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Abstract. Drought is a major natural hazard in the Bolivian
Altiplano that causes large agricultural losses. However, the
drought effect on agriculture varies largely on a local scale
due to diverse factors such as climatological and hydrological
conditions, sensitivity of crop yield to water stress, and crop
phenological stage among others. To improve the knowledge
of drought impact on agriculture, this study aims to classify
drought severity using vegetation and land surface tempera-
ture data, analyse the relationship between drought and cli-
mate anomalies, and examine the spatio-temporal variability
of drought using vegetation and climate data. Empirical data
for drought assessment purposes in this area are scarce and
spatially unevenly distributed. Due to these limitations we
used vegetation, land surface temperature (LST), precipita-
tion derived from satellite imagery, and gridded air temper-
ature data products. Initially, we tested the performance of
satellite precipitation and gridded air temperature data on a
local level. Then, the normalized difference vegetation index
(NDVI) and LST were used to classify drought events associ-
ated with past El Niño–Southern Oscillation (ENSO) phases.
It was found that the most severe drought events generally
occur during a positive ENSO phase (El Niño years). In addi-
tion, we found that a decrease in vegetation is mainly driven
by low precipitation and high temperature, and we identi-
fied areas where agricultural losses will be most pronounced
under such conditions. The results show that droughts can
be monitored using satellite imagery data when ground data

are scarce or of poor data quality. The results can be espe-
cially beneficial for emergency response operations and for
enabling a proactive approach to disaster risk management
against droughts.

1 Introduction

Agricultural production is highly sensitive to weather ex-
tremes, including droughts and heat waves. Losses due to
such hazard events pose a significant challenge to farmers
as well as governments worldwide (UNISDR, 2009, 2015).
Worryingly, the scientific community predicts an amplifica-
tion of these negative impacts due to future climate change
(IPCC, 2013). Especially in developing countries such as
Bolivia, drought is a major natural hazard, and Bolivia has
experienced large socio-economic losses in the past due to
such events (UNDP, 2011; Garcia and Alavi, 2018). How-
ever, the impacts vary on a seasonal and annual timescale,
in regards to the hazard intensity, as well as the existing ca-
pacity to prevent and respond to droughts (UNISDR, 2009,
2015). Regarding the former, the El Niño–Southern Oscil-
lation (ENSO) plays an especially important role in several
regions of the world, including the Bolivian Altiplano, as it
drives drought occurrence that could cause losses of agri-
cultural crops and increase food insecurity (Kogan and Guo,
2017). The most important rainfed crops in the region include

Published by Copernicus Publications on behalf of the European Geosciences Union.



996 C. Canedo-Rosso et al.: Drought impact in the Bolivian Altiplano agriculture

quinoa and potato (Garcia et al., 2007). Generally speaking,
agricultural productivity in the Bolivian Altiplano is low due
to adverse weather and poor soil conditions (Garcia et al.,
2003). On the other hand, low agricultural production levels
can also be associated with ENSO (Buxton et al., 2013).

The ENSO is a climate phenomenon that affects the pre-
cipitation variability of the Bolivian Altiplano (Thompson et
al., 1984; Aceituno, 1988; Vuille, 1999). The ENSO is de-
fined as a periodical variation of the sea surface tempera-
ture over the tropical Pacific Ocean, and it represents neu-
tral, warm (El Niño), and cold (La Niña) phases. The posi-
tive phase of ENSO is generally associated with warmer and
dryer conditions, while the negative phase is associated with
cooling and wetter conditions (Garreaud and Aceituno, 2001;
Garreaud et al., 2003; Thibeault et al., 2012). Thus, droughts
are generally driven by the positive ENSO phase in the
study area (Thompson et al., 1984; Garreaud and Aceituno,
2001; Vicente-Serrano et al., 2015). Previous research has
addressed the influence of ENSO on agriculture in South
America and the globe (see Iizumi et al., 2014; Ramirez-
Rodrigues et al., 2014; Anderson et al., 2017). These studies
were calling for a better understanding of the association be-
tween ENSO and agriculture to improve crop management
practices and food security. However, predicting the ENSO
effects is challenging, since the ENSO evolution depends not
only on the tropic Pacific Ocean temperature, but also on
atmospheric convection, climate variability, and teleconnec-
tion with other climate anomalies (Santoso et al., 2019).

The implementation of drought risk management ap-
proaches is now seen as fundamental (see e.g. the Sustainable
Development Goals or the Sendai Framework for Risk Re-
duction) for sustainable development in vulnerable regions,
including Latin American countries such as Bolivia (Verbist
et al., 2016). To lessen the long-term impacts of these ex-
treme events, the national government in Bolivia has taken
several steps, e.g. to allocate budgets for emergency opera-
tions to compensate for part of the losses incurred. Most of
these measures are implemented ex post (i.e. after a disas-
ter event). However, based on ENSO forecasting, an El Niño
event can be predicted 1 to 7 months ahead (Tippett et al.,
2012), and consequently there is an opportunity to implement
additional ex ante policies (i.e. before the event) to reduce so-
cietal impacts of droughts, increase preparedness, and gener-
ally improve current risk management strategies.

We embed our research within the IPCC framework
(IPCC, 2012) and conceptually define disaster risk as a func-
tion of the hazard, exposure, and vulnerability. Here, drought
risk was defined as the likelihood of severe alterations in the
normal functioning due to drought hazard interacting with
the vulnerabilities of the exposed socio-environmental sys-
tem, leading to potential adverse effects. Furthermore, disas-
ter risk usually comprises different types of potential losses,
which are sometimes very difficult to quantify (UNISDR,
2009). In the case of drought, usually four different types
are distinguished (UNISDR, 2009): meteorological, hydro-

logical, agricultural, and socio-economic droughts. In more
detail, a meteorological drought manifests if certain climate
variables (e.g. precipitation) remain under predefined thresh-
old levels over a certain time period, while hydrological
drought is usually determined through reduced water levels
in water bodies and groundwater. Agricultural drought oc-
curs when insufficient soil moisture and precipitation neg-
atively affect crop yields, while agricultural drought may
turn into socio-economic drought if the supply or demand of
agricultural products is negatively affected (see Wilhite and
Glantz, 1985).

Using these concepts and definitions our research aims to
(1) classify agricultural drought severity by applying the nor-
malized difference vegetation index (NDVI; as a proxy for
crop yields), land surface temperature data, and climate data
(as the hazard component); (2) analyse the relationship be-
tween drought and ENSO; and (3) assess drought through ex-
amining the spatio-temporal variability of vegetation and its
association with climate data (implicitly including the vul-
nerability component through the spatio-temporal variabil-
ity). One major constraint for drought risk management in
Bolivia is the scarce and uneven distribution of weather- and
agricultural-production-related ground data. To circumvent
this problem, we test satellite-based and gridded data prod-
ucts (compared to available empirically gauged data) to pro-
vide a full coverage (in respect to land area) for drought as-
sessment and its spatial distribution across the region. Due
to the particular importance of ENSO for drought risk man-
agement, we additionally assess the impacts associated with
ENSO on agriculture for the Bolivian Altiplano. Further-
more, we give indications regarding which climate variables
may be most important in which regions to predict drought
losses that can further be used for hotspot selection. The pa-
per is organized as follows, Sect. 2 provides a discussion
of the data used, Sect. 3 present the methodology applied,
Sect. 4 presents the corresponding results found, and Sect. 5
ends with a conclusion and outlook for the future.

2 Data Used

2.1 Climate data

Our methodology is very much related to the data-scarce sit-
uation for the Bolivian Altiplano, and we therefore start with
an introduction of the available datasets that were used for
our purpose. In regards to the climate dimension, the Al-
tiplano has a pronounced southwest–northeast precipitation
gradient (200–900 mm yr−1) during the wet season occurring
from November to March (Garreaud et al., 2003). Over 70 %
of total precipitation occurs during the summer months (from
December to February; see Fig. 1a) in association with the
South American Monsoon (see Zhou and Lau, 1998; Gar-
reaud et al., 2003). Time series of monthly precipitation at
12 locations as well as mean, maximum, and minimum tem-
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perature at 8 locations from September 1981 to August 2015
were available from the National Service of Meteorology and
Hydrology (SENAMHI) of Bolivia (see Appendix Table A1).
These datasets had less than 10 % of missing data and there-
fore served well for our analysis.

As already indicated, precipitation and temperature gauge
locations are unevenly distributed and mainly concentrated
in the northern Bolivian Altiplano. To improve the spatial
coverage of climate-related data, monthly quasi-rainfall time
series from satellite data the Climate Hazards Group In-
fraRed Precipitation with Station data (CHIRPS) were in-
cluded in our study. CHIRPS represents a 0.05◦ spatial res-
olution satellite imagery and a quasi-global rainfall dataset
from 1981 to the near present (Funk et al., 2015). The ad-
vantage of using CHIRPS is the high spatial resolution of
data, obtained with resampling of TMPA 3B42 (with a 0.25◦

grid cell). The spatial resolution represents a better option
for agricultural studies as well and therefore is most appro-
priate for our approach (CHIRPS is described in detail at
https://www.chc.ucsb.edu/data/chirps, last access: 22 Febru-
ary 2021).

Additionally, a gridded dataset of monthly mean air tem-
perature was obtained from the Physical Sciences Divi-
sion (PSD) of the US National Oceanic and Atmospheric
Administration (NOAA, https://www.esrl.noaa.gov/psd/, last
access: 1 May 2020) defined by Willmott and Matsuura,
using a spatial interpolation of composite stations records
from the Global Historical Climatology Network (GHCN
version 2) and Legates and Willmott (Legates and Willmott,
1990a; Legates and Willmott, 1990b). The gridded air tem-
perature dataset has a resolution of 0.5◦ by 0.5◦ and was
available during the study period from September 1981 to
August 2015. This dataset incorporates station-height infor-
mation through an average air temperature lapse rate (Will-
mott and Matsuura, 1995). Here, a digital elevation model
was used for the interpolation to adjust air temperatures in
relation to sea level.

2.2 Land surface data: vegetation and temperature

Apart from climate datasets, NDVI was assembled from
the Advanced Very High Resolution Radiometer (AVHRR)
sensors by the Global Inventory Monitoring and Modelling
System (GIMMS) at semi-monthly (15 d) time steps with
a spatial resolution of 0.08◦. NDVI 3g.v1 (third generation
GIMMS NDVI from AVHRR sensors) was available from
September 1981 to August 2015. The NDVI is an index that
presents a range of values from 0 to 1, and bare soil values
are closer to 0, while dense vegetation is close to 1 (Hol-
ben, 1986). NDVI 3g.v1 GIMMS provides information to
differentiate valid values from possible errors due to snow,
cloud, and interpolation. These errors were removed from the
dataset and replaced with the nearest-neighbour value.

Additionally, the monthly land surface temperature (LST)
was obtained from the Global Land Data Assimilation Sys-

tem (GLDAS) by the Noah Land Surface Model L4 monthly
version 2.0 (Beaudoing and Rodell, 2019). The dataset was
available for the study period September 1981 to August
2015. The LST estimations from GLDAS were based on re-
motely sensed observations of AVHRR (Rodell et al., 2004)
and include an algorithm that relies on an optimal interpo-
lation routine (Ottlé and Vidal-Madjar, 1992) to assimilate
the LST onto a 0.25◦ by 0.25◦ grid. This data record was
selected due to its temporal resolution; however, it is impor-
tant to mention that a higher spatial resolution could improve
the accuracy of agricultural analyses and further reduce the
uncertainties of the data noise originating from land hetero-
geneity.

Finally, the study was conducted for the agricultural land
in the Bolivian Altiplano (∼ 200 000 km2). The agricultural
land was spatially identified based on the land use map de-
veloped by the Autonomous Authority of the Lake Titicaca
(for the northern Altiplano) in 1995 at a scale of 1 : 250 000
(UNEP, 1996) and the Ministry of Development Planning
in 2002 using Landsat imagery and ground information at
a scale 1 : 1 000 000 (http://geo.gob.bo/portal/, last access:
15 May 2019, for the southern Altiplano).

3 Methodology

The analysis of drought impact on agriculture for the Boli-
vian Altiplano and its relationship with the ENSO is based
on the following three steps. Firstly, an evaluation of satel-
lite precipitation and gridded air temperature against gauged
datasets was performed to investigate the accuracy of these
estimates compared to empirical on-the-ground data. Sec-
ondly, the severity of drought was classified using vegetation
and land surface temperature data, and using this information
drought events were associated with the ENSO variability.
Finally, a stepwise regression approach was used to study
the variability of vegetation and its relationship with corre-
sponding climate variables. The overall aim of our study is to
investigate drought effects on agriculture through the analy-
sis of land surface and climate variations and their relation to
the ENSO anomalies.

3.1 Evaluation of climate data

The performance of the satellite-based data (compared to
empirical ground data; see Fig. 2) in accurately estimating
the amount of rainfall (for example rain detection capabil-
ity purposes) was based on statistical measures for monthly
pairwise time series, including categorical analyses, and fol-
lows methodologies suggested and applied in previous stud-
ies in this region, which were selected for comparison rea-
sons (Blacutt et al., 2015; Satgé et al., 2016). The mean er-
ror (ME), bias, and mean absolute error (MAE) were calcu-
lated based on Wilks (2006). These measures evaluate the
prediction accuracy of the satellite data compared to gauged
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Figure 1. (a) Gauged mean monthly total precipitation and average maximum and minimum temperature from September 1981 to Au-
gust 2015. (b) Mean monthly NDVI at the same spatial locations. Lower and upper box boundaries show the 25th (Q1) and 75th (Q3)
percentiles, respectively; the line inside the box is the median; the lower and upper error lines indicate 1.5 times the interquartile range
(Q3–Q1) from the top or bottom of the box; white circles represent data falling outside 1.5 times the interquartile rage.

data. The ME and bias show the degree of over- or underes-
timation (Duan et al., 2015). In contrast, as with measuring
the absolute deviation, MAE shows only non-negative val-
ues. The ME, bias, and MAE perfect match corresponds to
zero between gauge observation and satellite-based estimate.
Furthermore, and similar to Blacutt et al. (2015) and Satgé
et al. (2016), the Spearman rank correlation was computed
to estimate the goodness of fit to observations. To evaluate
results, and in accordance with similar studies, correlation
coefficients larger or equal to 0.7 were considered reliable
(Condom et al., 2011; Satgé et al., 2016). The ME, bias, and
MAE were calculated according to Eqs. (1), (2), and (3) in
Table 1, respectively.

Two statistical indicators based on contingency tables
were computed for the categorical statistics, namely proba-
bility of detection (POD) and false alarm ratio (FAR). The
POD indicates what fraction of the observed events was cor-
rectly estimated, and FAR indicates the fraction of the pre-
dicted events that did not occur (Bartholmes et al., 2009;
Ochoa et al., 2014; Satgé et al., 2016). The POD and FAR
range from 0 to1, where 1 is a perfect score for POD, and 0
is a perfect score for FAR. These measures were used to eval-
uate the satellite precipitation estimations. Here, the rainfall
amounts are considered as binary values, i.e. rain occurrence
or absence. Based on this approach, three counting variables
were taken into account: the number of events when the satel-
lite rain estimation and the rain gauge report a rain event (hit
or H), when only the satellite reports a rain event but no rain
on the ground is observed (false alarm or F), and when only
the rain gauge reports a rain event but not the satellite and
therefore is a miss (M). The POD and FAR were calculated
according to Eqs. (4) and (5) in Table 1, respectively.

Besides the precipitation data, the gridded air temperature
data were evaluated using ground data. The gridded air tem-
perature was correlated with the mean gauged temperature
at the same spatial location. The mean temperature of the

gauged data was calculated using the arithmetic mean be-
tween the maximum and minimum temperature. The regres-
sion performance was evaluated using the monthly pairwise
time series to define the Spearman rank correlation, relative
ME, bias, and MAE. For air temperature, the MAE was de-
fined using absolute values.

3.2 Drought associated with ENSO

Healthy vegetation usually shows enlarged near infrared and
reduced visible bands and emits less absorbed thermal in-
frared radiation, resulting in lower surface temperature (Ko-
gan and Guo, 2017). Therefore, vegetation indices and land
surface temperature (LST) are widely used for water and en-
ergy balance approaches (see Moran et al., 1994; Corbari et
al., 2010; Sánchez et al., 2012; Helman et al., 2015). Pre-
vious findings indicate a negative (positive) relationship be-
tween LST and NDVI caused by limited moisture (energy-
temperature) availability for vegetation growth (Karnieli et
al., 2010). Drought spells typically present low NDVI and
high LST due to vegetation deterioration and higher con-
tribution of the soil signal (Kogan, 2000). Here, we study
the relationship between LST and NDVI using the vegeta-
tion health index (VHI, Eq. 8) developed by Kogan (1995)
that combines the vegetation condition index (VCI, Eq. 6)
and temperature condition index (TCI, Eq. 7). VCI compares
the current NDVI with the range of NDVI observations dur-
ing the study period that allows us to seek the variability of
the signal, showing an increased VCI when NDVI increases.
(Kogan, 1995; Kogan, 2000; Kogan and Guo, 2017). In con-
trast, the TCI formulates a reverse ratio compared to the VCI,
decreasing when LST increases, assuming that higher land
surface temperatures suggest a decreasing soil moisture caus-
ing stress of the vegetation canopy.

The VCI, TCI, and VHI was defined for each month dur-
ing the growing season (from September to April). We as-
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Table 1. Accuracy measures for the performance evaluation of climate estimated variables. Here, N is the number of samples, Si is the
climate estimation for month i, and Gi is the gauged dataset for the same month. H is a hit, F is a false alarm, and M is a miss.

Statistical indicator Abbreviation Units Equation

Mean error ME mm, ◦C
∑
(Si −Gi)/N (1)

Bias Bias %
∑
(Si −Gi)/

∑
Gi × 100 (2)

Mean absolute error MAE %
∑
|(Si −Gi) /Gi |/N × 100 (3)

Probability of detection POD – H /(H +M) (4)
False alarm ratio FAR – F /(H +F) (5)

Figure 2. Mean of total annual precipitation from September 1981 to August 2015 for (a) gauged precipitation data (circles) and isohyets
(solid line), (b) the CHIRPS satellite rainfall product, and (c) major political divisions of Bolivia.

sumed the occurrence of a drought event when the indices
were lower than 40 %. The classification of drought was es-
tablished based on the severity of the event in which five
classes were defined: extreme (≤ 10), severe, (≤ 20), mod-
erate (≤ 30), mild (≤ 40), and no (> 40) drought (Bhuiyan
and Kogan, 2010).

The drought events were further classified based on the oc-
currence of El Niño and La Niña events (Table 3). The classi-
fication ENSO was obtained from Null (2018). El Niño and
La Niña events were identified from five consecutive over-
lapping 3-month mean sea surface temperatures for the Niño
3.4 region (in the tropical Pacific Ocean). A moderate El
Niño (La Niña) was defined as five consecutive overlapping
3-month periods at or above the +1.0 to +1.4 ◦C anomaly
(−1.0 to −1.4 ◦C), a strong El Niño (La Niña) event for a
threshold between the +1.5 and +1.9 ◦C anomaly (−1.5 to
−1.9 ◦C anomaly), and a very strong El Niño event for a
threshold equal to or greater than the +2 ◦C anomaly (https:
//ggweather.com/enso/oni.htm, last access: 15 May 2020).

For this study, a neutral or weak phase was defined as a
threshold between the −0.9 and +0.9 ◦C anomaly.

3.3 Regression of vegetation and climate variables

A stepwise regression approach was used to quantify the de-
pendency between vegetation and climate variables (satellite-
based precipitation and gridded air temperature; Eq. 10) to be
used for the hotspot selection process. In more detail, the re-
sults presented here are a combination of forward and back-
ward selection techniques to increase the robustness of the
results (in terms of explanatory power, i.e. variability ex-
plained, as well as variable selection, i.e. same variable se-
lected across a range of possible models). The independent
variable considered was NDVI, and the dependent variables
were selected to include precipitation and air temperature
(for the same spatial location across the study region). We as-
sumed that NDVI represents the crop phenological stages of
the growing season that is from September to April (Fig. 1).
Precipitation was selected as a predictor due to its relevance
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Table 2. Drought classification indices.

Drought index Abbreviation Equation

Vegetation condition index VCI (NDVIi −NDVImin) / (NDVImax−NDVImin) (6)
Temperature condition index TCI (LSTmax−LSTi) / (LSTmax−LSTmin) (7)
Vegetation health index VHI 0.5 VCI+ 0.5 TCI (8)

Here, NDVIi (LSTi ) is the monthly NDVI (LST) and NDVImax and NDVImin (LSTmax and LSTmin) are its multi-year absolute
maximum and minimum (1981–2015), respectively. We took a mean of VCI and TCI assuming that they equally contribute to the VHI.

Table 3. El Niño and La Niña phases (from Null, 2018).

El Niño La Niña

Moderate Strong Very strong Moderate Strong

1986–1987 1987–1988 1982–1983 1995–1996 1988–1989
1994–1995 1991–1992 1997–1998 2011–2012 1998–1999
2002–2003 2015–2016 1999–2000
2009–2010 2007-2008

2010–2011

for water availability for vegetation growth. Precipitation is
the main source of water in the Altiplano because only 9 %
of the Bolivian cropped surface area is irrigated (INE, 2015).
Air temperature is a relevant variable due to photosynthetic
and respiration processes (Karnieli et al., 2010). Firstly, the
NDVI was related to CHIRPS rainfall datasets. Secondly,
air temperature was included in the analysis. Here, only the
NDVI grids for agricultural land were selected. Since, agri-
cultural production data are scarce in the region, we suggest
that crop yield data can be improved using the NDVI. Be-
sides improving the crop yield resolution, the NDVI also al-
lows us to analyse the variability of vegetation at a monthly
timescale. This makes it possible to analyse the phenology
of the studied crops through to the growth phases. NDVI es-
timates the vegetation vigour (Ji and Peters, 2003) and crop
phenology (Beck et al., 2006). The final regression model for
each spatial unit was defined as

NDVI= β0+β1 precipitation+β2 air temperature. (1)

For the forward selection, the variables were entered into
the model one at a time in an order determined by the strength
of their correlation with the criterion variable (only including
variables if they present a confidence level of 95 %). The ef-
fect of adding each variable was assessed during its entering
stage, and variables that did not significantly add to the fit of
the model were excluded (Kutner et al., 2004). For backward
selection, all predictor variables were entered into the model
first. The weakest predictor variable was then removed and
the regression fit re-calculated. If this significantly weakened
the model, then the predictor variable was re-entered; other-
wise it was deleted. This procedure was repeated until only
useful predictor variables (in a statistical sense, e.g. signifi-
cant as well as model fit) remained in the model (Rencher,

1995). The results were compared with results from the lit-
erature regarding phenology and weather-related characteris-
tics of crops.

It should be noted that the precipitation in the Altiplano
shows a marked rainy season from November to March. The
peak of precipitation is in December and January (Fig. 1a).
Additionally, NDVI displays a peak in March and April
(Fig. 1b). The lag between the precipitation and NDVI is
reasonable since vegetation requires time to grow (e.g. Shin-
oda, 1995; Cui and Shi, 2010; Chuai et al., 2013). Consider-
ing this lag time, the 3-month time series of NDVI was re-
gressed with the 3-month time series of the climate variables
(satellite-based data product of precipitation and gridded data
of air temperature) during the growing period for the agricul-
tural land. First, the NDVI and the climate variables were
related considering the overlapping 3-month time series, and
afterwards a relation was developed considering a lag from
1 to 4 months between NDVI and climate variables, result-
ing in 22 regressions per NDVI grid. The regressions were
developed for each NDVI grid separately, associated with
the nearest precipitation and air temperature dataset. Prior
to the stepwise regression analysis, the 3-month time series
of NDVI, satellite precipitation, and gridded air temperature
data were standardized.

4 Results

Validation of the satellite rain data using empirical precip-
itation data from the weather stations was done for the 12
locations where gauge precipitation data were available (see
Fig. 2 and Table A1). The qualitative methods discussed in
Sect. 3.1 for the CHIRPS rainfall estimates show differences
between summer (from December to March) and winter sea-
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son (from June to August). CHIRPS data show better ac-
curacy during summer. The precipitation during the austral
summer is highly relevant because it concentrates the 70 %
of the annual rainfall (Garreaud et al., 2003), and it occurs
during the growing season. During May, CHIRPS data show
lower accuracy compared to the other months. The precipi-
tation from May to August is almost null in the study area
(Fig. 1), and it will be further described as the dry season.
This season presents stable atmospheric conditions with few
precipitation events (Garreaud et al., 2003).

Interestingly, the Spearman rank correlation between
monthly gauged precipitation and satellite rain product
datasets was significant (p value< 0.05) for all loca-
tions. The correlation coefficients (r) vary from 0.5 to 0.8
(mean= 0.7). The ME and bias disclose an underestima-
tion of precipitation estimation during October, November,
and April and an overestimation during the summer season
(mean= 5 mm and 7 %, respectively) with a peak in Febru-
ary. For the MAE coefficient, CHIRPS estimations are more
accurate during the rainy season (mean= 31 %). In contrast,
CHIRPS data indicate poor accuracy during the dry sea-
son (mean MAE= 92 %). From June to August, CHIRPS
data present an underestimation of the gauged precipitation
(mean bias=−39 %). Summarizing these observations, we
conclude that the CHIRPS rainfall dataset is more accurate
during the rainy season, and it represents an adequate alter-
native in case of lack of gauged data or in case of poor data
quality. However, it should be noted that such data still must
be used with caution considering the uncertainties due to the
under- or overestimation of precipitation along the heteroge-
neous topography of the Altiplano (see Paredes-Trejo et al.,
2016; Paredes-Trejo et al., 2017; Rivera et al., 2018).

Moving from rainfall to temperature, the inter-annual tem-
perature at the eight locations varied considerably between
summer (from December to March) and winter (from June to
August), including a larger variance for the minimum tem-
perature (Fig. 1a). The mean monthly air temperature from
gridded data was compared with mean temperature of gauged
data. The gridded air temperature underestimated the mean
gauged temperature, and this error could be due to the hetero-
geneous topography and high elevation. The Spearman cor-
relation at the eight stations displayed coefficients from 0.1
to 0.7. From November to April, the gridded air temperature
data show significant correlations (p value< 0.05). Large
correlations are shown during summer season (mean= 0.7),
while the other months show rather weak correlations. ME
and bias show a slight underestimation from October to April
(mean=−0.5 ◦C and −4 % respectively) and an overesti-
mation from May to August (mean= 0.3 % and 12 % re-
spectively). Finally, MAE is about 1.2 ◦C from September
to April, and higher values develop during winter season
(mean= 1.6 ◦C). In conclusion, the gridded air temperature
data product performs better from November to April. Sim-
ilar to the precipitation data, the application of gridded air
temperature data must take into account the potential errors

due to the estimation uncertainties, mainly during winter sea-
son.

As discussed above, the VCI, TCI, and VHI were calcu-
lated during the growing season. The sowing period depends
on the initial soil moisture content; therefore the beginning of
the growing season oscillates from September to November
(Garcia et al., 2015). For this reason, the drought severity was
classified considering the mean of VCI, TCI, and VHI for the
agricultural land during November–April. Figure A1 shows
mean monthly VCI from November 1981 to April 2015. The
major drought events (severe or extreme) are visible in 1982–
1983, 1983–1984, and 2009–2010, followed by moderate
drought events during 1987–1988 and 1993–1994, as well
as several mild events. Figure A2 shows the mean monthly
TCI, where the major drought events (severe or extreme) oc-
curred in 1982–1983, 1987–1988, 1997–1998, 2004–2005,
and 2009–2010, followed by moderate drought events during
1981–1982, 1983–1984, 1994–1995, 2006–2007, and 2008–
2009, and several mild events as well. Finally, Fig. A3 shows
the VHI results, in which the major drought events occurred
during 1982–1983, 2004–2005, and 2009–2010.

In a next step we related drought indices with the ENSO
phases (Table 4). Extreme and severe droughts were gener-
ally found during the El Niño phase. The extreme drought of
1982–1983 coincided with a very strong El Niño phase. For
this event, the largest economic losses caused by droughts
during the study period are reported (Table 5), followed by
the very strong El Niño phase of 1997–1998, which re-
ported the second largest economic losses. Besides these two
main drought events, the strong El Niño during 1987–1988
coincided with an extreme/moderate drought (TCI≤ 10 %,
VCI≤ 30 %) classification. During this period, large eco-
nomic losses were reported as well (Table 5). In contrast,
the strong El Niño during 1991–1992 showed low severity
(mild drought VCI≤ 40 %), and no economic losses were
reported. This indicates that despite the fact that the El
Niño phenomenon is generally associated with drought in
the Altiplano, there are several other mechanisms that drive a
drought occurrence and determine its severity. For instance,
dry (wet) and warm (cool) conditions during El Niño (La
Niña) phases are generally shown in the Altiplano (Garreaud
et al., 2003). However, an anomalous location and inten-
sity of zonal wind anomalies could cause disturbances of the
warming and cooling air patterns causing rainfall anomalies
in the region (Garreaud and Aceituno, 2001). This is the case
of the dry La Niña during 1988–1989 that showed a mild
drought classification (TCI≤ 40 %).

One severe (1983–1984) and one extreme (2004–2005)
event occurred during a neutral/weak ENSO. The severe
drought (VCI≤ 20 %) occurred during a neutral phase of
1983–1984. This coincides with the findings of Vicente-
Serrano et al. (2015) that analysed the standardized pre-
cipitation/evaporation index in Bolivia, which is an alter-
native technique to characterize a meteorological drought.
The extreme drought (TCI≤ 10 %) of 2004–2005 occurred
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Figure 3. Monthly accuracy measures of CHIRPS rainfall data product. Mean monthly values are represented by black circles, and bars
represent the standard error of the mean.

Figure 4. Same as Fig. 3 but for accuracy measures of the gridded air temperature data product.

in November and December. From January to April of 2004–
2005 the VCI and VHI were above 40 %, and there were no
claims of drought losses in the Altiplano for this particular
year (Table 5). Besides these two events, moderate and mild
droughts also occurred during non-El Niño phases.

Table 5 shows that five drought events were reported dur-
ing a neutral ENSO phase. In 2012–2013, the largest im-
pact occurred, affecting about 80 000 people in the Altiplano
(Desinventar Sendai, 2020). Despite the fact that the mean of
the drought indices indicates no drought during this period
(VCI, TCI, and VHI> 40 %), some spatial locations in the
study region indicated the occurrence of a drought event in
November and December (21 % and 29 % of the total stud-
ied grids showed mild and moderate droughts for the TCI and
VCI respectively).

Regarding the relationship between vegetation and cli-
mate variables, we note that the precipitation season occurs
mainly during the austral summer months (from December
to March), and the vegetation development shows a lag with
a maximum development around March and April (Fig. 1).
The NDVI (Fig. 1b) shows a similar growing pattern to the
crop phenology in the region, which starts in September and
ends in April. Maximum and minimum temperature varies
during the year. Higher temperature during the austral sum-
mer leads to higher evapotranspiration and a decrease in wa-
ter retained in the root zone. With this presumption, stepwise
linear regression models were tested using 3-month time se-
ries of NDVI as the dependent variable and 3-month time se-
ries of satellite-based data product of precipitation and grid-
ded air temperature as independent variables (Eq. 10). The
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Table 4. Drought index classification during ENSO phases.

ENSO Drought VCI TCI VHI

El Niño Extreme 1982–1983, 1987–1988, 1997–
1998

Severe 1982–1983, 2009–2010 2009–2010 1982–1983, 2009–2010

Moderate 1987–1988 1994–1995

Mild 1986–1987, 1991–1992 1986–1987 1994–1995, 1997–1998

La Niña Mild 1995–1996, 2007–2008, 2010–
2011

1988–1989

Neutral/weak Extreme 2004–2005

Severe 1983–1984

Moderate 1993–1994 1981–1982, 1983–1984, 2006–
2007, 2008–2009

2004–2005

Mild 1981–1982, 1996–1997, 2003–
2004, 2008–2009

1984–1985 1990–1991, 1993–
1994, 2014–2015

1981–1982, 1983–1984, 1990–
1991, 1993–1994, 2005–2006,
2008–2009

Table 5. Drought impact in Bolivia (from EM-DAT, 2020, BID,
2016, and CAF, 2000).

Year ENSO phase Affected people Total damage
(thousands of USD)

1982–1983 El Niño 3 083 049 917 200
1987–1988 El Niño 48 400
1989–1990 Neutral 283 160
1997–1998 El Niño 279 310
1993–1994 Neutral 50 000
1999–2000 La Niña 20 000
2003–2004 Neutral 55 000
2007–2008 La Niña 27 500
2009–2010 El Niño 62 500 100 000
2012–2013 Neutral 340 355
2013–2014 Neutral 51 180

stepwise regression was defined considering the overlapped
3-month time series and the 3-month time series with a lag
from 1 to 4 months at the same spatial location over the agri-
cultural land.

The results of the stepwise regression show a larger coeffi-
cient of determination (R2) in the northern and central Boli-
vian Altiplano, starting from the southern Lake Titicaca and
moving southwards to Lake Poopó, and close to the rivers’
paths. Lower R2 values are shown along the southwestern
Bolivian Altiplano that could be explained through the large
variance of the NDVI, which may depend to on other factors
besides precipitation and temperature, including crop man-
agement. Figure 5 shows the R2 of the best fit regression in
the Bolivian Altiplano for the 3-month period of NDVI and
the climate variables (precipitation and temperature) during
the beginning and end of the growing season. It can be seen

that the NDVI depends largely on the studied climate vari-
ables. This may be due to the crop’s sensitivity for water
stress during specific stages of the growing season. For in-
stance the most sensitive stages of the quinoa crop are the
emergence, flowering, and grain development (see Geerts et
al., 2008; Geerts et al., 2009), as well as the near absence of
irrigation practices in most of these regions.

In more detail, the stepwise regression results for the over-
lapping 3-month time series of NDVI and climate variables
for SON (September, October, and November) show statis-
tically significant coefficients for precipitation and air tem-
perature at 45 % and 98 % of the agricultural area in the Bo-
livian Altiplano with a median of 0.2 and 0.7, respectively
(Fig. 5a). This indicates that the NDVI increases with more
rain and higher air temperature. Interestingly, the significant
regression coefficients of NDVI for OND (October, Novem-
ber, and December) associated with precipitation and air tem-
perature for SON cover 64 % and 91 % of the agricultural
area and have a positive median of 0.3 and 0.4, respectively
(Fig. 5b). A time lag of 1 month shows larger spatial cover-
age of the response of vegetation to precipitation anomalies.
Here, the largest coefficient of determination are shown in
areas surrounding the Lake Titicaca. Moreover, the response
of the NDVI for MAM (March, April, and May) to the stud-
ied climate anomalies for FMA (February, March, and April)
covers 95 % and 96 % of the agricultural land for precipita-
tion and air temperature, respectively (Fig. 5c). This mostly
shows coefficients of determination ranging from 0.4 to 0.8,
and positive regression coefficients for precipitation and air
temperature have a median of 0.5 and 0.4, respectively. The
hours of sun required for crop development could be an ex-
planation for the time lag between vegetation and the climate
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Figure 5. Coefficient of determination (R2) of NDVI for the 3-month time series for (a) SON, (b) OND, (c) MAM, and (d) MAM and the
climate variables (satellite precipitation and gridded air temperature products) for SON, SON, FMA, and MAM respectively. The significant
regression coefficients for precipitation (air temperature) cover (a) 45 % (98 %), (b) 64 % (91 %), (c) 95 % (96 %), and (d) 23 % (98 %) of
the total studied grids that represent the agricultural land.

variables. In addition, the lag differences between vegetation
and precipitation can be partly explained by the topography,
land cover, groundwater, and soil properties (Quiroz et al.,
2011; Yarleque et al., 2016). Finally, the regression for NDVI
and climate variables for the overlapped 3-month time series
of MAM shows significant coefficients at 23 % and 98 % of
the agricultural land, with a median of 0.4 and 0.6 for pre-
cipitation and air temperature, respectively (Fig. 5d). Hence,
the vegetation response to precipitation is limited for the last
overlapped 3-month time series of the growing season. How-
ever, it should be noted that air temperature remains an im-
portant variable.

To summarize, while acknowledging some important lim-
itations, we found that the CHIRPS dataset is adequate to
be used for drought risk assessment in case of severe data
scarcity for the Bolivian Altiplano. Furthermore, we found
that the vegetation variance can be significantly explained by
precipitation and air temperature. More specifically, we point
out the relevance of precipitation as the main water source
for vegetation development and air temperature as a driver
of photosynthetic processes. Precipitation is particularly im-
portant at the early and late phenological stages, in which
crops are more sensitive to water shortage. This is the case
for the main crops in the region, i.e. quinoa and potato. For
the quinoa crop, the most sensitive phases to water stress are
the emergence, flowering, and grain development (see Geerts
et al., 2008; Geerts et al., 2009). The most sensitive phases of
the potato crop to water stress is the tuber initiation and bulk-
ing (van Loon, 1981; Alva et al., 2012). On the other hand,
air temperature is relevant for vegetation productivity, and
overall we found a positive relation between vegetation and

air temperature. However, in prolonged dry periods, high air
temperature could increase the evapotranspiration rates and
consequently decrease the soil moisture (Huang et al., 2019).
This scenario could impact negatively the vegetation, as this
is the case of the drought events of 1982–1983 and 1997–
1998, where large production losses were reported (Santos,
2006).

5 Discussion and conclusion

We employed satellite-based and gridded dataset products
and tested the dataset’s empirical accuracy as well as per-
formance to similar (but with coarser resolution) datasets
available for the Bolivian Altiplano region. Spatio-temporal
patterns of satellite precipitation and gridded air tempera-
ture anomalies were explored based on monthly time series
during the period September 1981 to August 2015. Drought
severity was evaluated based on a drought classification
scheme using NDVI and LST; this classification was related
with the ENSO anomalies. Finally, association between the
spatial distribution of NDVI with precipitation and air tem-
perature was examined. Using these datasets, it was shown
that drought severity (measured through various drought in-
dices) increases substantially during El Niño years, and as
a consequence the socio-economic drought risk of farmers
will likely increase during such periods. ENSO forecasts as
well as drought severity (through drought indices) can help to
determine possible hotspots of crop deficits during the grow-
ing season. The empirical relationships of land surface and
climate data on the local scale of our approach can support
a proactive approach to disaster risk management against
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droughts, through an evaluation of the evolution of climate
anomalies (in this case the ENSO) and their potential adverse
effects in the region. As it was shown here, the ENSO-warm-
phase-related characteristics are especially important in the
context of extreme drought events and could therefore be in-
corporated within early warning systems as standard prac-
tice. Despite these challenges for the development of drought
early warning systems (see FAO, 2016, 2017), applications
have been successful in the past (e.g. Global Information and
Early Warning System (GIEWS) of FAO and Famine Early
Warning System (FEWS) of USAID). Monitoring and pre-
dicting ENSO can therefore significantly contribute to reduce
the risk of disasters. This study is a first attempt to provide
an assessment of drought impact on agriculture in relation to
the ENSO phenomenon for the Bolivian Altiplano. We fo-
cused on where vegetation is more affected by droughts over
agricultural land and how this can be clarified using satellite
imagery. It is important to note that the variance of drought
indices (as well as NDVI) to a large extent is explained by
precipitation and air temperature anomalies in the studied
region. The agriculture in this semi-arid region is ecologi-
cally fragile, and the main water source is precipitation, and
thus crop production is considerably affected by precipitation
anomalies. However, while an overall response of vegetation
variance to precipitation and air temperature is evident, it is
important to consider other variables, such as evapotranspira-
tion and soil moisture to improve risk-based models. Another
important issue is the time lag of the response of vegetation
to precipitation and air temperature anomalies, which shows
a hysteresis of 1–2 months. These findings provide informa-
tion for future drought risk management and early warning
system applications. In addition, with such information agri-
cultural models can be set up along with risk management
plans with improved accuracy.
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Appendix A

Table A1. Spatial location of the studied weather stations where
gauged precipitation data are available; the stations that also present
temperature maximum and minimum data are indicated by T on the
temperature column.

No. Station name Latitude Longitude Altitude Temperature

1 Ayo Ayo −17.1 −68.0 3888
2 Calacoto −17.3 −68.6 3830 T

3 Collana −16.9 −68.3 3911 T

4 El Alto Aeropuerto −16.5 −68.2 4034 T

5 El Belen −16.0 −68.7 3833 T

6 Oruro Aeropuerto −18.0 −67.1 3701 T

7 Patacamaya −17.2 −67.9 3793
8 Salla −17.2 −67.6 3500
9 San Juan Huancollo −16.6 −68.9 3829
10 Santiago de Huata −16.1 −68.8 3845 T

11 Tiahuanacu −16.6 −68.7 3863 T

12 Viacha −16.7 −68.3 3850 T

Figure A1. Monthly mean VCI (%) from November 1981 to
April 2015. Solid line indicates the minimum monthly value along
the study period. Values below 40% (dashed line) represent a
drought event.

Figure A2. Same as Fig. A1 but for the TCI.

Figure A3. Same as Fig. A1 but for the VHI.
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