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Abstract. In this communication we show how the use of
artificial neural networks (ANNs) can improve the perfor-
mance of the rainfall thresholds for landslide early warning.
Results for Sicily (Italy) show how performance of a tradi-
tional rainfall event duration and depth power law threshold,
yielding a true skill statistic (TSS) of 0.50, can be improved
by ANNs (TSS= 0.59). Then we show how ANNs allow
other variables to be easily added, like peak rainfall inten-
sity, with a further performance improvement (TSS= 0.66).
This may stimulate more research on the use of this powerful
tool for deriving landslide early warning thresholds.

1 Introduction

Landslides triggered by rainfall can cause damage to infras-
tructure and buildings and, in the worst scenario, even lead to
human losses (Froude and Petley, 2018). Commonly, rainfall
thresholds indicating the conditions under which landslides
can potentially occur are a key component of warning sys-
tems aimed at protecting the population from a possible land-
slide event. In most cases, thresholds are determined using
empirical methods that link characteristics of precipitation,
such as duration D and mean intensity I or rainfall depth
E = I ×D, to landslide occurrence (Caine, 1980). Rainfall
thresholds are usually determined by assuming a predeter-
mined parametric equation, which in most cases is a power
law (Guzzetti et al., 2008). In general, for a given set of
predictors, the choice of a predetermined threshold equation
form (e.g. power law) can potentially limit its performance
because the informative content of the considered predictor
variables may not be exploited to the fullest. This holds true
all the more so when searching for alterative or additional

variables with the aim of improving the performances of the
thresholds, such as antecedent rainfall conditions (Glade et
al., 2000), water storage, and soil moisture data (Bogaard
and Greco, 2018; Marino et al., 2020). For the case of E–
D or I–D thresholds the use of a power law is customary,
and its rationale has also been verified based on a combined
stochastic and physics-based approach (Peres and Cancel-
liere, 2014). In contrast, in the case of either a different pair
of variables or the analysis of more than two variables, there
is no analogous prominent parametric form of the threshold
equation. For instance, as reported by Conrad et al. (2021),
alternative formulas have been considered for hydrometeoro-
logical thresholds – i.e. based on rainfall and soil moisture or
catchment storage – including linear and bilinear functions,
interpolated line segments without a mathematical function,
cut-off values for integration of antecedent conditions with
traditional rainfall thresholds, and more complex logical op-
erators. The use of predetermined parametric forms can fi-
nally jeopardise the scientific soundness of comparisons be-
tween thresholds using different sets of predictors (e.g. rain-
fall thresholds vs. thresholds using soil moisture). Artificial
neural networks (ANNs), belonging to artificial intelligence
or machine learning techniques, allow the mentioned limita-
tion to potentially be removed as they are universal approx-
imators, i.e. capable of reproducing any continuous function
(Haykin, 1999).

Up to now, a number of studies have used the potentiality
of ANNs and of other machine learning techniques in land-
slide analysis. Many studies focused on susceptibility map-
ping and individual slope instability have exploited the po-
tentialities of ANNs (Reichenbach et al., 2018). In other stud-
ies, the focus is on the prediction of individual deep-seated
landslide displacements by machine learning algorithms us-

Published by Copernicus Publications on behalf of the European Geosciences Union.



1152 P. Distefano et al.: Introducing rainfall thresholds for landslide triggering based on artificial neural networks

Figure 1. Elevation map showing location of landslides and rain gauges in Sicily considered in this study. The rainfall data set was built by
joining data sets managed by different authorities and landslides from the FraneItalia inventory (Calvello and Pecoraro, 2018).

ing detailed in situ data (e.g. van Natijne et al., 2020). Based
on this briefly outlined state of the art, it appears that ANN
skills are mainly used to create susceptibility maps and/or in
local early warning systems, while application for territorial
landslide early warning (Piciullo et al., 2018) has not been in-
vestigated so far. In this communication, we present our pre-
liminary investigations showing how ANNs can allow land-
slide early warning thresholds to be derived with higher per-
formances than traditional rainfall intensity–duration power
law thresholds.

2 Data and methods

We refer to the case study of Sicily (Fig. 1), one of the 20 re-
gions of Italy. We have retrieved hourly rainfall from 306 rain
gauges distributed within the region, managed by the re-
gional water observatory (Osservatorio delle Acque, OdA),
the SIAS (Sicilian Agro-meteorological Information Ser-
vice), and the Regional Civil Protection Department (DRPC).
Figure 1 shows the rain gauge locations for the period Jan-
uary 2009–October 2018 (green dots) and those available
only for the period January 2014–October 2018 (black dots).

Landslide data are retrieved from the FraneItalia database
compiled by Calvello and Pecoraro (2018) (see locations in
Fig. 1). This database contains information on landslides that
occurred in Italy from January 2010 to December 2019 and is
available online (https://franeitalia.wordpress.com/database/,
last access: 17 November 2021). Thus, our analysis is based
on the period from January 2010 to October 2018, where

both rainfall and landslide information is available. Some
landslide events have been removed from the analysis. In par-
ticular, this was done based on the landslide typology, mate-
rial, and type of trigger. Only events having a “rainfall” or
“rainfall and other” trigger have been considered so as to ex-
clude landslides due to earthquakes and anthropogenic activ-
ities. Rockfalls have been removed from the analysis as well
as their triggering cannot always be linked to rainfall. Rain-
fall data have been checked in order to remove suspicious
rainfall data. In particular, where hourly rainfall exceeded
250 mm – corresponding to about one-third of mean yearly
rainfall for Sicily and to about 2 times the maximum rainfall
ever recorded in 1 h – the series has been visually inspected,
and in the case of an evident error (rain gauge malfunction)
the whole rainfall event surrounding the peak has been re-
moved. In light of the above, a flow chart representing the
applied methodology is shown in Fig. 2a.

First, pre-processed precipitation and landslide data were
inputted to the CTRL-T (Calculation of Thresholds for
Rainfall-induced Landslides-Tool) code (Melillo et al.,
2018). The software consists of a code in the R language and
allows rainfall events to be reconstructed and characterised
by the following variables: duration D, mean intensity I , to-
tal depth E =D× I , and peak intensity Ip (defined as the
maximum hourly intensity occurring during a rainfall event).
The most probable rainfall conditions associated with each
landslide event (multiple rain gauges available for a given lo-
cation) are computed by the software based on distance be-
tween the rain gauge and the landslide location as well as
the characteristics of the reconstructed rainfall event. In par-
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Figure 2. Flow chart illustrating the methodology (a) and the artificial neural network architecture considered (b).

ticular, for a given landslide, all rain gauges within a circle
of radius Rb specified by the user are searched, and, when
more than one rain gauge is located within the circle, the
rainfall events from each rain gauge are weighted based on
the rain gauge–landslide distance and the rainfall event char-
acteristics (cumulated rainfall and duration). The weight is
used to estimate the “probability” associated with each rain-
fall condition potentially attributable to each landslide event.
In particular, the probability, in the case of multiple rainfall
conditions, is computed by dividing each weight by the sum.
CTRL-T then determines the triggering rainfall conditions of
each landslide as those corresponding to the highest probabil-
ity. Finally, the code provides power law E–D thresholds for
different levels of non-exceedance frequency of triggering
events. The software allows the user to set different values of
the parameters to reconstruct rainfall events in order to take
into account seasonality, i.e. different average evapotranspi-
ration rates in different periods of the year. Specifically, fol-
lowing the study by Melillo et al. (2016), we assumed that in
the warm season CW (April–October) the minimum dry pe-
riod separating two rainfall events is P4warm = 48 h, while in
the cold season a longer period is assumed (P4cold = 96 h).
The rain gauge sensitivity is Gs = 0.1 mm. The rain gauge
search radius has been fixed to Rb = 16 km. A binary coding
has been attributed to each rainfall event, flagging trigger-
ing events as a target with a value of 1 and a non-triggering
event with a null value. Application of the CTRL-T software
allowed the rainfall events associated with the 144 landslide
events in the inventory (triggering events) and 47 398 non-
triggering events to be reconstructed. For 103 events, only the
day of triggering was known, while for the remainder a more
precise indication of the triggering instant was available. In
the first case, the triggering instant was attributed to the end
of the day, in the second case to the instant of peak rainfall
within the time interval when the triggering occurred. Fur-
thermore, for the 144 landslide events, detailed information

on the typology was available only in 18 cases, 10 of which
were “fall of more than one material”, 4 were “flow”, and
the remaining 4 were “slide”. The average distance between
the rain gauge and landslide for the 144 events is about 5 km;
thus the maximum value of Rb = 16 km was seldom reached.

The characteristics of the events were used as input vari-
ables to ANNs devised for pattern recognition, as imple-
mented within the neural net pattern recognition tool in
MATLAB®. The neural network, characterised by a feed-
forward structure, is composed of three layers: input, hidden,
and output (Fig. 2b). The input layer takes the series of pre-
dictors and sends them to the hidden layer, where the series
are combined and transformed though a specific activation
function. Two different activation functions have been con-
sidered – a tan-sigmoid function f (n) for the hidden layer
and a log-sigmoid g(n) for the output layer:

f (n)=
2(

1+ e−2n
) − 1 (1)

g(n)=
1(

1− e−n
) . (2)

The ANNs have been trained through the scaled conjugate
gradient backpropagation algorithm, while cross-entropy
was assumed to be the performance function for training.
Denoting the generic ANN output with yi (assuming values
in the open interval between 0 and 1) and the binary target
with ti , i = 1, 2, . . . , N , the cross-entropy function F heavily
penalises inaccurate predictions and assigns minimum penal-
ties for correct predictions:

F =−
1
N

N∑
i=1

[
ti logyi + (1− ti) log(1− yi)

]
. (3)

The ability to distinguish triggering events from non-
triggering events was measured using the confusion matrix,
a double-entry table in which it is possible to identify true
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Table 1. Results of tests with ANNs, showing the optimal number of hidden neurons (a number from 5 to 20 has been tested) and the true
skill statistics (TSSs) for the entire, the training, the validation, and the test data sets. Values in the table are compared to TSS0 = 0.50, which
is the maximum value associated with a D–E power law threshold.

Input Hidden TSS TSS TSS TSS TPR FPR
data neurons training validation test all all all

(max TSS)

D 14 0.35 0.13 0.29 0.30 0.74 0.44
E 18 0.45 0.36 0.41 0.43 0.86 0.43
I 9 0.52 0.41 0.29 0.44 0.74 0.31
Ip 16 0.37 0.35 0.35 0.35 0.81 0.46
D–E 20 0.61 0.59 0.55 0.59 0.82 0.23
D–I 11 0.60 0.60 0.59 0.60 0.80 0.20
D–Ip 7 0.53 0.48 0.47 0.51 0.83 0.32
E–Ip 17 0.46 0.46 0.39 0.44 0.84 0.40
I–Ip 13 0.61 0.54 0.60 0.58 0.82 0.24
D–E–Ip 8 0.68 0.65 0.60 0.66 0.81 0.15

positives (TPs; triggering events correctly classified), true
negatives (TNs; non-triggering events correctly classified),
false negatives (FNs; triggering events classified as non-
triggering), and false positives (FPs; non-triggering events
classified as triggering). Through the confusion matrix it is
possible to determine the true positive rate (TPR) and the
false positive rate (FPR) as well as their difference, known as
the true skill statistic (TSS), which is widely used for thresh-
old determination (Peres and Cancelliere, 2021):

TPR=
TP

TP+FN
(4)

FPR=
FP

TN+FP
(5)

TSS= TPR−FPR. (6)

The output of the ANNs is transformed into a binary code
(dichotomisation) by assuming a value of 1 (ANN predicts
a landslide) when the output is greater than a threshold
value and a value of 0 otherwise. We then identify the men-
tioned threshold value by maximising the TSS, which has
the advantage of not being affected by unbalanced training
data set issues with respect to other indices, such as ac-
curacy ACC= (TP+TN)/(TP+TN+FP+FN) – a perfor-
mance metric used as default by many ANN training soft-
ware tools. Maximisation of TSS implicitly assumes that all
entries of the confusion matrix have the same utility. Quanti-
fying the loss of a false negative with respect to a false posi-
tive is a complex task that goes beyond the aim of the present
analysis and that has been faced only in very recent studies
(cf. Sala et al., 2021). Results from ANNs are compared with
rainfall duration–depth power law thresholds derived through
the maximisation of TSS, i.e. again, analysing both trigger-
ing and non-triggering events.

For our analysis different combinations of input data (du-
ration D, intensity I , total depth E, and peak intensity Ip) and
different architectures, changing the number of hidden neu-

rons, were tested. In particular, the following input variable
configurations have been investigated: (1) D; (2) E; (3) I ;
(4) Ip; (5) D and E; (6) D and I ; (7) D and Ip; (8) E and Ip;
(9) I and Ip; (10) D, E, and Ip. The listed input configu-
rations are indeed all possible ones, except those combining
both E and I with duration D. This has been done because
the two pairs D–I and D–E have the same informative con-
tent by construction, as confirmed by the fact that the perfor-
mances of the D–I and D–E neural networks do not differ
significantly (see Table 1); slight differences may occur as
ANNs can be sensitive to how a set of variables with the
same information content as another are presented to the net-
work. All the data have been inputted taking their natural
logarithms. Different networks have been considered, vary-
ing the number of hidden neurons from 5 to 20, in order
to search for the best value, i.e. the one yielding the high-
est TSS.

The entire data set of rainfall events was divided into a
training, a validation, and a test data set, selected randomly
from the entire data set, in the proportions of 70 %, 15 %, and
15 %. The training data set is data used to fit the model, while
the validation provides an unbiased evaluation of a model
fit on the training data set while tuning model hyperparam-
eters, such as the number of training iterations. Finally, the
test data set provides an unbiased evaluation of a final model
fit. This subdivision allowed the early-stopping criterion to
be applied to prevent overfitting. According to this criterion,
the training of the neural network is stopped when the values
of the performance function calculated on the validation data
set start to get worse. In order to ensure representativeness
of the data randomly assigned to the training, validation, and
test data sets, results where the TSS in the test or the valida-
tion data set are greater than the TSS in the training data set
are removed from the analysis. Once the network is devel-
oped considering these three data sets and early stopping, it
is “frozen”, and metrics from the confusion matrix (e.g. TSS)
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can be computed with that network on the entire data set, and
the corresponding performances can be considered generalis-
able. Thus, when comparing our proposed approach with the
traditional one, we focus on these last performances (labelled
“all”). This seems to be the most appropriate way to proceed
as the I–D power law and its performance are determined
with respect to the entire data set.

3 Results and discussion

Application of the CTRL-T software has allowed the data set
of triggering and non-triggering events to be built and the
threshold to be derived according to the so-called frequentist
method (based on triggering events only). Considering a non-
exceedance frequency for triggering events equal to 5 %, the
threshold from the software is as follows:

E = 4.9D0.26. (7)

This threshold is lower than the one obtained for Sicily by
Gariano et al. (2015) yet comparable with an updated one
derived by Melillo et al. (2016). Specifically, thresholds re-
ported on the two studies cited are respectively the following
(non-exceedance frequency is again 5 %):

E = 10.4D0.27 (8)

E = 5.6D0.40. (9)

It should be mentioned that these thresholds were both de-
rived from rainfall data sets covering the period July 2002–
December 2012, which is different from the one we have
considered in our analysis. The first threshold has been de-
rived with an earlier version of the CTRL-T code, which re-
quired manual selection of the most representative rain gauge
(Melillo et al., 2015), while the second study derives from
the updated algorithm, where this selection is made automat-
ically.

These thresholds however are not comparable with those
to derive with the proposed ANN approach because non-
triggering events are neglected. We have hence derived the
power law threshold corresponding to the maximum TSS –
outside of the CTRL-T software, via the MATLAB® global
optimisation toolbox – obtaining the following result:

E = 2.40D0.68, (10)

which has a TSS=TSS0= 0.50, obtained from a TPR= 0.76
and a FPR= 0.26. The threshold has a lower intercept but a
higher slope, so, after a duration of about 5 h, it is above the
one given in Eq. (7).

Table 1 shows the results obtained from the 160 neural net-
work configurations tested (10 different input layers and 16
different numbers of hidden neurons). In particular, the table
shows, for each set of input variables, the optimal number
of hidden neurons corresponding to the maximum TSS for

the training, the validation, the test, and the entire data set
(“all”). For the entire data set also the TPR and the FPR are
shown. As can be seen, for most of the input configurations,
the TSS for the training and validation data sets is generally
quite close. This proves that overfitting has been sufficiently
prevented thanks to the early-stopping criterion; otherwise
the performance in the training data set would have been sig-
nificantly higher than those in the validation and the test data
set.

As can be seen from Table 1, using only one input vari-
able, the performances are significantly lower than those ob-
tained from the use of the power law threshold of Eq. (10):
however, for the variable with the highest informative con-
tent, mean rainfall intensity I , the TSS= 0.44 is quite close
to TSS0= 0.50. When using input variables in pairs, per-
formances increase significantly. Notably, in the case of the
pairs D–I and D–E – i.e. the same variables used for the
power law – the TSS= 0.59 (0.60), which is significantly
higher than TSS0. This is obtained by both an increase in
the TPR (true positive rate) and a decrease in the FPR (false
positive rate). The fact that with same input data the neural
network provides significantly better performances than the
power law proves that the use of a predetermined paramet-
ric form for the threshold equation does not allow the infor-
mative content of the input variables to be exploited to the
fullest, while the flexibility of ANNs allows a better classifi-
cation to be achieved. In other words, one of the shortcom-
ings of a power law is that the same equation is usually as-
sumed valid for all the durations, while ANNs are more flex-
ible. Finally, adding a third variable (network input D–E–
Ip), a further improvement is obtained (TSS= 0.66), mainly
due to a decrease in the FPR. This result demonstrates how
neural networks can be an aid in searching additional vari-
ables that can provide a more reliable dynamic prediction of
landslide-triggering conditions. In particular, in this case, it
has been shown that peak intensity may have important in-
formative content, an aspect that has perhaps not been suf-
ficiently investigated in the literature, even though some re-
searchers have found that the addition of a third variable is a
possible way to derive thresholds that better adapt to complex
case studies (e.g. Rosi et al., 2021).

4 Concluding remarks

The identification of rainfall thresholds indicating landslide-
triggering conditions is a key step for implementing territo-
rial landslide early warning systems. Commonly, thresholds
are searched in a limited space, i.e. constrained to a predeter-
mined parametric form, which is generally a power law link-
ing rainfall event, duration D, and mean intensity I (or total
depth E = I×D). In this communication we have shown that
choosing a predetermined form for the law of the threshold
can potentially limit the performance of the empirical model
and how artificial neural networks are a valuable tool to over-
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come this limitation. The analysis, referring to the case study
of Sicily, has shown that an E–D power law threshold has
a maximum true skill statistic of TSS=TSS0= 0.50. On the
other hand, the classifier based on neural networks, using the
same pair of input variables, yielded a significantly greater
TSS= 0.60. It has also been shown how neural networks al-
low the potential information content of other variables to be
easily explored and hence provide a way to improve predic-
tive performance. For instance, it has been shown that the
inclusion of peak rainfall intensity as an additional variable
can lead to an improvement of performance. It is important
that when training neural networks, generalisation capabili-
ties are ensured, for instance by the early-stopping technique.
Overfitting is not an issue for the traditional approach based
on the power law – or any other parametric equation – as
in general the number of free parameters is very low (two
for a power law). This may be a drawback for neural net-
works even though it forces one to consider both trigger-
ing and non-triggering events, which is fundamental for ob-
taining thresholds with acceptable statistical characteristics
(Peres and Cancelliere, 2021). Another possible disadvan-
tage of neural networks with respect to predetermined-form
thresholds is also represented by the fact that it may be diffi-
cult to express the neural network classifier as a simple equa-
tion. This could limit the practical implementation of trig-
gering thresholds based on neural networks, which could be
perceived as impractical by practitioners. However, this limit
can for instance be overcome by providing a user-friendly
software to the end user.
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