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Abstract. This paper presents a phenomenological frame-
work for forecasting the area-integrated fire radiative power
from wildfires. In the method, a region of interest is cov-
ered with a regular grid, whose cells are uniquely and inde-
pendently parameterized with regard to the fire intensity ac-
cording to (i) the fire incidence history, (ii) the retrospective
meteorological information, and (iii) remotely sensed high-
temporal-resolution fire radiative power taken together with
(iv) consistent cloud mask data. The parameterization is re-
alized by fitting the predetermined functions for diurnal and
annual profiles of fire radiative power to the remote-sensing
observations. After the parametrization, the input for the fire
radiative power forecast is the meteorological data alone,
i.e. the weather forecast. The method is tested retrospectively
for south-central African savannah areas with the grid cell
size of 1.5°× 1.5°. The input data included ECMWF ERA5
meteorological reanalysis and SEVIRI/MSG (Spinning En-
hanced Visible and Infra-Red Imager on board Meteosat Sec-
ond Generation) fire radiative power and cloud mask data.
It has been found that in the areas with a large number of
wildfires regularly ignited on a daily basis during dry seasons
from year to year, the temporal fire radiative power evolution
is quite predictable, whereas the areas with irregular fire be-
haviour, predictability was low. The predictive power of the
method is demonstrated by comparing the predicted fire ra-
diative power patterns and fire radiative energy values against
the corresponding remote-sensing observations. The current
method showed good skills for the considered African re-
gions and was useful in understanding the challenges in pre-
dicting the wildfires in a more general case.

1 Introduction

Wildfires occur all around the world and can cause
widespread destruction, result in casualties, and inflict severe
economic and social damage on communities.

They can also have consequences on ecosystems by affect-
ing vegetation and soil (Bond and Midgley, 2012; Seo and
Kim, 2019; Lasslop et al., 2020), the surface energy budget
by changing the radiative characteristics of the atmosphere
and surface (Li et al., 2017; Huang et al., 2021), and the cli-
mate system by altering atmospheric chemistry and meteo-
rology.

Moreover, their emissions can have adverse impacts on
the environment and health. These effects are expected to
worsen in the future. An upcoming rise in fire activity due to
the warming climate is anticipated in Pechony and Shindell
(2010), who used climate and fire modelling coupled with es-
timates of the changes in land cover and population to project
future fires. Global simulations over 1250 years (850–2100)
suggested that precipitation amount was the main factor con-
trolling the fire activity in pre-industrial times, changing to
an anthropogenic stress controlling the fires since the 18th
century, with temperature being the major factor in the fu-
ture.

Wildfires emit several hundreds of different chemicals
(Naeher et al., 2007) into the atmosphere, primarily car-
bon dioxide (CO2) among other greenhouse gases and car-
bonaceous particulate matter among other aerosols. Atmo-
spheric CO2 and black carbon (BC) are considered to be the
two major contributors to global warming (Jacobson, 2001).
The biggest global BC emission contributor is open biomass
burning with a share of about one-third (36 %) of the total
(Sims et al., 2015). Besides the heating effect of BC on the at-
mosphere, deposited BC may also have albedo-reducing and
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melting effects on snow and ice, which reduce the overall re-
flectance of sunlight from Earth, further accelerating global
warming.

When inhaled, wildfire emissions may cause very harm-
ful health effects and even premature deaths (Johnston et al.,
2012; Kollanus et al., 2017). This mortality is attributed to
the exposure of fine particulate matter (PM2.5), referring to
particles with diameters of less than 2.5 µm associated with
respiratory and cardiovascular problems (Pope et al., 2006).
In Johnston et al. (2012) it is estimated that during the pe-
riod 1997–2006, an average of 339 000 people died each year
globally as a result of wildfire smoke exposure. About four-
fifths of the deaths were associated with chronic exposure
and one-fifth to sporadic exposure. Mortality is much higher
in poorer countries, especially in sub-Saharan Africa, where
nearly half (46.3 %) of the cases occurred, and Southeast
Asia, which accounted for about a third (32.4 %) of the cases.
For comparison, the overall outdoor air pollution is assumed
to cause approximately 3 to 4 million premature deaths a year
worldwide (Lelieveld et al., 2015; WHO, 2018), of which
wildfires thus account for about 1/10.

Extensive emissions of wildfires can significantly worsen
the air quality over the surrounding area for days and travel
long distances polluting wide areas around the world. Once
the fire sources and their properties are known, modern
air quality prediction models can assess the dispersion of
fire pollutant concentrations in the air and depositions on
the ground. For example, one such simulation tool is com-
posed of the FMI’s IS4FIRES fire information system (http:
//is4fires.fmi.fi, last access: April 2022, Sofiev et al., 2009;
Soares et al., 2015) combined with the SILAM chemistry
transport air quality model (http://silam.fmi.fi, last access:
April 2022, Sofiev et al., 2015; Toll et al., 2015; Kollanus
et al., 2017), which is able to provide a global assessment
of near-real-time and retrospective wildfires emissions and
smoke dispersion. The simulations are based on the remotely
sensed information about the location of the fire and its ra-
diative power (FRP). Globally, only a fraction of fires are
observed by satellites. Many of them are masked by clouds
or are simply too small to be detected even by orbital satel-
lites. In addition, the duration of a large fraction of fires is
too short to be detected by orbital satellites due to their infre-
quent overpasses, and some may be completely outside the
coverage of geostationary satellites. More locally, however,
it is occasionally (if not masked by clouds) possible to ob-
tain temporally complete FRP data on detectable fires, which
can only be done from geostationary orbit. To date, no suc-
cessful predictive model has been developed for short-term
forecasting of the time-dependent occurrence of fires with a
reasonable spatial resolution.

The most likely cause of ignition of wildfires is related to
human activity in one way or another. It is estimated that as
many as 90 % of all wildfires over the globe may be human-
induced (Levine et al., 1999; Lobert et al., 1999). The causes
vary, with agriculture and forest industry practices, as well

as recreational population activities and carelessness, being
among the most important reasons. Other causes of ignition
are natural, with lightning being by far the most important.
Apart from ignition, anthropogenic factors contribute greatly
to the suppression and prevention of wildfires. The risk and
severity of fires increase with drought, temperature, and wind
speed. Wildfire occurrence has a stochastic nature, and indi-
vidual fires are basically unpredictable. However, the pos-
sibilities of predicting the total wildfire intensity over some
areas may appear if the areas are large enough.

Current short-term fire forecasting efforts largely rely on
fire indices, which are commonly used to predict fire dan-
ger for warning purposes. Several fire indices have been
developed and are in use, e.g. the Finnish Forest Fire In-
dex (FFI) (Venäläinen and Heikinheimo, 2003; Vajda et al.,
2014), the Australian Forest Fire Danger Index (FFDI)
(McArthur, 1967), and the Canadian Fire Weather Index
(FWI) (van Wagner, 1987), but many others also exist. Fire
indices, however, do not really predict incidents of fire but
rather the susceptibility to it – in other words, they predict
how favourable weather conditions are for fires. Although
weather anticipates fire danger and affects human activities,
it does not predict wildfire ignition events, which are ulti-
mately random in origin. There is no fire prediction model
that would successfully predict, for example, when, where,
and how many fires are likely to break out in an area on a
given day and how they evolve. Several works have aimed to
forecast wildfires more specifically than what fire indices do,
e.g. a remotely sensed FRP combined with a FWI-based fire
emission prediction method (Di Giuseppe et al., 2017, 2018)
and a machine learning approach to predict lightning-caused
wildfires (Coughlan et al., 2021).

With no fire prediction model at hand, emission forecasts
are typically based on the persistence of the current state
by keeping the most recent fires constant for a forecasting
period of a few days. Such a method is used , for exam-
ple, in the Global Fire Assimilation System (GFAS) of the
Copernicus Atmosphere Monitoring Service (CAMS) and
the IS4FRIES-SILAM system, which both employ FRP ob-
servations by MODIS. As an improvement to the persistence
approach, this work aims to predict regional FRP at each mo-
ment of time for subsequent use in air quality forecasts. The
high temporal resolution of the FRP predictions raises the
problem of parameterization of the FRP diurnal cycle, which
is explicitly included in the model and identified during the
model’s fitting to retrospective data. Therefore, this work is
based on time-wise comparatively complete FRP informa-
tion from SEVIRI, which is retrieved at a temporal resolution
of 15 min.

In this paper, the quantity of interest is the fire radiative
power (FRP) emitted by the fires over some area of substan-
tial size. The total FRP for the area is predicted as a time
series dependent on the time of the day and day of the year.
The goal is to construct a model which can predict FRP using
only weather forecast (or reanalysis for retrospective studies)
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as an input. For testing purposes, the region of south-central
Africa was chosen as a prominent example of a fire-rich area
regularly observed by the SEVIRI instrument from a geosta-
tionary orbit. The method is described in detail, and the pa-
rameterizations for three different areas are given as an exam-
ple. The forecasts can be converted to emissions to be used
in air quality simulations to forecast the pollution transport.
The method is easily reproducible and based on a few simple
principles and publicly available data.

In this work, we developed a method of time-dependent
forecasting for wildfires under certain conditions and high-
lighted the challenges of wildfire forecasting in general. The
remainder of the paper is organized as follows. In Sect. 2, the
input datasets are described. Section 3 introduces the formal-
ism of the prediction method. Finally, Sect. 4 gives the results
of the prediction test on fires in African savannahs and Iberia,
discusses the findings, and summarizes the conclusions.

2 Input data

The results are based on FRP and cloud mask data from the
Spinning Enhanced Visible and Infra-Red Imager (SEVIRI)
remote-sensing instrument and ERA5 meteorological reanal-
ysis data provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF). The SEVIRI instru-
ment is on board of the Meteosat Second Generation (MSG)
geostationary satellite. The MSG satellite is positioned in
geostationary orbit above the South Atlantic Ocean off the
west coast of Africa at the point where the Equator and
prime meridian intersect. SEVIRI has a fixed location with
respect to the earth’s surface with a limited global coverage
of about 43 %. The full Earth’s disc scan of SEVIRI covers
practically all of Africa and a substantial part of Europe. The
earth’s disc is observed by SEVIRI 96 times in a 24 h pe-
riod with a nominal spatial resolution of about 3 km× 3 km
at nadir expanding towards the edge of the disc scan reach-
ing up to about a 10-fold size of rectangular shape at the
edge. The SEVIRI datasets used are the Meteosat SEVIRI
FRP-PIXEL and cloud mask products with a 15 min tem-
poral resolution. The meteorological variables are retrieved
from ERA5 hourly 0.5°× 0.5° data.

A supplementary FRP dataset from Moderate Resolution
Imaging Spectroradiometer (MODIS) instruments is used for
a consistency check for SEVIRI FRP data. Due to the lack of
temporal resolution in the MODIS data, the checks are lim-
ited to daily values. The two MODIS instruments on board
NASA’s Aqua and Terra orbital satellites can together po-
tentially observe nearly every location on the Earth’s sur-
face at least four times within a 24 h period. The MODIS
instruments have a nominal spatial resolution of about 1 km
squared at nadir expanding towards the far edges of the scan
with the cross-track width of about 2330 km reaching up to
about a 10-fold size of rectangular shape at the edges. The
spatial resolution of each observation is determined by the

viewing angle of the instrument. The MODIS datasets used
are Collection 6 Level 2 MOD14 (Terra) and MYD14 (Aqua)
active fire products.

3 Constructing the fire predicting model

This section gives the components to parametrize an area to
predict its FRP. The parametrization requires high-temporal-
resolution FRP, cloud mask, and meteorological data.

In practice it is not possible to predict the ignition time
and location of a single random wildfire, not to mention its
duration and the extent to which it spreads before it ends or
even exists. The prediction attempts, accordingly, can only
make sense with much less precise time and space specifi-
cations. For this reason, the region of interest is split into
smaller equal-sized and evenly spaced areas, and FRP, re-
garding it as a time-dependent quantity, is a sum of all FRPs
of all fires occurring over the entire area. Therefore, the cost
of the temporal resolution of the FRP forecasting is that it is
done to the detriment of the individuality of fires.

Apart from specific weather conditions, each area has its
own unique FRP behaviour arising from a non-trivial inter-
play between a combination of area-wise factors, such as cli-
mate, vegetation, human behaviour, and so forth. Since the
interest lies only in the area-wise FRP, the effects of these
factors do not need to be disentangled and resolved. They are
already automatically encoded in the FRP characteristics of
each area.

The predictions are essentially based on parameterization,
in which the maximum FRP value of the area is captured
for each applicable day of the year. Since satellite infrared
sensors cannot observe fires through clouds, and a big part
of the globe is constantly covered by clouds, FRP data are
always checked against consistent cloud mask data. Based
on a cloud property analysis by King et al. (2013), on aver-
age, only 45 % of the land areas of the globe are visible for
remote-sensing instruments. To get sensible results, it is es-
sential that the entire area of interest is free from clouds at
the time FRP peaks, which, of course, excludes several days
from being included in the parametrization. Those days nat-
urally vary depending on area and year.

The FRP prediction enables us to forecast emissions from
wildfires several days in advance so that they can be imple-
mented in air quality forecasting simulations. The temporal
FRP can be converted to an emission production rate. It is
demonstrated in Wooster et al. (2005) that FRP is directly
proportional to the biomass burning rate (i.e. the time deriva-
tive of the mass of the burning biomass fuel), so the knowl-
edge of its temporal evolution can be used to determine the
amount of emissions produced at any given moment of time.
The temporal FRP and emission rate are directly related to
each other by a land-use-type-specific emission coefficient.
An extensive set of emission coefficient values is given, for
example, in Akagi et al. (2011).
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This model goes beyond any time period averages by pre-
dicting FRP with proper time-dependence. In order to ob-
tain as precise predictions as possible, the model aims to re-
alistically imitate the date, weather, and area location- and
size-dependent diurnal FRP patterns time-dependently. The
predictions are made without dependencies on other areas
or previous days. The FRP of each area is predicted indi-
vidually based on a daily weather forecast or archived me-
teorological data in the cases of future predictions and past
reconstructions, respectively. The model explicitly accounts
for the cloud mask, thus filtering out the incorrect zero-FRP
values by using only cloud-free days in the model training. If
the cloud mask is ignored, each regional FRP value obtained
from observations represents simply an unknown arbitrary
fraction of the actual value, providing erroneous information
for model training.

3.1 Formalism

Based on the analysis of the SEVIRI data used in this work
(see also, for example, Roberts and Wooster, 2008; Roberts
et al., 2009; Sofiev et al., 2013), it is expected that wildfires
are not only seasonal but also that their occurrence is greater
during the day than night-time presumably due to higher hu-
man activity and better weather conditions. Hence the basic
assumption of the formalism is that regularly ignited wild-
fires, and presumably all wildfires in general, tend to follow
a double periodicity in which their diurnal cycles are periodi-
cally varying within and with respect to the annual one. In the
formalism, the area-total FRP of regularly ignited wildfires is
expected to obey the cycles in accordance with the day of the
year and time of the day and is additionally modulated by the
weather condition of the area.

The model output is the time-resolved FRP emitted from
an area represented by an FRP function composed of three
multiplicative terms, as follows:

W
(
4n;n, t | ϕ,φr,φd

)
=M

(
4n;n | ϕ

)
Wr (n | φr)Wd (t | φd) , (1)

where the terms represent the meteorological impact, refer-
ence shape curve, and daily shape curve components. The
subindex r refers to the reference and d to the daily time. As
for the variables, n is the Julian day of the year, t is the lo-
cal time of the day, and 4n denotes a set of meteorological
variables, and the overline on it symbolizes an average over
a time period and a spatial area. Lastly, ϕ, φr, and φd denote
sets of fitting parameters of the terms, which are to be de-
termined by fitting the predictions to the total FRP observed
over the area. The model has only one dimension – time –
and is made for application within a grid, in which each cell
is treated separately. The indices of the grid cell in Eq. (1)
are omitted for the sake of simplicity.

Each area (grid cell) has its own unique FRP reference
curve with an anticipated bell-like shape, which is approx-
imately fitted to monthly average maximum FRP values for
the preceding year(s) characterized by φr. The curve is given

by the FRP reference component Wr(n | φr), which works as
a Julian-day-dependent coefficient of Eq. (1) that sets reason-
able estimates for average daily FRP maxima.

The other coefficient of Eq. (1) is the Julian-day- and
weather-dependent component, which is designed to work so
that when the weather conditions for fires are better than av-
erage, it increases. In general, the warmer, drier, and windier
it is, the more fires are expected to show up. Fire danger is
customarily indicated by fire indices: the bigger the index
value, the more fires expected. Fire indices are constructed
to represent a reasonable estimate for fire danger in terms of
the cooperative action between relevant meteorological vari-
ables. A fire index is also harnessed for use in the meteoro-
logical component, which is simply taken as

M(4n;n | ϕ)=
I (4n;n)

I(n | ϕ)
, (2)

where the numerator is a fire index appropriate to the area
(or something analogous to it), and the denominator repre-
sents a function that is an average or a best-fit regression line
through its values over a fire season. The input variable set
4n is given by the weather forecast of the coming days, and
the parameter set ϕ is determined by the meteorological data
of the past. Combined together, the reference and the meteo-
rological components of the Eq. (1) determine the peak value
for the time-dependent shape component, which is designed
to produce a bell-like curve modulated by the peak value.
Since both the reference and shape components are expected
to have bell-like shapes, they are constructed from the com-
bination of the logistic growth and decay functions. Specific
mathematical representation can vary; the choice of logistic
functions in this work is largely driven by convenience and
comparative simplicity of the expressions. The two compo-
nents may hence be given by

Wi(τi | φi)=
∑
ε=±

ωεi2
(
ε
(
τm
i − τi

))
1+ ηεi exp

[
εκεi

(
τ εi − τi

)] , (3)

where i = r or d, τr = n, τd = t , ωεd = 1, and 2
(
ε
(
τm
i − τi

))
are the Heaviside step functions which confine the growth
“+” and decay “−” terms to their own sub-domains. One of
the two terms in the sum is an s curve and the other one a mir-
ror reflected s curve, and together they form either an asym-
metric or symmetric bell curve by facing each other at the
peak value. The parameter sets φi =

{
ω±i ,η

±

i ,κ
±

i ,τ
±

i ,τ
m
i

}
adjust the shapes and positions of the curves. The parame-
ters nm and tm are the moments of the yearly and daily FRP
maxima, respectively. The fit parameter values ω±r are the
FRP maximum values of the reference curve components.
Notice that Wr(n | φr) has the dimension of power, whereas
M(4n;n | ϕ) and Wd(t | φd) are dimensionless.

A year’s (or at least a dry season’s) worth of data on
weather, FRP, and cloud mask are needed to determine ϕ and
φr and a day’s worth to determine φd.
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4 Results and discussion

This section presents the performance of the method for reg-
ularly ignited wildfires in grasslands of south-central Africa.
We also discuss the challenges of predicting irregularly ig-
nited wildfires by using the Iberian Peninsula as an example.

4.1 Test on regularly ignited fires in African savannahs

The method was tested in several different areas in south-
central Africa, where the fires are quite regular. The param-
eterization for three different areas are given as an example.
Because of the similarity of the results, only the results for
one of the areas are displayed in more detail than the others.
The SEVIRI FRP observations and the corresponding pre-
dictions are converted to the fire radiative energies (FREs) by
temporal integration. These results are illustrated in the form
of a correlation map of the association between observed and
predicted FREs.

The neighbourhood of south-central Africa was chosen as
the test site due to high incidence of fires in the region. Sa-
vannah fires in sub-Saharan Africa in the Southern Hemi-
sphere contribute nearly a third (29 %) of global fire emis-
sions (Russell-Smith et al., 2021). During the dry seasons,
lasting roughly from spring to autumn, a big part of south-
central Africa is filled with fires which are quite evenly dis-
tributed throughout a region about one-third the size of Eu-
rope. Most of the fires are presumably agricultural grass fires.
According to SEVIRI data, the fires in the region cyclically
maximize at daytime and minimize at night-time. During
night-times, fires typically disappear from the view, either
disappearing, becoming too small for satellite instruments to
notice, or getting masked by night-time fog.

Since the fires in the test areas are assumed to be grassland
fires, the numerator of Eq. (2) is taken here as an adaptation
of the Grassland Fire Danger Index (GFDI) (Purton, 1982),
with the overall multiplication factor and the curing contri-
bution stripped out:

I (4n;n)= 1.03T n0.80
√
%n3.38

√
un , (4)

where surface air temperature T is in units of degrees Celsius
(°C), surface relative humidity % in percent (%), and wind
speed u in metres per second (m s−1) given at a height of
10 m above the ground level in the open. However, obviously,
only the variable values without dimensions are to be inserted
into Eq. (4). The set of meteorological variables is denoted by
4n =

{
T n,%n,un

}
, and the overline signifies an average over

the approximate daylight hours and the area. The effect of
grass curing is automatically incorporated into the reference
curve, and any multiplicative coefficient of Eq. (4) would nat-
urally cancel out in the ratio of Eq. (2). The denominator of
Eq. (2) is taken as the line of monthly averages of the adap-
tation of the GFDI Eq. (4):

I (n | ϕ)= an+ b, (5)

where ϕ = {a,b}. The fit line represents the trend of the
weather conditions favourable for fires over the course of the
area-specific dry season. The first few dry-season monthly
averages define the trend.

The African savannah terrain was chosen as the test sub-
ject because the fires in it during the dry season come in great
quantities on a daily basis. The chosen region is confined by
the geographic coordinates [1.5, 19.5]° S and [13.5, 33.0]° E,
which represent the centre points of 182 evenly spaced areas
of size 1.5°× 1.5° (Fig. 4a). The dry season of the region is
automatically included in the data used for the model fitting.

The model was parameterized using the data from 2010,
and the model is applied and evaluated against the data
for the fire season of 2018. The selection of distant years
for training and evaluation demonstrates the stability of the
method, as well as highlights the persistence of the regional
fire ignition patterns, which did not change over almost a
decade.

We present three examples of the model application for
the three areas sized 1.5°× 1.5° located in northern Angola,
the southern Democratic Republic of the Congo, and south-
ern Angola, with the centre points at 9.00° S and 18.00° E,
7.50° S and 21.00° E, and 13.50° S and 16.50° E, respec-
tively.

Figure 1 illustrates the parametrizations and prediction re-
sults of the areas. The left-hand panels show the fire index
Eq. (4) values arising from the ERA5 meteorological data.
The straight green line in the panels defines the weather-
condition-dependent trend of the fire severity. It acts as the
denominator of the meteorological component Eq. (2) fitted
throughout monthly averages from May to August (red dots).
The right-hand panels show the values for the FRP maxima
observed by SEVIRI and (the colour bar) the value of the
fire index. The blue line in the panels is the reference FRP
curve Wr(n | φr) of the area. It is also made to pass approx-
imately through the monthly averages represented (red dots)
apart from the maximum value. The maximum depicts an
average of a few neighbouring values around the highest ob-
served value in order to highlight the FRP maximum of the
reference curve. Each point on the scatter plots of the panels
in the figure represents a value of a cloudless or nearly cloud-
less day. The maximum cloud cover of each area is limited
to 13.33 pixels per area of 0.5°×0.5°, i.e. of about 5 % tops.
In order to simplify and speed up the calculation procedure,
the cloud mask is checked only once at 13:30 LT (local time),
which is more or less (within a window of plus or minus 2 h)
the moment of the maximum daily FRP. The applicability of
this simplification was tested more rigorously by checking
the cloud mask every 15 min throughout the daylight hours.
It did not have any significant effect on the selection of the
cloudless or nearly cloudless days. The data used in the pan-
els are for the year 2010. The values of the parameters corre-
sponding to the curves in Fig. 1 are given in Table 1.

Almost without exception, FRP of each area on each day
can be (and is) characterized by a bell-shaped curve start-
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Figure 1. Training dataset. Fire index values and reference curves between April and November in 2010 for the areas located at 9.00° S and
18.00° E, 7.50° S and 21.00° E, and 13.50° S and 16.50° E from top to bottom row, respectively. The red dots denote monthly-mean values.
A more detailed description of the figure is in the text.

ing in the morning time, peaking somewhere around early
afternoon, and ending in the early evening. The feature is
seen in Fig. 2. These common characteristics may vary a lit-
tle bit from area to area, as can be seen from t±,m values in
Table 1. Figure 2 shows the predicted and observed diurnal
FRP patterns for every cloudless (or nearly so) day within
about 5 months of the dry season in 2018 for the area at
7.50° S, 21.00° E. The solid blue curves are the predictions
given by Eq. (1) based on the parametrization made for 2010,
and the violet dots are the SEVIRI observations for 2018.
Note that the cloudless days are used only for evaluation pur-
poses. When it comes to actual forecasting, it is irrelevant
whether or not the day is cloudless as long as it is rainless.
As can be seen in Fig. 2, in most cases, the correspondence
between the predictions and observations is quite good, even
though 8-year-old data were used for the parameterization. In
the worst cases, the peak amplitudes differ from each other
but in the majority of cases still stay within a factor of 2.

In order to assess the predictive power of the method,
comparisons are made between observed and predicted daily
FREs (given by the time integral of temporal FRP over the
period of a day) over the course of the dry season. The di-
urnal FRP observations are integrated numerically by using
Simpson’s rule, and the predicted diurnal FRP predictions are
calculated by an analytical integration. The accumulated en-
ergy within the time interval [ti, tf ] is given by the temporal

integral of Eq. (1), which can readily be written analytically
by exploiting the result

tf∫
ti

dtWd (t | φd)=

∑
ε=±

ε

κεd
2
(
ε
(
tm− t

))
ln
ηεd+ exp

[
εκεd (t − t

ε)
]

ηεd+ exp
[
εκεd (t

m− tε)
] ∣∣∣∣tf
ti

. (6)

The definite integral in Eq. (6) has three different solutions
depending on the values of the integration limits. In the re-
sults, the solution that arises from the integral that crosses
both the ascending and descending sides of a bell-shaped
curve is used every time.

The scatter plot of Fig. 3 illustrates the correlation between
the observed and predicted FREs of Fig. 2. For example, the
three areas denoted by 1–3 in Table 1 have the r values of
0.89, 0.79, and 0.75, respectively. The map of Fig. 4 sums up
the respective FRE correlations of the areas which meet the
conditions set out in the text. Note that FRE represents the
diurnal energy of fires, which is a time-independent quan-
tity and is therefore independent of how the corresponding
FRP is located on the time axis. In most cases the r value
exceeds 0.6, which indicates a moderate to very strong cor-
relation between observations and predictions and that the
method possesses some true predictive power. Areas where
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Figure 2. Test dataset. The solid dark blue lines are the predicted diurnal FRP curves, and the violet dots are the observed diurnal FRP of
the area at 7.50° S, 21.00° E in 2018. The additional square points represent MODIS observations: the light blue ones are for Aqua and the
brown ones for Terra. The horizontal axis is in the 24 h clock format and represents the local time at the centre point of the area. The date
(day and month) is displayed on the left in each sub-figure.

the observed total seasonal FRE in the prediction year 2018
is less than 1 PJ are omitted because of anticipated low and/or
irregular fire intensity and thus low predictability. Out of the
total of 182 areas, 106 are included areas concentrated in the
centre of the region, and the other 76 are excluded ones lo-
cated at the periphery of the fire-prone region. The ratio of
the sums of observed and predicted fire seasonal FREs over
all 106 areas depicted in Fig. 4b is 1.39; i.e. the model over-
predicts the FRE by 39 %. Some part of the over-prediction
may be justified. In many cases, the observed FRP values
are relatively lower on Sundays than on any other day of the
week, which presumably corresponds to the lower agricul-
ture activity and, consequently, the ignition intensity during
the weekends. Also, the smoke from fires may mask them, to
some extent, and hence reduce the observed FRP. Finally, the

smallest predicted fires may be below the SEVIRI detection
limit.

A comparison with MODIS generally confirmed the con-
clusions. With the better spatial resolution and lower detec-
tion limit, MODIS FRPs were predominantly consistent with
those of SEVIRI, as can be seen in Fig. 2. MODIS satellites
Aqua and Terra overpass the area on a daily basis at the same
time each day. Aqua typically observes the area around noon
and midnight and Terra in the morning and evening. How-
ever, the periods of high fire intensity are quite narrow in the
considered areas, which practically leaves only the mid-day
Aqua overpass as the main source of information. For ex-
ample, in Fig. 2, the time interval between two subsequent
MODIS observations is considerably longer than the charac-
teristic duration of the fire in the area. Such short fires would
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Table 1. Values for the parameter sets ϕ, φr, and φd given for three
different areas employed in Eq. (1). The column names, areas 1–3,
correspond, respectively, to their centre-point locations at 9.00° S
and 18.00° E, 7.50° S and 21.00° E, and 13.50° S and 16.50° E.

Parameter Area 1 Area 2 Area 3 Unit

ϕ : a 0.024 0.027 0.039 d−1

b −0.183 −0.419 −2.846 1

φr : ω+r 12.3 12.5 5.5 GW
ω−r 14.4 15.8 4.9 GW
η+r 100 100 100 1
η−r 100 100 100 1
κ+r 0.081 0.181 0.137 d−1

κ−r 0.102 0.046 0.110 d−1

n+ 92 115 142 d
n− 282 298 301 d
nm 214 169 193 d

φd : ω+d 1 1 1 1
ω−d 1 1 1 1
η+d 100 100 100 1
η−d 100 100 100 1
κ+d 0.025 0.025 0.025 min−1

κ−d 0.025 0.025 0.025 min−1

t+ 500 500 550 min
t− 1080 1080 1150 min
tm 790 790 850 min

pose a general problem for low-orbit satellites also in other
parts of the globe.

4.2 Irregularly ignited fires in an area of the Iberian
Peninsula

With irregularly ignited wildfires, such as forest fires and
other wildfires started unintentionally or otherwise for no
good reason, it is more difficult to make reasonable day-
by-day predictions. That is because such fires exhibit low
fire density, and even if the weather conditions for fires are
favourable, they do not necessarily occur within a specified
area. The problem of predicting the fire ignitions becomes
dominant, unlike in the above-considered regions in Africa,
where the fire ignition is a daily routine due to specific
agricultural practices. For regions with irregular fires, wider
spatial and longer temporal averaging might be needed to
achieve some predictive power. On the downside, the reduc-
tion in spatio-temporal resolution reduces the quality of pre-
dictions, which may not be sufficient for reasonable-quality
emission predictions. As an illustration of the arising diffi-
culties, the current prediction model was parameterized and

Figure 3. Predicted vs. observed diurnal FRE values (blue dots)
arising from the predicted and SEVIRI-observed FRPs displayed in
Fig. 2. The straight red line is the regression lineEpre = 0.78Eobs+
37.74 TJ.

applied to forest fires considering almost the entire Iberian
Peninsula as a single fire-prone area.

Figure 5 shows FRP maximum values of two subsequent
years, 2017 and 2018, and their monthly averages emitted
by nearly the whole Iberian Peninsula. The Forest Fire Dan-
ger Index (FFDI, Mark 5) (Noble et al., 1980) with the given
drought factor accompanied by the Keetch–Byram drought
index (KBDI) (Keetch and Byram, 1968), with the correc-
tion given in Alexander (1990), for the soil dryness is used
as a reference for the incidence of wildfires in the area. The
FFDI uses meteorological variables of air temperature, rela-
tive humidity, wind speed, and precipitation.

A comparison between the two panels of the figure shows
the essence of the issue: the fires are not confined to a specific
period of time but instead follow the complicated combina-
tion of short-term (days) and long-term (months) weather de-
velopments and human activities. The FFDI does not corre-
late well with the FRP strength between the 2 years, which is
clearly seen especially around August when both years have
several comparable values, with a wide range of values for
2017 and zeros for 2018. For such a fire pattern, the model
developed above is too restrictive. One reason for this is that
the method relies on the regular daily fire ignition, whereas
forest fires are ignited sporadically. Another reason is that the
forest fires do not exhibit as clear cycles throughout the years
as the savannah fires in Africa. Moreover, extreme weather
phenomena like powerful storms may further complicate the
pattern. An example of this can be seen in Fig. 5a, in which
the strong FRP peak in mid-October 2017 represents Iberian
forest fires aggravated by high winds of tropical storm Ophe-
lia as it passed by off the coast of Portugal. Especially on the
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Figure 4. Correlation map between observed and predicted FREs of areas whose dry season is between April and November. In the r values
the zero before the decimal point is omitted. The shaded rectangle on the map of Africa in (a) encloses the geographic test region spanned
by the geographic coordinates [1.5, 19.5]° S and [13.5, 33.0]° E. Panel (b) illustrates a magnification of the test region, which contains all the
1.5°×1.5° sized and evenly distributed areas in which the sum of the observed FRE values of the days that are unmasked by clouds over the
fire season exceeds 1 PJ.

Figure 5. Panel (a) depicts an irregular fire test area enclosed by the red square which lies within the Iberian Peninsula. The area has a size of
6.5°×6.5° with the centre point at 40.00° N, 5.50° W in Spain. Panel (b) shows FRP maxima of the area on cloud-free days for the year 2017
based on data over the full year. Panel (c) is the same as (b) but for the period of April to November 2018. The red dots denote monthly-mean
FRP maxima. In panel (a) the average locations of the fires for both years are also marked.

15th of October, on the day Ophelia hit the coast of Portu-
gal the hardest, Iberia faced an exceptional firestorm. On that
day, SEVIRI observed an FRP value exceeding 50 GW even
though the area was heavily covered by clouds. This value is
not displayed in the figure since it was not the true cloud-free
observation.

The stochasticity of the fire occurrence (i.e. the number of
fires or, alternatively, the amount of FRP) in an area can be
decreased by extending the area and/or the time frame of the
occurrence from instantaneous to longer. Nevertheless, fore-
casts should ideally predict the fire occurrence with the time
dependence as done in this paper. Also, the area size should
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ideally be as small as possible. However, since the fire oc-
currence varies from area to area, the optimal area size into
which a region should be evenly divided so that the areas re-
main sufficiently predictable depends on the chosen region.
Due to the inherent stochasticity of the fire ignition, in the ar-
eas where the typical occurrence of fires is not exceptionally
high the daily number of fires varies randomly even on con-
secutive days with the same weather conditions. This is the
case, for example, with both in the excluded fringe areas of
the region in Africa depicted in Fig. 4 and the area in Iberia
depicted in Fig. 5. The more the weather favours wildfires,
the greater the variation range is, but still nothing can be said
with certainty about the daily fire occurrence and its temporal
evolution. It is all about luck how many (if any) fires break
out in the area on a day favourable to wildfires. This is in
contrast to the case of African savannah fires, where these
uncertainties are often within reasonable bounds due to reg-
ular ignitions. For example, as Fig. 1 illustrates, during the
dry seasons, the African savannah fire occurrence (FRP) is
always non-zero, much less arbitrary, and quite predictable.
Moreover, as the Iberian case above indicates, in such con-
ventional areas with low fire activity not only do daily oc-
currences vary widely but also annual ones. As an example
within Fennoscandia, since the mid-1990s, the number of
annual wildfires has ranged in Finland from approximately
1000 to 6000 and in Sweden from approximately 2500 to
8500 (Vanha-Majamaa et al., 2021), and in the Republic of
Karelia between the years 1956 and 2019, the number of an-
nual fires has ranged from 35 to 1872 (Lindberg et al., 2021)
with values jumping up and down.

5 Summary

The presented phenomenological weather-dependent spatio-
temporal fire prediction method showed promising results in
predicting the wildfires in the African savannah environment
under regular anthropogenic stress. The region showed sta-
ble fire ignition patterns over a long time, leaving the actual
meteorological conditions as practically the only driving fac-
tor. As a result, the model parameterized with the 2010 fire
and weather data was successfully applied for the 2018 fire
season: the temporal correlation coefficient for a majority of
predicted areas approached or exceeded 0.8–0.9. In more dy-
namically evolving regions, it may be advantageous to use
the previous year’s data for the parametrization.

It is possible that there are other fire-rich regions in the
world other than the savannah of south-central Africa that
can also be predicted fairly well. The method presented here
is generally applicable to any region of the globe with a reg-
ular daily and annual occurrence of wildfires, which depend-
ing on the characteristics of the area and the size chosen is
of the same order of magnitude as in the African savannahs.
The widest predictable regions are the most productive of
wildfire emissions, representing the leading contributions to

global wildfire emissions, and should therefore be primarily
located and included in air quality simulations to improve
simulation accuracy. Therefore, a general sensible strategy
for implementing fire predictions in simulations is primarily
to consider such regions either by the method described in
this paper, which is very straightforward, or by some other
similarly highly predictive method. Thereafter, efforts can be
made to increase the number and extent of predictable re-
gions by refining the model used towards limits where pre-
dictability breaks down. Stochasticity determines the limit of
predictability, which is a model-independent property, and
the most accurate predictions can only be based on the most
complete and detailed data possible.

The initial hypothesis that the higher incidence of fires
in the area leads to more accurate predictions was qualita-
tively confirmed. The robustness of the model was increas-
ing with the size of the area and the number of fires. Wider
spatial averaging increased the amount and regularity of the
fire information at the expense of lower spatial resolution of
emissions. However, the problem with resolution might be
slightly ameliorated by determining the sub-areas where the
fires are repeatedly concentrated.

The approach significantly relies on regularity of the fire
ignition events but showed quite low efficiency for irregu-
larly ignited forest fires on the Iberian Peninsula despite the
very wide spatial averaging. For that area, FRP still corre-
lated with the weather and soil moisture conditions, but the
ignition events did not.

The experience of the current model development and ap-
plication highlighted the importance of accounting for the ef-
fects of both natural and anthropogenic drivers of fires. The
developed simple model, being sufficient for regions with
regular anthropogenic fire ignitions, has no easy application
in areas with irregular ignitions. More generally, due to the
inherently random nature of the initial ignition of wildfires,
the development of universal fire prediction models with sen-
sible temporal and spatial resolution remains a difficult if not
unachievable challenge.
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