Supplement of

Regional county-level housing inventory predictions and the effects on hurricane risk

Caroline J. Williams et al.

Correspondence to: Rachel A. Davidson (rdavidso@udel.edu)

The copyright of individual parts of the supplement might differ from the article licence.
Supplemental Section

This document serves as a supplement to the “Regional county-level housing inventory predictions and effects on hurricane risk” publication by Williams et al. (2022). All supporting data, code, and documentation is available on the DesignSafe-CI Data Depot under Project PRJ-3303 (Williams and Davidson, 2022). Any questions can be directed to the corresponding author, Rachel Davidson (rdavidso@udel.edu).

Supporting Publication

Supporting Published Data

Williams, C. and Davidson, R.: Regional county-level housing inventory predictions and the effects on hurricane risk using long-short term memory (LSTM) methods and applied to the southeastern United States (US), DesignSafe-CI, 2022.
Table of Contents

S1 Data Inputs ... 1
 S1.1 Data organization ... 1
 S1.1.1 Source data ... 1
 S1.1.2 Configured data files ... 1
 S1.1.3 File and folder structure ... 2
 S1.2 Data management procedure .. 2
 Step 1. Collect and organize raw data from sources. ... 2
 Step 2. Adjust to 2018 boundaries ... 11
 Step 3. Calculate relevant variables (percent, density, per capita, etc.) .. 11
 Step 4. Combine values for all variables, all years, and all counties in one csv 12
 Step 5. Calculate linear interpolations for decadal values ... 12
 Step 6. Calculate annual difference and percent change values for all variables 12
 Step 7. Final Adjustments .. 13
 Step 8. Forward-Fill and Final Data File .. 14
 S1.3 Data Availability Over Time (Figure S1) .. 15
 S1.4 Data References (Table S1) .. 16

S2 Models .. 22
 S2.1 Linear Trend Models ... 22
 S2.1.1 Inputs .. 22
 S2.1.2 Model Parameters .. 22
 S2.1.3 Outputs .. 22
 S2.2 Autoregressive Integrated Moving Average (ARIMA) Models ... 22
 S2.2.1 Inputs .. 23
 S2.2.2 Model Parameters .. 23
 S2.2.3 Outputs .. 23
 S2.3 Long-Short Term Memory (LSTM) Models ... 23
 S2.3.1 Inputs .. 23
 S2.3.2 Model Parameters (Table S2) .. 24
 S2.3.3 Outputs .. 24
 S2.4 Model References .. 24

S3 Analysis .. 26
 S3.1 Best Test Result ... 26
 S3.2 Figures .. 26
S1 Data Inputs

All supporting data used as input for this work is available in the Data folder within Project PRJ-3303 of the DesignSafe-CI Data Depot (Williams and Davidson, 2022).

S1.1 Data organization

S1.1.1 Source data

All downloaded source data for each variable is available in the Data/Downloaded_Data folder. See Sect. S1.2 for details pertaining to each data source. Some files within the Downloaded_Data folder were manually modified from the source file and saved as a new file, where modifications were mostly made to the naming or organization of column headings. These adjusted files have file names corresponding to the modifications; See Sect. S1.2 for details. Note that the data accessed via APIs were not saved in this folder.

State, county, 2010 census tracts, study area, and coastline boundary shapefiles are available in the Data/Boundaries folder. Data/Boundaries/counties_south/co_south_names.csv has a list of the GEOIDs for the 1,000 counties included in this study.

Data references in Section S1 of this document use bracketed citations based on the reference number in Sect. S1.4

S1.1.2 Configured data files

The data compiled for all variables was saved in separate csv files by year. The first three columns of each csv file always consist of:

1. “GEOID”: the GEOID for all counties in the study region in that year
2. {variable name}: the value for each county in that year. The header for this column varies depending on the variable. (See Sect. S1.1.3.2 below for the corresponding column heading for each variable)
3. “year”: the year corresponding to the data in column 2.

Occasionally, additional columns are provided (such as population density values in units of people per mi² instead of people per km²), but the order of the first three columns always remains the same. Additionally, the number of rows in these columns does not always equal the total number of counties in the study area in 2019 (1,000 counties) because the number of counties varied between 1970 and 2019 (see Step 2 of Sect. S1.2).
S1.1.3 File and folder structure

S1.1.3.1 File naming
Each data file was named using the following scheme:
0_{short theme name}_{short variable name}_{year}_{date last updated in YYYMMDD format}.csv
Example: 0_econ_gdp_2010_20201204.csv
See Sect. S1.1.3.2 below for the list of theme names and variable names.

S1.1.3.2 Data folders
All csv files were saved in the following folder structure:
Data/{long theme name}/0_{short theme name}_{short variable name}/county/{csv file name}

Example: Data/Economic_Impact/0_econ_gdp/county/0_econ_gdp_2010_20201204.csv

where “fname1_co”, “fname2_co”, and “fdate_co” are available in Data/2021-04-15_DBI_file_name_scheme_co_dif_rate.csv. All columns within this file provide the following information:
1. “fname1_co”: {long theme name}/0_{short theme name}_{variable name}/
2. “fname2_co”: 0_{short theme name}_{short variable name}
3. “fdate_co”: {date last updated in YYYMMDD format}.csv
4. “colname_co”: column name in the second column of data file (see Sect. S1.1.2)
5. “title_co”: variable name
6. “units_co”: variable units
7. 1970: “1” indicates data is available in 1970 and the data is saved in a data file.
 “0” indicates not available.
 ...
56. 2019: “1” indicates data is available in 2019 and the data is saved in a data file.
 “0” indicates not available.

S1.2 Data management procedure

Step 1. Collect and organize raw data from sources.
This step describes the process of sourcing data and saving data files using the organization scheme described in Sect. S1.1. Each section below provides the location of the source data, the downloaded or accessed source files, the name of the R script file that creates the associated data file, and the list of data files created. Note that there are more data files created than those listed in the compiled csv file described in Sect. S1.1.3.2. This is because some data files are repeated concepts of each other or are merely an avenue to compute a final
data point. For example, one set of data files were created with the number of married women, another set of data files include the number of married men, but neither of these files were used in the data analysis; they were merely used as a means to compute the percent married population.

a. Annual population estimates
 i. Source: US Census’ Population and Housing Unit Estimates
 ii. Source files (available in Data/Downloaded_Data/CensusAnnualPopulationEstimates):
 1. co-asr-7079.csv: county-level annual population estimates for 1970s downloaded directly from Census website
 2. co-asr-7079_modified.csv: manually added column headers
 3. pe-02.xls: county-level annual population estimates from 1980s downloaded directly from Census website
 4. pe-02_modified: manually adjusted column headers
 5. 1990s county-level annual population estimates from Census API: https://api.census.gov/data/1990/pep/int_charagegroups
 6. 2000s county-level annual population estimates from Census API (had to split API request in two links): https://api.census.gov/data/2000/pep/int_charage
 iii. R script: pop-estimate.R
 iv. Data files created:
 1. Population
 2. Population identified as white
 3. Population not identified as white
 4. Percent of population identified as white
 5. Percent of population not identified as white

b. Annual housing unit estimates
 i. Source: US Census’ Population and Housing Unit Estimates
 ii. Source files (available in Data/Downloaded_Data/CensusAnnualCountyHousingUnitEstimates):
 1. hu-est00int-02-{state FIPS code}.xls: county-level annual housing unit estimates for 2000s
 2. hu_est_co_0009_{state FIPS code}.csv: manually adjusted column headers and saved as csv
 iii. R script: hu-estimates.R
 iv. Data files created:
 1. Number of housing units

c. Decadal education attainment estimates

ii. Source files (available in Downloaded_Data/Education):
 1. Education_1970_2018_Original.csv: original data
 2. Education_1970_2018_Modified.csv: manually modified headers and added percentages to reflect % high school diploma, % some college, % college diploma, % grad diploma

iii. R script: education_census-estimates.R

iv. Data files created:
 1. Percent of population aged 25 and older with a high school diploma
 2. Percent of population aged 25 and older with a college degree

d. Other decadal values

i. Source: IPUMS NHGIS [6]
 1. This data requires a limited access license, which is available for free by registration here: [7]
 2. The NHGIS data is not available for redistribution without permission nor for for-profit uses (https://www.nhgis.org/citation-and-use-nhgis-data)

ii. Source files: Downloaded_Data/NHGIS_Decennial_Census_Data (downloaded in batches of zip files, which dictates the nhgisXXX sections below). There are many files available in this folder. Below are the files used for this project.
 1. nhgis0001
 a. nhgis0001_ts_nominal_county.csv (sourced from NHGIS time series data set)
 i. Total population: 1970, 1980, 1900, 2000 decadal values saved over annual estimates because there are more counties available in decadal data than annual estimates. Code: A00.
 ii. Total housing units: 2000 values saved over annual estimates because there are more counties available in decadal data than annual estimates. Code: A41.
 iii. Number of occupied housing units. Code: A43.
 iv. Number of vacant housing units. Code AT1.
 v. Number of owner-occupied housing units. Code B37.
 vi. Number of renter-occupied housing units. Code B37.
 b. nhgis0001_ts_nominal_county_modified.csv: manually removed unneeded columns and column headers
 c. nhgis0001_ts_nominal_county_codebook.txt: associated metadata
 2. nhgis0003
a. nhgis0003_ts_nominal_count (sourced from NHGIS time series data set)
b. nhgis0003_ts_nominal_count_modified.csv: manually removed unneeded columns and column headers
c. nhgis0003_ts_nominal_count_codebook.txt: associated metadata

3. nhgis0004
a. nhgis0004_ds120_1990_county.csv (1990 Census: STF 1)
i. Number of one-unit detached housing units in 1990. Source code: NH030A, NHGIS code: GAF.
b. nhgis0004_ds120_1990_county_modified.csv: manually removed unneeded columns and column headers
c. nhgis0004_ds120_1990_county_codebook.txt: associated metadata
d. nhgis0004_ds151_2000_county.csv (2000 Census: SF 3a)
i. Number of one-unit detached housing units in 2000. Source code: NH41, NHGIS code: ETH.
e. nhgis0004_ds151_2000_county_modified.csv: manually removed unneeded columns and column headers
f. nhgis0004_ds151_2000_county_codebook.txt: associated metadata

4. nhgis0005
a. nhgis0005_ts_nominal_count (sourced from NHGIS time series data set)
i. Average household size for all occupied housing units. Calculates the average as a weighted average of 1, 2, 3, 4, 5, 6+ -person households for 1990 and 2000. Code: CV5.
b. nhgis0005_ts_nominal_count_modified.csv: manually removed unneeded columns and column headers
c. nhgis0005_ts_nominal_count_codebook.txt: associated metadata

5. nhgis0006
a. nhgis0006_ts_nominal_count (sourced from NHGIS time series data set)
b. nhgis0006_ts_nominal_count_modified.csv: manually removed unneeded columns and column headers
c. nhgis0006_ts_nominal_count_codebook.txt: associated metadata

6. nhgis0007
a. nhgis0007_ds120_1990_county.csv (1990 Census: STF 1)
i. Median property value of specified owner-occupied housing units in 1990. Source code: NH23B. NHGIS code: EST.
b. nhgis0007_ds120_1990_county_modified.csv: manually removed unneeded columns and column headers

c. nhgis0007_ds120_1990_county_codebook.txt: associated metadata

d. nhgis0007_ds151_2000_county.csv (2000 Census: STF 3a)

e. nhgis0007_ds151_2000_county_modified.csv: manually removed unneeded columns and column headers

f. nhgis0007_ds151_2000_county_codebook.txt: associated metadata

7. nhgis0009

a. nhgis0009_ds151_2000_county.csv (2000 Census: STF 3a)
 i. Migration in 1995 for persons 5 years and over. Considers moving from Puerto Rico as moving out of state. Calculated moving within same state but different county as (total moved, minus moved out of state, minus moved out of country, minus moved in same county). Source code: NP024A, NP024B, NP024C, NP024D, NP024E, NP024H. NHGIS code: GJG, GJH, GHI, GHH, GHK, GWO.
 ii. Median year moved in in 1995 of occupied units. Source code: NH039A. NHGIS code: GAP.

b. nhgis0009_ds151_2000_county_modified.csv: manually removed unneeded columns and column headers

c. nhgis0009_ds151_2000_county_codebook.txt: associated metadata

8. nhgis0010

 ii. Aggregate property values in 2000. Source code: NH079A. NHGIS code: GCB.

b. nhgis0010_ds151_2000_county_modified.csv: manually removed unneeded columns and column headers

c. nhgis0010_ds151_2000_county_codebook.txt: associated metadata

9. nhgis0011

 i. Median year structure was built of all housing units in 2000. Source code: NH035A. NHGIS code: GAK.

b. nhgis0011_ds151_2000_county_modified.csv: manually removed unneeded columns and column headers

c. nhgis0011_ds151_2000_county_codebook.txt: associated metadata
10. nhgis0013
 a. nhgis0013_ts_nominal_county.csv (sourced from NHGIS time series data set)
 b. nhgis0013_ts_nominal_county_modified.csv: manually removed unneeded
 columns and column headers
 c. nhgis0013_ts_nominal_county_codebook.txt: associated metadata

iii. R script: decennial_to_csv.R

iv. Data files created:
 1. Population
 2. Number of housing units
 3. Number of occupied housing units
 4. Number of vacant housing units
 5. Percent of vacant housing units out of all housing units
 6. Number of owner-occupied housing units
 7. Number of renter-occupied housing units
 8. Percent of owner-occupied housing units out of all occupied housing units
 9. Number of married males
 10. Number of married females
 11. Number of one-unit detached housing units
 12. Percent of one-unit detached housing units out of all housing units
 13. Number of one-unit detached housing units per capita
 14. Average household size
 15. Median household income
 16. Median property value
 17. Median household tenure
 18. Population that did not move
 19. Population that moved within the county
 20. Population that moved to a different county within the state
 21. Population that moved to a different state
 22. Population that moved to a different country
 23. Aggregate paid property taxes
 24. Aggregate property values
 25. Average property tax rate
 26. Median year housing structure was built
 27. Median age of population

 e. Developed Land cover
 i. Source: Multi-Resolution Land Characteristics Consortium (MRLC)
ii. Source files: Data/Downloaded_Data/NLCD_{YEAR}_Land_Cover_L48_20190424
 2. See “NLCD_procedure.docx” document in Data/Downloaded_Data folder for processing procedures.
 3. This procedure uses GIS methods to calculate the percent developed area within a county. “Developed” includes land cover areas designated as “developed, open space” (code: 21), “developed, low intensity” (code 22), “developed, medium intensity” (code 23), “developed, high intensity” (code 24).

iii. R script: nlcd_processing.R

iv. Data files created:
 1. Percent of county area designated as open space
 2. Percent of county area designated as low intensity development
 3. Percent of county area designated as medium intensity development
 4. Percent of county area designated as high intensity development
 5. Percent of county area developed

f. Non-Buildable Area & Proximity to Coast

i. Source: This data set consists of a series of national and state protected area, water areas, wetlands, parks, or other assumed no-build areas available on national and state websites as of Summer 2020 [8-61]. Steep slopes and poor soils were not included in the assumed non-buildable area.

ii. Source files: See “Non-Buildable-Area Method.xlsx” document in Data/Downloaded_Data/Non-Buildable-Area folder. Rows with “Yes” in the “Included in Non-Buildable-Land Variable” column are included in the analysis.
 1. These files were imported into GIS software, clipped to the study area, and merged together to form a single non-buildable area layer for each state, except Texas, which only has non-buildable area by county.
 a. Texas non-buildable area could not be merged into one layer because the wetland file is very large (and is provided by NFWS as 3 separate files). Thus, the non-buildable area was processed by county. For counties that had two wetland files overlapping one county, we paid special attention ensure data-merging was done correctly to combine data from both wetland shapefiles. These counties are listed in the “Texas_Wetland_Overlap_Counties.xlsx” and the shapefile regions are in the “Texas Wetland Region Combine” folder located in file in Data/Downloaded_Data/Non-Buildable-Area/48000_land_wetland1_2019_20200813.shp.
2. Final shapefiles per state are available in Data/Land_Classification/0_land_nobuild_2020_shapefile_20201112 folder

3. Percent buildable area was calculated using the R script listed below and saved by state in csv files located in Data/Land_Classification/0_land_nobuild_2020_csv_20201201

4. csv files for all counties in study area are then created for each year in analysis and saved in Data/Land_Classification/0_land_nobuild. Therefore, we assume that the non-buildable areas remain constant over the entire analysis period (1970-2019).

 iii. R script: Nobuild.R

 iv. Data files created:

 1. Percent of county area assumed to be “non-buildable”

 g. ACS & other 2009-2019 values

 i. Source:

 ii. Source files:

 1. Proximity-to-coast: Data/Downloaded_Data/us_medium_shoreline. Assumed that the distance of the centroid of a county to the coast remains constant over the entire study period.

 3. GDP Data: CAGDP1 GDP current-dollar values for all industries. Values listed in thousands of dollars. Original files available in Data/Downloaded_Data/CAGDP1_GDP_CurrentDollars. The BEA combined independent cities in Virginia with surrounding big counties, which is addressed in the “Step 2: Adjust to 2019 boundaries” section below. Data available annually since 2001

 4. Employment data: number of employed people (annual averages) for all industries and types of employers. Original files are available in Data/Downloaded_Data/BLS_QCEW. Data available annually since 1990.

 5. Building permit data: available in Data/Downloaded_Data/Building_Permits file and only building permits for one-unit houses are included in the analysis. Data available annually since 1990.

 iii. R script: pre_raw_values_county_calcs

 iv. Data files created:

 1. Distance of county centroid to coastline

 2. Number of housing units
3. Number of one-unit detached housing units
4. Number of occupied housing units
5. Number of vacant housing units
6. Number of owner-occupied housing units
7. Number of renter-occupied housing units
8. Average household size of all housing units
9. Average household size of owner-occupied housing units
10. Average household size of renter-occupied housing units
11. Median year residential structure was built
12. Median household tenure of all housing units
13. Median household tenure of owner-occupied housing units
14. Median household tenure of renter-occupied housing units
15. Population identified as white
16. Median age of population
17. Married female population
18. Married male population
19. Population
20. Median property value
21. Aggregated property value
22. Median income
23. Median household income
24. Population aged 25 or older
25. Population with high school degree
26. Population with some college experience
27. Population with college degree
28. Population with a graduate degree
29. Population that did not move
30. Population that moved within the county
31. Population that moved to a different county within the state
32. Population that moved to a different state
33. Population that moved to a different country
34. Aggregate property taxes paid
35. GINI coefficient
36. Percent of population aged 25 and older with a high school diploma
37. Percent of population aged 25 and older with a college degree
38. Average property tax rate
39. GDP
40. Average annual employment
41. Number of one-unit building permits

Step 2. Adjust to 2018 boundaries

a. A list of counties with either boundary changes or name changes for the counties of our study area since 1970 is available in the “dbi_county_boundary_changes_1970_2020.xlsx” in the Data/Downloaded_Data folder. Sourced from https://www.census.gov/programs-surveys/geography/technical-documentation/county-changes.2010.html [67]

b. 2019 boundaries are used for this analysis. Since 1970, there were 8 Virginian counties that were joined with existing counties. There were also 3 new counties in Virginia in the 70s. Miami-Dade County’s name and FIPS code also changed in the 2000s.

c. CSV files named 2020-12-03_DBI_file_name_name_scheme_{calc type}.csv in the Data folder are used to identify which variables should add two counties together, which should calculate the weighted average based on population, and which should calculate the weighted average based on the number of housing units.

d. R script: raw_values_county_adjustment.R

e. Data files created: This document does not create new files but rather modifies the created data files so that data across all years between 1970 and 2019 reflect 2019 boundaries.

Step 3. Calculate relevant variables (percent, density, per capita, etc.)

a. This step calculates ratio values, such as population density, vacancy rate, GDP per capita and other variables.

b. R script: calculated_values_post_county_adjustment.R

c. Data files created:
 a. Population density
 b. Number of housing units per square kilometer
 c. Percent of one-unit detached housing units of total housing units
 d. Population not identified as white
 e. Percent of population identified as white
 f. Percent of population not identified as white
 g. Percent married population
 h. Average paid property tax
 i. Percent vacant housing units of total housing units
 j. Percent owner-occupied housing units of occupied housing units
 k. Number of one-unit detached housing units per capita
 l. Percent of population that did not move
 m. Percent of population that moved within the county
 n. Percent of population that moved to a different county within the state
o. Percent of population that moved to a different state
p. Percent of population that moved to a different country
q. GDP per capita
r. Average annual employment per capita
s. Number of building permits per number of one-unit detached housing units

Step 4. Combine values for all variables, all years, and all counties in one csv

a. This step combines all variables for all years in all counties that were collected in Steps 1 through 3 into one csv file saved in the Data/Variable Combine folder.
b. The Data/2021-04-15_DBI_file_name_scheme_co.csv file in the Data folder shows which years each variable is available, where a “1” indicates it is available and a “0” indicates it’s not available.
c. R script: DBI_Var_Combine.R

Step 5. Calculate linear interpolations for decadal values

a. This step uses the file created in Step 4 and performs annual linear interpolations for all variables that are only available on a decadal basis and creates a new variable_combine csv located at Data/Variable_Combine/2021-04-15_1970_2019_co/2021-04-15_DBI_file_name_scheme_co_vars_interpolation.csv.
b. R script: DBI_linear_interp.R

Step 6. Calculate annual difference and percent change values for all variables

a. This step calculates the annual difference and annual percent change values for all variables using the csv file created in Step 5 to produce 2021-04-15_DBI_co_vars_interpolation_dif_rate.csv located in the Data/Variable_Combine/2021-04-15_1970_2019_co/ folder. These values are calculated using the following equations
 i. Annual difference, d:

 $$d_t = v_t - v_{t-1}$$

 ii. Annual percent change, r:

 $$r_t = \frac{v_t - v_{t-1}}{v_{t-1}} \times 100$$

b. R script: DBI_annual_dif_rate.R
Step 7. Final Adjustments

a. Upon a detailed review of the compiled data, a series of lingering items were addressed. The resulting file is 2021-04-15_DBI_co_vars_interpolation_dif_rate_adj.csv located in the Data/Variable_Combine/2021-04-15_1970_2019_co/ folder. A list of the final adjustments are as follows:

i. The variables related to population, number of housing units, race, and education are not available for the 3 new Virginia counties established in the 1970s (GEOID: 51683, 51685, 51735) in 1970. The proportional values based on data in 1980 were applied to assign estimated 1970 values. For example, the total population of Prince William County (GEOID: 51153), Manassas City (GEOID: 51683), and Manassas Park (GEOID: 51685) in 1980 was first summed, then the proportion of population in the three jurisdictions was applied to 1970 population values in Prince William County to estimate the population in the areas of current-day Prince William County, Manassas City and Manassas Park in 1970.

ii. The same methodology was applied to Bristol City, VA (GEOID: 51520) to calculate variables related to the number of one-unit detached housing as well as median property values in 1990. 2000 values for Bristol City (GEOID: 51520) and Washington County, VA (GEOID: 51191) were sourced to estimate the number of one-unit detached homes and median property values in 1990 in Bristol City.

iii. The variables listed in part a and b above are then calculated for inter-decadal values using an annual linear interpolations (Step 5 above), then the annual difference and annual percent change (Step 6 above) is calculated.

iv. The inv_avgproptax_rate variable for Loving County, TX (GEOID: 48301) in 2001 was replaced with a zero because the original value for this county in 2000 is zero, causing an infinity value for average property tax rate annual percent change in 2001.

v. The dem_col_pct_rate variable for Loving County, TX (GEOID: 48301), Clay County, TX (GEOID: 48077), Roberts County, TX (GEOID: 48393) is replaced with a zero instead of a NA. The dem_col_pct values are zero in 1970 for these counties.

vi. All building-permit related variables with NAs are replaced by zeros because it was assumed that an NA value would correlated to zero.

vii. If race percent is negative, it’s replaced with a zero value. This happens 108 times out of 50,000 values.

viii. 'land_nobuild_dif', 'land_nobuild_rate', 'prox_coast_dif', 'prox_coast_rate' are all removed because the non-buildable area and proximity to coastline data is assumed to be unchanging over the time period analyzed.

b. This procedure results in no infinity values within the data.

c. R script: DBI_all_vars_final_adj.R
Step 8. Forward-Fill and Final Data File

a. Out of the 118 variables over 50 years for 1,000 counties, there were 488 instances of isolated NaN values (where data is available in years previous and after, yet a NaN value is given for a given year). These values were largely from variables sourced from the ACS in years 2009-2019 in counties with low population. To address these NaN values, a “forward fill” approach was used. The forward fill approach takes values from the year prior to the NaN value as the value that replaces the NaN value.

c. Python script: DBI_all_vars_final_ffill.ipynb
S1.3 Data Availability Over Time (Figure S1)

Error! Reference source not found. provides a reference of the year the source data is available for all considered variables.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td></td>
</tr>
<tr>
<td>Population Density</td>
<td></td>
</tr>
<tr>
<td>Migration</td>
<td></td>
</tr>
<tr>
<td>Housing Units</td>
<td></td>
</tr>
<tr>
<td>Housing Density</td>
<td></td>
</tr>
<tr>
<td>Single Family Housing Units</td>
<td></td>
</tr>
<tr>
<td>Single Family Housing Unit Density</td>
<td></td>
</tr>
<tr>
<td>Vacancy Rate</td>
<td></td>
</tr>
<tr>
<td>Owner-Occupancy Rate</td>
<td></td>
</tr>
<tr>
<td>Household Size</td>
<td></td>
</tr>
<tr>
<td>One-Unit Building Permits</td>
<td></td>
</tr>
<tr>
<td>Year Built</td>
<td></td>
</tr>
<tr>
<td>Household Tenure</td>
<td></td>
</tr>
<tr>
<td>Household Income</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Land Cover</td>
<td></td>
</tr>
<tr>
<td>Available Buildable Land*</td>
<td></td>
</tr>
<tr>
<td>Proximity to Coastline*</td>
<td></td>
</tr>
<tr>
<td>Property Value</td>
<td></td>
</tr>
<tr>
<td>Property Tax Rate</td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td></td>
</tr>
<tr>
<td>Employment Rates</td>
<td></td>
</tr>
</tbody>
</table>

*Assumed to not change over all years

Figure S1. Source data availability over time
S1.4 Data References (Table S1)

<table>
<thead>
<tr>
<th>Ref. Number</th>
<th>Name of Data Set</th>
<th>Year Accessed</th>
<th>Folder Saved</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NOAA Medium Resolution Shoreline</td>
<td>2020</td>
<td>Data/Boundaries/coastline_south</td>
<td>https://shoreline.noaa.gov/data/datasheets/medres.html</td>
</tr>
<tr>
<td>3</td>
<td>US Census Bureau Population and Housing Unit Estimates</td>
<td>2020</td>
<td>Data/Downloaded_Data/CensusAnnualPopulationEstimates Data/Downloaded_Data/CensusAnnualCountyHousingUnitEstimates</td>
<td>https://www.census.gov/programs-surveys/popest/data-sets.html</td>
</tr>
<tr>
<td>6</td>
<td>IPUMS National Historical GIS</td>
<td>2020</td>
<td>Data/Downloaded_Data/NHGIS_Decennial_Census_Data</td>
<td>https://data2.nhis.org/main</td>
</tr>
<tr>
<td>Ref. Num</td>
<td>Name of Data Set</td>
<td>Year Accessed</td>
<td>Folder Saved</td>
<td>Link</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>12</td>
<td>Homeland Infrastructure Foundation-Level Data (HIFLD) Open Data: Lakes for Inland Electronic Navigational charts (IENCs)</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/0_land_water2_2020_20200712.shp</td>
<td>https://hifld-geoplatform.opendata.arcgis.com/datasets/lakes-usace-ienc/explore?showTable=true</td>
</tr>
<tr>
<td>14</td>
<td>FirstMap OpenData: Delaware State Forest</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/10000_land_park2_2017_20200714.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/c24b9bfe215040629739dd8a9c877e35/info/metadata?format=default&output=html</td>
</tr>
<tr>
<td>15</td>
<td>FirstMap OpenData: Delaware Nature Area</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/10000_land_park3_2020_20200714.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/520e84a0e9dc424eb3ea75fdde00b896/info/metadata?format=default&output=html</td>
</tr>
<tr>
<td>16</td>
<td>FirstMap OpenData: Public Protected Lands</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/10000_land_protected2_2019_20200714.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/8fb7b97cc9484bda88b307957f551b35/info/metadata?format=default&output=html</td>
</tr>
<tr>
<td>17</td>
<td>FirstMap OpenData: Agricultural Preservation Districts</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/10000_land_protected5_2019_20200714.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/910dd3ceb164b11b8ae8791c5768ed/info/metadata?format=default&output=html</td>
</tr>
<tr>
<td>Ref. Number</td>
<td>Name of Data Set</td>
<td>Year Accessed</td>
<td>Folder Saved</td>
<td>Link</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>18</td>
<td>FirstMap OpenData: Delaware Forest Land Preservation and Easements</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/10000_land_protected6_2019_20200714.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/60e650ca5b86456bb6ce8ce679647a3c3/info/metadata/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>19</td>
<td>FirstMap OpenData: Delaware Forestry Conservation Easements</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/10000_land_protected7_2020_20200714.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/25ab4ea7756f4a80af5512dc90cc37e4a/info/metadata/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>20</td>
<td>Open Data DC: District Government Lands (Owned, Operated, and/or Maintained)</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/11000_land_protected2020_20200714.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/c8caca7f74944d19a9941bc7bdee1a2/info/metadata/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>21</td>
<td>Open Data DC: Recreation Fields</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/11000_land_park2_2020_20200817.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/c8caca7f74944d19a9941bc7bdee1a2/info/metadata/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>22</td>
<td>Open Data DC: Reservation Boundaries</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/11000_land_park3_2020_20200817.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/c8caca7f74944d19a9941bc7bdee1a2/info/metadata/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>27</td>
<td>MyFlorida GeoData: Conservation Owned Lands</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/12000_land_protected2018_20200716.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/474785e38d2634ae0a0e0f7177e286d/info/metadata/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>28</td>
<td>MyFlorida GeoData: Conservation Easements</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/12000_land_protected2018_20200716.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/657c9b9a1a948e8ce1fe9975b5881e/info/metadata/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>30</td>
<td>MyFlorida GeoData: Mitigation Banks</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/12000_land_protected5_2020_20200716.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/63be3554c59a4fc8aaf4f34c64cb43b4/info/metadata/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>31</td>
<td>MyFlorida GeoData: CWA Surface Water Class Boundaries (Class I & II)</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/12000_land_water3_2020_20200716.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/ddad454b0fa345e4b93ea37e73dad61/info/metadata/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>Ref. Number</td>
<td>Name of Data Set</td>
<td>Year Accessed</td>
<td>Folder Saved</td>
<td>Link</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>37</td>
<td>iMAP Maryland: Maryland Federal Lands</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/24000_land_park1_2019_20200807.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/e8c94de89d6f4319befe28897d6a89581/info/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>38</td>
<td>iMAP Maryland: Local Protected Lands</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/24000_land_protected2_2020_20200808.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/77c209139d4534b1aa5c72f18d1cde/info/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>39</td>
<td>iMAP Maryland: Federal Protected Lands</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/24000_land_protected3_2019_20200808.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/47defd42c35e4edab5a7e62b83637b7bdce/info/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>40</td>
<td>iMAP Maryland: Private Conservation Lands</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/24000_land_protected6_2020_20200808.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/5de633b6ebf450b94db08b519c3414/info/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>41</td>
<td>iMAP Maryland: DNR Owned Properties and Conservation Easements</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/24000_land_protected7_2019_20200808.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/7abfc7862f0c4d10ac7ca61951570eda/info/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>42</td>
<td>iMAP Maryland: Agricultural Land Preservation Foundation Easements</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/24000_land_protected8_2020_20200808.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/f11b829c9a0477b8a370c063b05e29e/info/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>43</td>
<td>iMAP Maryland: Coastal and Estuarine Land Conservation Program</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/24000_land_protected9_2019_20200808.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/7abfc7862f0c4d10acc7ca61951570eda/info/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>44</td>
<td>iMAP Maryland: Transfer of Development Rights (TDR) and Purchase Development Rights</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/24000_land_protected10_2020_20200808.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/524e46dfb56b4729c23d2f0e5c1587/info/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>45</td>
<td>iMAP Maryland: Environmental Trust Easements</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/24000_land_protected11_2019_20200808.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/4a6a516aebcc4992ab1164bf5171c277/info/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>46</td>
<td>iMAP Maryland: Forest Conservation Act Easements</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/24000_land_protected12_2019_20200808.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/16c99455a424ae699c670473e353d2fa/info/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>Ref. Number</td>
<td>Name of Data Set</td>
<td>Year Accessed</td>
<td>Folder Saved</td>
<td>Link</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>47</td>
<td>iMAP Maryland: Waterbodies - Lakes</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/24000_land_water1_2019_20200807.shp</td>
<td>https://www.arcgis.com/sharing/rest/content/items/71a539948a5b4751b3b676aec5368ed5/info/metadata.xml?format=default&output=html</td>
</tr>
<tr>
<td>49</td>
<td>Mississippi Geospatial Data Catalog: Marsh</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/28000_land_water1_2010_20200916.shp</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Mississippi Geospatial Data Catalog: Waterbodies (Small) - Inland</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/28000_land_water2_2020_20200806.shp</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Mississippi Geospatial Data Catalog: Waterbodies (Large) - Inland</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/28000_land_water3_2020_20200806.shp</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Mississippi Geospatial Data Catalog: Waterbodies (Small) - Coastal</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/28000_land_water4_2020_20200806.shp</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>NC OneMap: State Owned Lands</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/37000_land_park1_2020_20200623.shp</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>NC OneMap: Game lands</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/37000_land_park2_2020_20200623.shp</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>NC OneMap: Surface Water</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/37000_land_wetland1_2019_20200813.shp</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>The Texas General Lands Office (GLO): State Agency Lands</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/48000_land_park1_2018_20200812.shp</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Texas Parks and Wildlife (TPWD): State Park Boundaries</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/48000_land_park2_2016_20200812.shp</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Texas Tech University Center for Geospatial Technology: Lakes</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/48000_land_water1_2012_20200814.shp</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>ArcGIS: State Parks</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/51000_land_park1_2015_20200814.shp</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Virginia Department of Conservation and Recreation: Conservation lands not including easements</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/51000_land_protected2_2020_20200814.shp</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Virginia Department of Conservation and Recreation: Conservation Easements</td>
<td>2020</td>
<td>Data/Downloaded_Data/Non-Buildable-Area/51000_land_protected3_2020_20200814.shp</td>
<td></td>
</tr>
<tr>
<td>Ref. Number</td>
<td>Name of Data Set</td>
<td>Year Accessed</td>
<td>Folder Saved</td>
<td>Link</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------------</td>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>63</td>
<td>tidyCensus R library</td>
<td>2020</td>
<td>N/A - R Library</td>
<td>https://cran.r-project.org/web/packages/tidyCensus/tidyCensus.pdf</td>
</tr>
<tr>
<td>64</td>
<td>US Bureau of Economic Affairs Regional Data: GDP and Personal Income</td>
<td>2020</td>
<td>Data/Downloaded_Data/CAGDP1_GDP_CurrentDollars</td>
<td>https://apps.bea.gov/itable/iTableHTML.cfm?ReqID=70&step=1</td>
</tr>
<tr>
<td>66</td>
<td>US Census Bureau Building Permits Survey</td>
<td>2020</td>
<td>Data/Downloaded_Data/Building_Permits</td>
<td>https://www.census.gov/construction/bps/</td>
</tr>
<tr>
<td>68</td>
<td>Texas Department of Insurance: Hurricane Harvey Data Call Data through September</td>
<td>2021</td>
<td>Data/Downloaded_Data/Hurricane_Harvey_Insurance_Payout_Data</td>
<td>https://www.tdi.texas.gov/reports/documents/harvey-dc-04252019.pdf</td>
</tr>
</tbody>
</table>
S2 Models

All scripts used in this study to develop the three candidate models are available in the Models folder within Project PRJ-3303 of the DesignSafe-CI Data Depot (Williams and Davidson, 2022). Outputs from these scripts are saved in the Outputs folder.

S2.1 Linear Trend Models

The Python script used to develop the linear trend models is available in the Models/HousingInventoryPrediction_AnnualCounties_Linear.ipynb file.

S2.1.1 Inputs

Users are required to specify which test they want to run (Tests A, B, or C) in the second cell of the python notebook.

The modeling requires the following packages:

1. Pandas (Pandas Development Team, 2020)
2. NumPy (Harris et al., 2020)
3. Scikit-learn (Buitinck et al., 2011)

Input data is available in the Data folder of the project.

S2.1.2 Model Parameters

None to note.

S2.1.3 Outputs

The code saves a csv with the $RMSE_r$, $E[|H|]$, and $s_{|H|}$ (see Eq. 3 and Eq. 4 in Sect. 5 of the publication) for each input and output combination for each test. This csv is located at Outputs/HousingInventoryPrediction_AnnualCounties_Linear_Results.csv.

S2.2 Autoregressive Integrated Moving Average (ARIMA) Models

The Python script used to develop the linear trend models is available in the Models/HousingInventoryPrediction_AnnualCounties_ARIMA.ipynb file.
S2.2.1 Inputs

Users are required to specify which test they want to run (Tests A, B, or C) in the second cell of the python notebook.

The modeling requires the following packages:
1. Pandas (Pandas Development Team, 2020)
2. NumPy (Harris et al., 2020)
3. Scikit-learn (Buitinck et al., 2011)
4. Statsmodels (Seabold and Perktold, 2010)

Input data is available in the Data folder of the project

S2.2.2 Model Parameters

Values of 0, 1, and 2 were tested for p, d, and q parameters, resulting in eight ARIMA models tested for each input/output combination.

S2.2.3 Outputs

The code saves a csv with the $RMSE_r$, $E[|H|]$, and $s_{|H|}$ (see Eq. 3 and Eq. 4 in Sect. 5 of the publication) for each p, d, and q combination over all input and output combinations for each test. This csv is located at Outputs/HousingInventoryPrediction_AnnualCounties_ARIMA_Results.csv.

S2.3 Long-Short Term Memory (LSTM) Models

The Python script used to develop the linear trend models is available in the Models/HousingInventoryPrediction_AnnualCounties_LSTM.ipynb file.

S2.3.1 Inputs

Users are required to specify which test they want to run (Tests A, B, C, D, E, F, G, H, or I) in the second cell of the python notebook.

The modeling requires the following packages:
1. Pandas (Pandas Development Team, 2020)
2. NumPy (Harris et al., 2020)
3. Scikit-learn (Buitinck et al., 2011)
4. Tensorflow (Martín Abadi et al., 2015)

Input data is available in the Data folder of the project
S2.3.2 Model Parameters (Table S2)

Table S2 provides a list of hyperparameters used for all LSTM models.

Table S2. LSTM Hyperparameters

<table>
<thead>
<tr>
<th>Hyperparameter Type</th>
<th>Hyperparameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training / testing split</td>
<td>80 / 20</td>
</tr>
<tr>
<td>Random state</td>
<td>314</td>
</tr>
<tr>
<td>Activation method</td>
<td>Relu</td>
</tr>
<tr>
<td>Loss metrics</td>
<td>Mean squared error</td>
</tr>
<tr>
<td>Optimizer</td>
<td>Adam</td>
</tr>
<tr>
<td>Learning rate</td>
<td>1e-3</td>
</tr>
<tr>
<td>Decay rate</td>
<td>1e-6</td>
</tr>
<tr>
<td>Batch size</td>
<td>64</td>
</tr>
<tr>
<td>Dropout rate</td>
<td>0.2</td>
</tr>
<tr>
<td>Number of units in each LSTM layer</td>
<td>384</td>
</tr>
<tr>
<td>Number of units in final dense layer</td>
<td>32</td>
</tr>
<tr>
<td>Number of LSTM layers</td>
<td>3</td>
</tr>
<tr>
<td>Number of dense layers</td>
<td>1</td>
</tr>
</tbody>
</table>

S2.3.3 Outputs

The code saves a csv with the RMSE_r, $E[|H|]$, and $s_{|H|}$ (see Eq. 3 and Eq. 4 in Sect. 5 of the publication), along with other error metrics and hyperparameters, over all input and output combinations for each test. This csv is located at Outputs/HousingInventoryPrediction_AnnualCounties_LSTM_Results.csv. The best-performing LSTM models for Tests A, B, C, D, E, and F are also saved in the Outputs/LSTM_Models folder as an HDF5 file (note that not all models are currently saved in this folder to save storage space; only the best models for each test is provided in the project. Contact the corresponding author if interested in the additional HDF5 files).

S2.4 Model References

Williams, C. and Davidson, R.: Regional county-level housing inventory predictions and the effects on hurricane risk using long-short term memory (LSTM) methods and applied to the southeastern United States (US), DesignSafe-CI, 2022.
S3 Analysis

All files used for the analysis of the work are available in the Analysis folder within Project PRJ-3303 of the DesignSafe-CI Data Depot (Williams and Davidson, 2022).

S3.1 Best Test Result

The Python script used to determine the input/output combination with the lowest errors for each test is available in the Analysis/HousingInventoryPrediction_AnnualCounties_BestTest.ipynb file. This script finds the test with the lowest multiplied value of $RMSE_r$, $E[|H|]$, and $s_{|H|}$ (see Eq. 3 and Eq. 4 in Sect. 5 of the publication) and publishes it in the resulting csv file saved here: Analysis/HousingInventoryPrediction_AnnualCounties_CombinedBest_Results.csv

S3.2 Figures

The Python script used to visualize the modeling errors and predictions is available in the Analysis/HousingInventoryPrediction_AnnualCounties_Figures.ipynb file. This script first provides a map of the study area, available as Figure 1. This script then produces the modeling errors for the best univariate models in Tests A, B, and C, used to create Figure 3. Modeling errors and predictions are then computed for the recommended REACH20 model and saved as Outputs/HousingInventoryPrediction_AnnualCounties_LSTM_REACH20_Errors.csv and Outputs/HousingInventoryPrediction_AnnualCounties_LSTM_REACH20_Predictions respectively. Figures 4 and 5 use the REACH20 model error data, while Figs. 6 through 10 use the REACH20 prediction data. The code concludes with an application of Hurricane Harvey loss data to the projected housing rates, utilizing data from the Texas Department of Insurance (2019) [68], to produce Figs. 11 and 12. All figures are saved in the Analysis/Figures folder. Note that the final labeling of most figures used in the supporting publication was performed manually.