal areas, here we develop a composite hydrogeo-
morphic index that considers H as well as the distance to
the nearest drainage (D). Although the overall performance
of feature D is less than H in most case studies (Degiorgis
et al., 2012; Manfreda et al., 2015a; Samela et al., 2016), fea-
ture D can be a better descriptor of floodplains in highly flat
regions according to the study conducted by Samela et al.
(2017). In another study, Gharari et al. (2011) proposed a
composite index by multiplying both features H and D and
demonstrated that H is a better feature compared to the case
that both features are used for landscape classification. The
main drawback of their proposed index was that they used the
same weights for both features, which results in degrading
the classification performance. To overcome the limitation of
the proposed index and to consider the key role of feature D

in flat areas, we maintain feature D in our composite index
and add different weights to H and D using Eq. (1) as fol-
lows:

IHD =

(
H

Hmax

)w1

×

(
D

Dmax

)w2

, (1)

where w1+w2 = 1.
In Eq. (1), Hmax and Dmax denote the maximum value of

raster H and D used for normalizing the hydrogeomorphic
index, whereas w1 and w2 refer to the weights of feature H

and D, respectively. The conditional equation of w1+w2 = 1
helps lower the computational burden of the calibration pro-
cedure by reducing the number of unknown parameters from
two to one. Figure 3 illustrates an example of calculating
the IHD index with a given set of weights (w1 = 0.6 and
w2 = 0.4) for the study area. Using a high-resolution coastal
DEM (Fig. 3a), raster H and D are calculated (Fig. 3b and c).
Considering a DEM with N cells, the main step is to find
a coordinate matrix that indicates the location of the near-
est stream cell to each grid cell. Knowing this matrix and
the number of cells required to cross the nearest stream cell,
the feature D is calculated. The coordinate matrix can also
be used in conjunction with the DEM to calculate the fea-
ture H . To calculate the IHD index, the weights in Eq. (1)
are calibrated using a reference flood hazard map obtained
from hydrodynamic simulation (e.g., Hurricane Matthew).
We tested 100 combinations of weight parameters (w1 and
w2 = 1−w1), derived from random generation of 100 w1 val-
ues in the range of 0–1, to find the importance of features H

and D, and then finalized the IHD index with known param-
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Figure 3. The required steps for calculating the proposed hydrogeomorphic index. A high-resolution coastal DEM (3 m) is used as the source
data (a) to generate the height above nearest drainage (H ) and the distance to the nearest drainage (D) (b and c, respectively). Using Eq. (1),
the normalized features H and D are multiplied with different weights to generate the IHD index (d).

eters for future flood hazard mapping. We further validated
the weight parameters through the simulations of Hurricane
Irma.

3.4 Binary classifiers for flood hazard mapping

Considering the study area a grid of cells, a binary classifier
assigns a value of zero or 1 to each cell and generates a map
of two different classes. In flood hazard mapping, the com-
mon approach is to define a threshold on a hydrogeomorphic
index (e.g., IHD) and use the following if-then-else rule for
the classification:

f (i)=

{
1 I i

HD ≤ TH

0 I i
HD > TH,

(2)

where f (i) and I i
HD denote the label of flood hazard map

and the proposed hydrogeomorphic index value at cell i, re-
spectively, and TH denotes the threshold of the hydrogeo-
morphic classifier that should be calibrated. The flood hazard
map generated with the binary classifier is compared with a
binary reference hazard map, and the rate of true positives
(rtp), rate of false positives (rfp), and error are calculated as
follows (Jafarzadegan and Merwade, 2017):

rtp=
true positive instances

total positives
, (3)

rfp=
false positive instances

total negatives
, (4)

error= rfp+ (1− rtp). (5)

In binary classification, positive and negative refer to a
value of 1 and zero, respectively. True positive instances are
those positive cells that are correctly predicted by the clas-
sifier, and false positive instances represent those negative
cells that are wrongly classified as positive. The error, reflect-
ing all cells that are wrongly predicted by the classifier, is a
commonly used measure for validating the performance of
binary classifiers for flood hazard mapping. Another useful
performance measure to validate the binary classifier is the
area under the curve (AUC) of the receiver operating charac-
teristic (ROC) graph proposed by Fawcett (2006).

To calibrate the binary classifier, we minimize the er-
ror while searching for the optimum TH value. This means
we use 100 TH values uniformly picked from the range of
Imin

HD and Imax
HD . For each TH value, we use Eq. (2) to generate

a binary hazard map and then compare this map with the ref-
erence map by calculating the error from Eqs. (3)–(5). In this
optimization problem, the reference flood hazard map used
for calculating the error is the key input that should be fur-
ther described. The flood inundation maps generated by the
hydrodynamic model indicate WLs at different cells in dif-
ferent time steps and should be converted to a single binary
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map. A common approach used for inland floods is to find the
maximum inundation area over the entire flooding period and
then assign all cells with zero WL to “dry” or “non-flooded”
and other cells with positive values as “wet” or “flooded”. In
delta estuaries and coastal regions near the ocean, however,
almost all cells can be flooded with small WL values. There-
fore, after finding the maximum inundation over the flooding
period, we use another set of binary labels as “low hazard”
vs. “high hazard” and define the hazard depth cutoff (HDC)
as a threshold used to convert a continuous map of WL to
a binary map with only two labels. Depending on the HDC
used for distinguishing low- from high-hazard regions, the
reference flood map is changed, which results in a different
calibrated TH. In addition to HDC, the intensity of the flood
event shown with the return period also changes the refer-
ence flood hazard map. Therefore, the calibrated parameter
TH is a function of both HDC and T , and the main goal of
this study is to provide operative curves showing the varia-
tion in TH with these two factors. We run the hydrodynamic
model for six different return periods of 10-, 50-, 100-, 200-,
500-, and 1000-year events and then convert the WL maps
to binary maps using 21 HDC values resulting from 0.1 in-
crements in the range of 0–2 m. The binary classification and
calibration of TH are performed for different reference maps
generated from various combinations of T and HDC.

4 Results

A comprehensive calibration and validation of the Savannah
River model is shown in Fig. 4. This step is crucial to en-
sure that the flood hazard maps provided by the model are
reliable enough to be used as the reference of the hydrogeo-
morphic method. We assess the performance of the model by
first comparing simulated and observed WLs at three USGS
stations along the Savannah River (Fig. 1b, green circles).
For convenience, we only present simulated and observed
WLs of Hurricane Matthew and Hurricane Irma at Garden
City (Fig. 4c and d, respectively) located∼ 29.5 km from the
river mouth (Fig. 4a, yellow square). The results of the re-
maining stations are included in Fig. S1 in the Supplement.
RMSE and MAB remain below 30 and 25 cm, whereas KGE
and NSE achieve values above 0.75 and 0.85, respectively,
for the two hurricane events, which is reflective of satisfac-
tory model performance. Overall, the magnitude and timing
of the highest peak WL observed during the hurricanes are
well captured by the Savannah River model. To further evalu-
ate the model performance in coastal flood propagation anal-
ysis, we compare maximum WLs resulting from model sim-
ulations with the USGS HWMs collected in urban and sur-
rounding wetland areas (Fig. 4b). The 1 : 1 line represents a
perfect fit between simulated and observed maximum WLs
and helps visualize overestimation (above the 1 : 1 line) and
underestimation of the model. Similarly, the evaluation met-
rics indicate a satisfactory performance of the model with a

slight over- and underestimation during Hurricane Matthew
and Hurricane Irma. Moreover, the model achieves a rela-
tively small RMSE (< 35 cm).

To generate boundary conditions for coastal flood model-
ing simulations associated with the proposed return periods,
we perform flood frequency analysis of coastal WL at the
Fort Pulaski station (in Fig. 5) located at the mouth of the Sa-
vannah River (Fig. 1b, yellow circle). In this study, we select
the generalized extreme value (GEV) because of its small-
est estimated BIC compared to other parametric distributions
available with the MATLAB allfitdist tool. In addition, we
show the 95 % confidence bounds of the GEV distribution
and fit a non-parametric Weibull distribution to the data for
comparison purposes. Hereinafter, we will use the GEV dis-
tribution to estimate WLs for 10-, 50-, 100-, 200-, 500-, and
1000-year return periods.

After calibrating the Delft3D FM model, we generate daily
flood inundation maps for Hurricane Matthew, determine the
maximum flood extent among all days, and then use an HDC
to convert the maximum inundation map to a binary map
of low- and high-hazard classes. Using 21 different HDCs
ranging from 0 to 2 m, we perform 21 calibrations corre-
sponding to a given reference flood hazard map generated
from a specific HDC value. Figure 6a shows the error and
AUC of calibration corresponding to different HDC values.
As can be seen, increasing the HDC decreases the accuracy
of the hydrogeomorphic method for flood hazard mapping.
Looking into the errors and AUC values reported in the liter-
ature of binary flood hazard mapping studies, we consider
an error of 0.2 and an AUC of 0.9 (dashed lines) as the
limits for distinguishing acceptable models from unaccept-
able ones. The gray region indicates the rejected HDC val-
ues above 1.1 m that result in unacceptable accuracy (e.g.,
error > 0.2 or AUC < 0.9). Figure 6b indicates the optimum
weights calculated from the calibration of the hydrogeomor-
phic method corresponding to different HDC values. The
higher value of w1 compared to w2 demonstrates that feature
H is a more important factor than feature D in representing
the flood hazard areas, and a combination of both features is
the best indicator of floodplains compared to using each fea-
ture individually (w1 = 0 or w2 = 0). Figure 6b also shows
that for the HDC= 0 (wet vs. dry classification), feature D

shows the highest contribution (30 %), while using the high
HDC value of 2 m decreases the contribution of this feature
to almost zero.

To generate the operative curves for future flood events, we
design 36 scenarios that include six HDCs (0, 0.2, 0.4, 0.6,
0.8, 1 m) from the acceptable range of 0–1 m for six different
reference hazard maps, provided by the Delft3D FM model
for return periods of 10, 50, 100, 200, 500, and 1000 years.
Each scenario provides a reference hazard map, so binary
classification is performed to estimate TH corresponding to
each scenario. Figure 7a indicates the error curves for dif-
ferent return period events. For low HDCs, increasing the
magnitude of the flood (higher return period) results in more
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Figure 4. Calibration and validation of the Savannah Delft3D FM model. (a) Location of high-water marks (HWMs) in the Savannah River
delta for Hurricane Matthew (blue triangles) and Hurricane Irma (red circles). (b) Comparison between simulated maximum water levels
(WLs) and HWMs in the Savannah. (c, d) Time series of simulated and observed WLs at the Garden City station for Hurricane Matthew and
Hurricane Irma, respectively.

accuracy of the hydrogeomorphic method. This pattern is re-
versed for high HDCs where a flood event with a 10-year re-
turn period provides the highest accuracy. In general, the gray
region shows that for high HDCs, the performance of the hy-
drogeomorphic method is poor for almost all return periods,
while for low HDCs, all flood events can be accurately used
for flood hazard mapping. Figure 7b illustrates the hydroge-
omorphic threshold operative curves for future flood hazard
mapping. The TH on the y axis is the key value that can be
estimated for each combination of HDC and return period.
Knowing this threshold, Eq. (2) can be used to rapidly esti-
mate the hazard areas for future floods. As expected, a higher
magnitude of flood needs a higher hydrogeomorphic thresh-
old, while increasing HDC (smaller high-hazard areas) re-

quires a smaller threshold for binary classification. The gray
parts of the curves refer to those scenarios that have unac-
ceptable accuracy, so it is recommended to not use HDCs
corresponding to these parts.

Finally, we evaluate the accuracy and effectiveness of the
proposed operative curves by validating their performance
in generating flood hazard areas during Hurricane Irma. The
maximum WL during this flood event was 2.49 m, which cor-
responds to a 223-year flood event according to our flood
frequency analysis (e.g., GEV distribution). For two HDCs
of 0 and 0.6 m, the operative curves suggest the hydrogeo-
morphic thresholds of 0.1 and 0.08, respectively. Using these
thresholds and Eq. (2), the flood hazard maps correspond-
ing to Hurricane Irma can be generated. Figure 8 indicates
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Figure 5. Return water levels (WLs) for the Fort Pulaski station in
the Savannah, GA (NOAA – 8670870). Plotting positions (black
crosses) are derived from the Weibull formula based on annual
block maxima time series (AMAX) and comparable to the general-
ized extreme value (GEV) distribution (blue circles). The 95 % con-
fidence intervals (CIs) for the distribution parameters of the GEV
distribution are shown with a blue-shaded band.

a side-by-side comparison of flood hazard maps generated
by the Delft3D FM model (Fig. 8a and c) and the hydro-
geomorphic threshold operative curves (Fig. 8b and d) for
two different HDCs of 0 (Fig. 8a and b) and 0.6 m (Fig. 8c
and d). For both HDCs, errors (0.152 and 0.186) are less than
a 0.2 limit used for reliable flood hazard mapping. The main
discrepancies are some noisy, scattered low-hazard areas lo-
cated in the east and southeast of the study area. These areas
can reflect the flooded surface depressions (sinks) resulting
from the pluvial impacts of extreme precipitation. Hydrody-
namic models simulate the fluvial and coastal processes that
occur adjacently to rivers and oceans while disregarding the
pluvial impacts. The red circle in the left part of the pan-
els shows a region that the hydrogeomorphic method cannot
properly simulate, especially for higher HDCs. This can be
due to the inability of the hydrogeomorphic method to prop-
erly simulate physical processes. On the other hand, the red
ellipse at the right side of the panels illustrates an urbanized
region where the hydrogeomorphic method properly classi-
fies the area compared to the reference map. Overall, the high
overlap of the flood hazard maps provided by the hydroge-
omorphic method with the reference maps provided by the
hydrodynamic model (error < 0.2) illustrates the reliability
and effectiveness of the proposed hydrogeomorphic method
for flood hazard mapping. Besides, the high efficiency of this
approach for rapid estimation of flood hazard maps (order of
minutes) compared to the long computational time required
for detailed hydrodynamic modeling (order of hours) sug-
gests the proposed hydrogeomorphic method as an alterna-
tive for efficient flood hazard mapping during emergencies.

5 Discussion

This study develops hydrogeomorphic threshold operative
curves for rapid estimation of hazardous areas during emer-
gencies of future coastal floods in deltas and estuaries. The
low errors (< 0.2) of estimated hazard maps for Hurricane
Irma generated by the proposed approach compared to the
reference hydrodynamic model results demonstrate the high
accuracy of the proposed operative curves for future flood
events in this region. According to studies conducted on the
binary classification of hydrogeomorphic features in the lit-
erature, the errors in the best classifiers were mostly in the
range of 0.2–0.3 for inland floods (Degiorgis et al., 2012;
Manfreda et al., 2014). Therefore, given the higher complex-
ity of the terrain and drainage network in deltas, predicting
the hazard maps with errors less than 0.2 (e.g., error of 0.152
for HDC= 0) is a promising achievement. The potential rea-
sons explaining the high accuracy of the proposed binary
classifier for wetlands include the high-resolution DEM used
for mapping (∼ 3 m) and the incorporation of bathymetry
into the DEM. In addition, the flexible structure of the pro-
posed hydrogeomorphic index, with two varying weights
of H and D features, allows for calibrating the index with
the optimum contribution of each feature, which in return re-
sults in the highest accuracy.

The proposed hydrogeomorphic index (IHD) is the primary
data for flood hazard mapping in this study. Thus, the qual-
ity of two main inputs of this index, namely the DEM and
stream network used to calculate features H and D, play a vi-
tal role in the overall accuracy of the proposed approach. To
obtain maximum accuracy, here we used the best available
DEM with the finest spatial resolution of 3 m that includes
the bathymetry data. However, considering the limited ac-
cess to such high-quality DEMs in many areas of the world,
it is recommended to evaluate the sensitivity of the proposed
approach to lower-quality DEMs (e.g., 30 and 90 m DEMs
without bathymetry information) in future studies. Another
piece of research can investigate the sensitivity of the pro-
posed approach to the density of the drainage network used
for calculating the IHD index.

Unlike past studies that used binary classifiers for detect-
ing hazard areas corresponding to past floods or generated
static maps for a specific return period (Degiorgis et al.,
2012; Jafarzadegan et al., 2018; Manfreda et al., 2015b;
Samela et al., 2017), here we propose the hydrogeomorphic
threshold operative curves for real-time flood hazard map-
ping. Considering the rapid occurrence of hurricane-induced
flooding in deltas and estuaries, these curves can be highly
beneficial for emergency responders to provide a preliminary
estimation of hazard areas for an upcoming flood in these re-
gions and to design the appropriate evacuation strategies. In
addition, the proposed operative curves demonstrate the hy-
drogeomorphic threshold variations with HDCs. This feature
of the operative curves gives additional flexibility to decision
makers for estimating the hazard maps based on the HDC
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Figure 6. Calibration of the IHD index for Hurricane Matthew. (a) The variation in performance measures AUC (red) and error (blue) for
different hazard depth cutoff (HDC) values and (b) the optimum weights of the IHD index for different HDC values. The dashed lines show
the maximum error (0.2) and minimum AUC (0.9) that are acceptable for flood hazard mapping. Using these criteria, the gray regions show
that the hydrogeomorphic model cannot provide acceptable results for HDC values higher than 1.1 m.

Figure 7. (a) The errors in flood hazard maps generated by the calibrated hydrogeomorphic method for different return period flood events
and hazard depth cutoff (HDC) values. (b) The hydrogeomorphic threshold operative curves provided for different HDC values. These
operative curves are the major tool for fast flood hazard mapping as, depending on the return period of a future flood event and the HDC
value chosen by the decision maker, the operative curves estimate the hydrogeomorphic threshold. Knowing this threshold, the flood hazard
map will be generated in a few minutes.
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Figure 8. Validation results for Hurricane Irma showing a side-by-side comparison of flood hazard maps generated by the hydrodynamic
model and hydrogeomorphic method for two different hazard depth cutoffs (HDCs): HDC= 0 (a, b) and HDC= 0.6 m (c, d). To generate
the flood hazard maps by the hydrogeomorphic method, the operative curves estimate two hydrogeomorphic thresholds of 0.1 and 0.08 for
HDC= 0 m and HDC= 0.6 m, respectively, and the return period of Hurricane Irma is estimated as a 223-year flood event.

that is considered given the momentary safety issues. For ex-
ample, identifying the hazard map based on HDC < 0.3 is
useful for checking the operability and accessibility of es-
sential facilities and infrastructure, while a hazard map cor-
responding to HDC= 1 indicates those areas that experience
high WLs above 1 m as hazardous areas, with greater poten-
tial for casualties and significant structural damage. Overall,
the hydrogeomorphic threshold operative curves are a func-
tion of both the return period (flood severity) and the HDC
(a decision-making option that controls the definition of high
hazard). Using a similar approach, future studies can pro-
vide these curves for inland floods as well. In addition, due
to the practical benefits of these curves for efficient coastal
flood hazard assessment, the hydrogeomorphic threshold op-
erative curves can be extended to other deltas and estuar-
ies that experience frequent flooding across the USA (e.g.,
Mississippi – Louisiana (LA), Galveston Bay – Texas (TX),
Delaware Bay – Delaware (DE), Chesapeake Bay – Virginia
(VA)) and the world (e.g., Yangtze – China, Brahmaputra –
Bangladesh). To implement this approach, first, a hydrody-
namic model should be set up for the new study area and
generate reference inundation maps for different return peri-
ods. Access to observed water level data (gauges or HWMs)
and flood extent maps from past floods is required to prop-

erly calibrate the hydrodynamic model. Then the IHD index
calculated from a DEM is utilized together with the refer-
ence maps to provide the hydrogeomorphic threshold opera-
tive curves for future floods.

The reference maps used for training the binary classi-
fier are key components for generating reliable results. Since
these reference maps are the outcomes of hydrodynamic
modeling, they are prone to uncertainties stemming from un-
realistic parametrization, imperfect model structure, and er-
roneous forcing. The design floods used as boundary condi-
tions of the hydrodynamic model are estimated from flood
frequency analysis that is prone to uncertainty as well. Here,
we used a bivariate approach that estimates the design flood
based on the water level data. A more comprehensive flood
frequency analysis that accounts for other flood attributes,
such as volume, spatial dependencies, or nonstationarity, can
improve the reliability of flood frequency analysis in future
studies (Brunner et al., 2016; Yan and Moradkhani, 2015;
Bracken et al., 2018). With access to less than 100 years
of data for flood frequency analysis, the extreme return lev-
els (i.e., 500- and 1000-year floods) pose high uncertainties
due to the extrapolation of annual maxima data. This should
warn decision makers to be more cautious about using oper-
ative curves for extreme flood events. For future studies, the
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uncertainty bounds of flood frequency analysis (especially
extrapolations for extreme cases) can be considered in the
modeling. In a real-time scenario, the forecasted WL used
for flood frequency analysis is also prone to uncertainties
originating from imperfect forecasting methods and nonsta-
tionary climate data. In addition, the uncertainty in model
parametrization can be accounted for by running the hydro-
dynamic model for different combinations of optimum pa-
rameters. Model structure uncertainty can be also considered
by using different hydrodynamic models and combining the
results. Finally, probabilistic reference maps together with
uncertainties involved in WL forecasting and flood frequency
analysis can be integrated to develop probabilistic hydroge-
omorphic threshold operative curves in future studies. This
is in line with the report provided for the NOAA National
Weather Service (NWS), showing the NWS stakeholders’
preference for utilizing probabilistic storm surge inundation
maps (NWS (National Weather Service), OAR (Oceanic and
Atmospheric Research), and Eastern Research Group, Inc.,
2013).

Operationally, the Sea, Lake, and Overland Surges from
Hurricanes (SLOSH) model (Jelesnianski et al., 1984) is the
storm surge model currently used by the NWS to perform
storm surge forecasting and create probabilistic flood inunda-
tion maps for real-time tropical storms (Sea, Lake, and Over-
land Surges from Hurricanes (SLOSH), 2022). The feature
of SLOSH that makes it the preferred model of the NWS for
storm surge forecasting and mapping is the model’s compu-
tational efficiency that allows the model to be run as an en-
semble (Forbes et al., 2014). However, SLOSH is just one of
several modeling options for storm surge modeling and map-
ping, each possessing strengths and weaknesses associated
with their simulations. The inclusion of additional models
that can create flood maps of storm surges for a given event
should provide an enhanced understanding of the uncertainty
in inundation at a given location (Teng et al., 2015). How-
ever, the higher computational burden of alternative models,
such as Delft3D FM, tends to preclude their use in real-time
operations and, certainly, their use in generating an ensemble
necessary for probabilistic flood maps. The methodology we
propose in this paper may offer the NWS and other agencies
a means to utilize alternatives to SLOSH for flood inunda-
tion mapping and probabilistic flood inundation mapping on
US coastlines. Models such as Delft3D FM can generate ref-
erence maps to train the binary classifier and build the prob-
abilistic operating curves. The probabilistic operative curves
would account for the major source of uncertainties and pro-
vide a computationally efficient and reliable decision-making
tool for coastal planners and floodplain managers. The op-
erative hydrogeomorphic threshold classifiers proposed for
real-time coastal flood hazard mapping can be used as an
alternative tool for the rapid estimation of hazardous areas
during real-time flood events. In an operational mode, the
water level or meteorological forecasts can be used to esti-
mate the return period of an upcoming coastal flood event,

and the methodology here can utilize this as an input to per-
form LCFM flood inundation mapping both deterministically
and probabilistically.

Another LCFM approach is to train machine learning al-
gorithms on reference inundation maps provided by well-
calibrated hydrodynamic models (Bass and Bedient, 2018).
A benchmark study that compares the performance (accu-
racy and efficiency) of two LCFM methods, including our
proposed DEM-based hydrogeomorphic classifier and the
surrogate machine-learning-based algorithm and the SLOSH
model, is highly recommended for future studies.

6 Summary and conclusions

In this study, we proposed binary classifiers for efficient flood
hazard mapping in deltas and estuaries. HAND, typically
used for modeling inland floods, is modified for flat regions
along the coastline, and a new hydrogeomorphic index (IHD)
that comprises both HAND and the distance to the nearest
drainage was developed. The DEM used as the base of these
binary classifiers is a 3 m lidar that includes bathymetric in-
formation. This is another improvement compared to pre-
vious DEM-based classifiers that commonly used 10–30 m
DEMs without bathymetric data. The IHD index has two un-
known weights that show the contribution of both HAND
and feature D. We simulated Hurricane Matthew with the
Delft3D FM model and used the results as a reference flood
hazard map to calibrate the IHD index. Using Delft3D FM
again, we generated six flood hazard maps corresponding to
different return periods and employed these maps as a ref-
erence to generate the hydrogeomorphic threshold operative
curves. Finally, we validated the proposed operative curves
for reliable and efficient flood hazard mapping by compar-
ing the flood hazard maps generated for Hurricane Irma with
the proposed curves and the Delft3D FM model. The high
accuracy of validation results (< 0.2 error) together with the
computational efficiency of this approach for real-time flood
hazard mapping suggests the proposed operative curves as a
practical decision-making tool for on-time and reliable esti-
mation of hazard areas in estuaries.
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