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Abstract. Pre-disaster planning and mitigation necessitate
detailed spatial information about flood hazards and their as-
sociated risks. In the US, the Federal Emergency Manage-
ment Agency (FEMA) Special Flood Hazard Area (SFHA)
provides important information about areas subject to flood-
ing during the 1 % riverine or coastal event. The binary na-
ture of flood hazard maps obscures the distribution of prop-
erty risk inside of the SFHA and the residual risk outside of
the SFHA, which can undermine mitigation efforts. Machine
learning techniques provide an alternative approach to esti-
mating flood hazards across large spatial scales at low com-
putational expense. This study presents a pilot study for the
Texas Gulf Coast region using random forest classification
to predict flood probability across a 30 523 km2 area. Us-
ing a record of National Flood Insurance Program (NFIP)
claims dating back to 1976 and high-resolution geospatial
data, we generate a continuous flood hazard map for 12 US
Geological Survey (USGS) eight-digit hydrologic unit code
(HUC) watersheds. Results indicate that the random forest
model predicts flooding with a high sensitivity (area under
the curve, AUC: 0.895), especially compared to the existing
FEMA regulatory floodplain. Our model identifies 649 000
structures with at least a 1 % annual chance of flooding,
roughly 3 times more than are currently identified by FEMA
as flood-prone.

1 Introduction

In the US, pluvial and fluvial flood events are some
of the most damaging environmental hazards, averaging
USD 3.7 billion annually, totaling over USD 1.5 trillion in
total losses since 1980 (NOAA National Centers for Envi-
ronmental Information, NCEI, 2021). This trend represents
an increase of about 15 % in flood losses per year since 2002,
despite large-scale efforts to mitigate losses over the same pe-
riod (Kousky and Shabman, 2017). To offset the rising costs
associated with extreme flood events, pre-disaster planning
and mitigation necessitate detailed spatial information about
flood hazards and their associated risks.

In the US, the Federal Emergency Management Agency
(FEMA) Special Flood Hazard Area (SFHA) – the area of in-
undation associated with a 1 % annual exceedance probabil-
ity – provides a basis for community and household planning
and mitigation decisions (Blessing et al., 2017). These maps,
intended to be used to set flood insurance rates, have become
the de facto indicator of flood risk nationwide and are the
primary reference point when making a vast array of deci-
sions related to flood risk such as where it is safe to develop,
household protective actions, and local mitigation policies.
However, because the SFHA is binary, little information is
provided about the distribution of risk to properties inside of
the mapped flood hazard areas and, even more so, for resid-
ual risks to properties outside of the mapped flood hazard ar-
eas. Thus, the floodplain boundaries result in “dichotomous
decisions”, whereby a house is treated the same whether it
is 1 m or 1 km outside of the floodplain boundary (Brody
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et al., 2018; Morss et al., 2005). As a result, homes are being
built and purchased in at-risk areas, and actions that would
increase flood resilience, such as meeting National Flood In-
surance Program (NFIP) minimum design and construction
requirements, are not being adopted.

Further compounding the SFHA’s inability to indicate at-
risk areas is that many of the nation’s flood hazard maps
are out of date or, worse, non-existent. For example, a 2017
study found that over a quarter of high-risk counties have
US flood hazard maps over 10 years old, failing to capture
recent changes in climatology and land use and land cover
that can heighten risk (Office, 2017). Although FEMA’s Map
Modernization (Map Mod) program updated many of the na-
tion’s flood maps from 2003 to 2008, it still struggles to keep
them up to date (ASFPM, 2020) in part because the models
used to produce the FEMA SFHAs are discontinuous across
large spatial scales and often commissioned on a patchwork,
community-by-community basis that is both slow to imple-
ment and resource-intensive (FEMA, 2015). A recent study
found that 15 % of the NFIP communities have flood hazard
maps that are over 15 years old and that only a third of that
nation’s streams have flood maps (ASFPM, 2020). Updating
the nations floodplain maps and mapping previous unmapped
areas constitute a costly solution at an estimated USD 3.2 bil-
lion to USD 11.8 billion, with an additional USD 107 mil-
lion to USD 480 million per year to maintain them (ASFPM,
2020).

An alternative approach that is gaining popularity are
models that can leverage both big data (e.g., large-scale re-
motely sensed imagery) and high-performance computing
environments to efficiently estimate flood hazard at continen-
tal (Wing et al., 2018; Bates et al., 2020) and global scales
(Ward et al., 2015; Ikeuchi et al., 2017). These models over-
come some of the limitations of community-by-community
watershed-scale modeling by providing a methodologically
consistent approach using comprehensive spatial datasets
that is less resource-intensive. Although capable of accu-
rately identifying general patterns of flood hazard over large
areas, these models often struggle to correctly estimate
small-scale variability in stormwater dynamics within highly
developed areas. That is, model performance at community
and household scales is highly dependent on detailed in-
formation about local-scale hydrology and flood control in-
frastructure, with limited observational data to validate the
results. Moreover, these models still suffer from the same
sources of uncertainty found at the watershed scale includ-
ing, specifically, natural uncertainty arising from physical
processes driving runoff (Singh, 1997), uncertainty found
within model parameterization (Moradkhani and Sorooshian,
2009), and uncertainty arising from the quality or availability
of input data (Rajib et al., 2020). Accounting for uncertainty
at locally relevant scales would likely require significant in-
creases in observational hydrometeorological data and im-
mense financial resources.

Machine learning (ML) methods provide a potential alter-
native to estimate flood hazards based on historical records of
flood loss, especially in resource-limited areas. One such ML
algorithm that has shown to be particularly effective within
flood hazard mapping are random forests, which have re-
cently been used to create a spatially complete floodplain
map of the conterminous United States (Woznicki et al.,
2019) and to predict flood insurance claims at US Census
tract and parcel levels (Knighton et al., 2020). Although ini-
tial work has shown that random forests improve the predic-
tion of flood hazard, there have been no studies that have
used historic records of structural flood damage to estimate
a probabilistic floodplain. Also, there has been little to no
effort to compare random forest predictions against existing
regulatory floodplains.

We address these gaps by introducing a novel method to
map flood hazards continuously across large spatial scales
using a random forest classification procedure trained on
40 years of historic flood damage records from the NFIP. Us-
ing the NFIP data and high-resolution geospatial data (e.g.,
topographic, land use and land cover, soil data), we gener-
ate flood hazard maps for a large coastal area in the Texas
Gulf Coast region. We then compare our modeled outputs
against the FEMA floodplains using multiple metrics at re-
gional and community scales. The following sections pro-
vide further background information on machine learning al-
gorithms and their application to hazards research (Sect. 2),
describe the methods and data used for our analysis (Sect. 3),
and present the model results (Sect. 4). This is followed by a
discussion (Sect. 5) and conclusions (Sect. 6).

2 Background

Data-driven models – those that use statistical or machine
learning algorithms for empirical estimations – are prevalent
in water resource research (Solomatine and Ostfeld, 2008)
and are rapidly gaining popularity for prediction and estima-
tion of flooding in the hydrological sciences (Mosavi et al.,
2018). For instance, models predict stream discharge rates
(Albers and Déry, 2015) and estimate insured flood dam-
age either for the household (Wagenaar et al., 2017) or ag-
gregated (Brody et al., 2009). Data-driven approaches have
also identified flood probability during a flood event (Mob-
ley et al., 2019) (i.e., flood hazard). When data in an area
are sparse, these models can help better describe the system
(Rahmati and Pourghasemi, 2017). Often however, these ap-
proaches require large datasets for an accurate representation
(Solomatine and Ostfeld, 2008). In answer to the data prob-
lem, many data-driven models rely on non-traditional data
sources. For example, using video frames, flood waters can
be identified for a given location (Moy de Vitry et al., 2019).

Flood hazard models use dichotomous variables and driver
layers to predict the likelihood of flooding across the land-
scape. This dichotomous variable can come from a variety of
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datasets, such as high water marks or flood losses (Knighton
et al., 2020). Depending on data availability, models have
predicted flood hazard across time (Darabi et al., 2019) or
for specific events (Lee et al., 2017), producing one of two
outputs: a probability of flooding (Darabi et al., 2019) or dis-
crete classes of susceptibility (Darabi et al., 2019; Dodan-
geh et al., 2020), both of which give more information than
the current SFHA dichotomy, in or out of the flood zone. By
modeling flood hazard through this process, researchers are
able to map large geographic areas (Hosseini et al., 2019)
with potential to scale further given sufficient data availabil-
ity. This method has been shown to quickly (Mobley et al.,
2019) and accurately estimate flooding (Bui et al., 2019).

The number of data available and how they are struc-
tured affect the techniques available for predicting flood haz-
ard. Data-driven flood hazard models require point locations
where flooding has occurred. If non-flooded locations are un-
available, pseudo-absences can be randomly generated for
modeling (Barbet-Massin et al., 2012). Common algorithms
used for predicting flood hazard models include neural net-
works (Janizadeh et al., 2019; Bui et al., 2019); support vec-
tor machines (SVMs) (Tehrany et al., 2019a); and decision
trees, such as random forests (Woznicki et al., 2019; Muñoz
et al., 2018). While other algorithms have been used for
predicting flood hazard (Bui et al., 2019), these three algo-
rithms are often used in machine learning due to their ma-
turity in research and their generalizability. SVMs are ideal
in areas with small sample sizes, but computation times are
quadratic as sample sizes increase (Li et al., 2009). The com-
putational complexity of the model removes the scalability
of the model, a primary benefit over physical models. Neu-
ral networks are often cited as highly accurate (Mosavi et al.,
2018) but often come with a reproducibility problem (Hut-
son, 2018).

Finally, computational requirements for decision trees are
lower than the other two algorithms. The random forest al-
gorithm comes from the decision tree family of models.
The random forest model is highly generalizable within the
drivers’ parameters. Decision trees are non-parametric and
use logic to branch at different values within the independent
variables to best fit the classification (Quinlan, 1986). By
creating numerous trees and democratizing the decision, en-
semble classifiers reduce overfitting of the final model while
maintaining accuracy (Breiman, 2001). Each tree is given a
random subsample of the independent variables to predict the
dependent variable. These ensemble classifiers are computa-
tionally efficient and maintain a high degree of sensitivity
(Belgiu and Drăgut, 2016). Random forests are capable of
identifying interactions between independent variables and
the dependent variable regardless of the effect size (Upstill-
Goddard et al., 2013).

3 Methods and materials

3.1 Study area

We use the US Geological Survey (USGS) Watershed
Boundary Dataset to delineate a region encompassing 13
eight-digit hydrologic unit code (HUC) watersheds that drain
to Galveston Bay and the intercoastal waterway as well as the
lower Trinity and Brazos rivers and the San Bernard River
(Fig. 1). The resulting study area encompasses 28 000 km2

and includes two economic population centers: the Houston–
Woodlands–Sugar Land area, also known as Greater Hous-
ton, home to 4.7 million people and the Beaumont–Port
Arthur–Orange Area, also known as the Golden Triangle,
home to 0.39 million people (Bureau, 2019). Including ru-
ral areas, the total population of the study region is estimated
to be around 8 million, accounting for around 25 % of the
population of Texas (Bureau, 2019).

The region is prone to damaging flood events, resulting
in USD 16.8 billion in insured loss between 1976 and 2017
across 184 826 insurance claims. Predominately clay soils
and low topographic relief coupled with extreme precipita-
tion result in wide and shallow floodplains. Regional flood
events are driven by several dominant mechanisms, including
mesoscale convective systems (MCSs) and tropical cyclones
(Van Oldenborgh et al., 2017). Recent examples of MCS-
driven events include the Memorial Day Flood (2015) and the
Tax Day and Louisiana–Texas floods (2016). Several stalled
tropical cyclones, including tropical storms Claudette (1979)
and Allison (2001) and Hurricane Harvey (2017), have also
resulted in record-setting precipitation. Frequency estimates
of tropical cyclone landfall range from once every 9 years in
the eastern part of the study region to once every 19 years
in the southwest part of the region (NHC, 2015). Historical
storm surge ranges as high as 6 m along the coast. Notable
surge events include the Galveston hurricanes (1900, 1915),
Hurricane Carla (1961), and Hurricane Ike (2008). Several
previous studies have demonstrated that flood hazards are
not well represented by the FEMA SFHA (Highfield et al.,
2013; Brody et al., 2013; Blessing et al., 2017), suggesting
a large proportion of the population along the Texas coast is
not only vulnerable to flooding, but the decision makers lack
the information to properly account for it.

3.2 Data collection

3.2.1 NFIP claims

NFIP flood claims were used as the predictive variable. NFIP
claims between 1976 and 2017 were available for the study,
totaling 184 826 claims, each of which was geocoded to the
parcel centroid. The NFIP flood losses dataset provides the
location, total payout, and structural characteristics. Claims
provide a reliable indication of the presence of flooding
but fail to identify locations that have not flooded, mak-
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Figure 1. Map of the study area. Data originated from the US Census Bureau and the US Geological Survey.

ing the dataset presence only. Random forest algorithms re-
quire a binary dependent variable identifying presence and
absence locations. A pseudo-random sample of background
values can be used as a proxy for locations where flood-
ing is absent (Barbet-Massin et al., 2012). When used in
this way, the pseudo-absences essentially represent the pop-
ulation that could potentially flood. Therefore, the back-
ground sample locations were based on a random selec-
tion of all structures within the study area. The Microsoft
building footprints dataset was used due to the open-source
availability and high accuracy (https://github.com/Microsoft/
USBuildingFootprints, last access: 4 March 2020). The study
matched structures and claims using a one-to-one sample by
watershed and year, meaning that for each claim, a structure
is selected given the same year and is located within the same
watershed. This one-to-one matching reduces potential bias
from an unbalanced dataset (Chen et al., 2004). The final
dataset removed any sample where an independent variable
had null values, but the final ratio remained close to 50 % of
the claims, with a sample size of 367 480.

3.2.2 Contextual variables

To parameterize flood hazard, several contextual variables
were considered which represent the potential predictors of
flooding across the study area (see Table 1). These variables
can be divided into two main categories: (1) topographic (ele-
vation and distance features which drive watershed response)
and (2) hydrologic (overland and soil characteristics which
govern infiltration and runoff). The variables were collected
at different scales based on data availability. All variables
were resampled to a 10 m raster and snapped to the Height
Above Nearest Drainage (HAND) dataset. Below, we out-
line the variables, the reasoning behind their inclusion, and
previous data-driven flood hazard studies that used them.

3.2.3 Hydrologic

Hydrologic variables explain how stormwater moves across
the landscape and, therefore, can help differentiate between
low- and high-flood-potential areas. The amount of stormwa-
ter that a given area can receive is a function of its flow ac-
cumulation potential, which is primarily mediated by three
factors: the soil’s ability to absorb water (i.e., saturated
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Table 1. Concept measurements.

Name Description Initial resolution Range

Accumulated flow Hydrologic accumulation for contributing cells 30 m 0–2.7× 106 cells

Hydraulic conductivity (Ksat)1 Average soil water transmission for all contributing
cells

30 m 0–140 µm/s

Manning’s roughness coefficient2 Average land cover roughness for all contributing
cells

30 m 0.001–0.39

Elevation3 Digital elevation model (DEM) from USGS 30 m 0–155 m

Distance to coast4 Euclidean distance from the coast 10 m 0–155 km

Distance to stream4 Euclidean distance from the nearest ordered stream 10 m 0–15 km

Height Above Nearest Drainage (HAND)5 Relative vertical height compared with nearest
stream, lake, or coastline

10 m 0–59 m

Imperviousness6,7 Percent impervious (NLCD) 30 m 0 %–100 %

Topographic wetness index (TWI) Topographic Wetness Index adjusted to have no 0
values

30 m 8.35–39.53

1 USGS SSURGO database website: https://www.nrcs.usda.gov/ (last access: 4 March 2020).
2 Years: 2001, 2004, 2006, 2008, 2011, 2013, 2016.
3 LANDFIRE database website: https://www.landfire.gov (last access: 4 March 2020).
4 NHDPlus: https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplus-high-resolution (last access: 4 March 2020).
5 Height Above Nearest Drainage: https://web.corral.tacc.utexas.edu/nfiedata/ (last access: 4 March 2020).
6 NLCD website: https://www.mrlc.gov/data (last access: 4 March 2020).
7 Years: 2001, 2006, 2011, 2016.

hydraulic conductivity), roughness (i.e., Manning’s n), and
imperviousness. Flow accumulation measures the total up-
stream area that flows into every raster cell based on a flow
direction network as determined by the National Elevation
Dataset (NED) (Jenson and Domingue, 1988). Areas with
high flow accumulation are more susceptible to receiving
larger amounts of stormwater during a given rainfall event.
Soil infiltration influences the speed and amount at which
stormwater can be absorbed into the ground. When stormwa-
ter cannot move into the ground easily, it may result in ad-
ditional runoff, particularly in urbanized and downstream
areas. Two measures of soil infiltration include lithology
and saturated hydraulic conductivity (Ksat), both of which
have been shown to be strong predictors of flood suscepti-
bility (Brody et al., 2015; Janizadeh et al., 2019; Hosseini
et al., 2019; Mobley et al., 2019). For this study, Ksat values
were assigned to soil classes obtained from the Soil Survey
Geographic Database (SSURGO) of the Natural Resources
Conservation Service (NRCS) using the values presented in
Rawls et al. (1983) and then averaged across the contributing
upstream area for each cell.

Imperviousness is another strong indicator of an area’s
ability to infiltrate water. Previous studies have found that
increasing impervious surfaces as a result of urbanization
reduces infiltration and causes increased surface runoff and
larger peak discharges, making it an important aspect in
determining flood frequency and severity (Anderson, 1970;

Hall, 1984; Arnold Jr. and Gibbons, 1996; White and Greer,
2006). Imperviousness has been previously shown to be
highly important in the Houston region, where urban sprawl
has greatly increased imperviousness in the region and con-
tributed to higher volumes of overland runoff (Brody et al.,
2015; Gori et al., 2019; Sebastian et al., 2019). For this study,
the percentage of impervious surface was measured using the
Percent Impervious Surface raster from the National Land
Cover Database (NLCD) for the years 2001, 2006, 2011, and
2016. Values range from 0 %–100 % and represent the pro-
portion of urban impervious surface within each 30 m cell.
Because comparable remote-sensing imagery only exists for
these years, impervious surface was associated with the near-
est date of each claim.

Roughness influences the speed at which stormwater can
move across the landscape as well as the magnitude of peak
flows in channels (Acrement and Schneider, 1984). Previous
engineering studies have corroborated the relationship be-
tween roughness and overland water flow using Manning’s
roughness coefficient (Anderson et al., 2006; Thomas and
Nisbet, 2007). This coefficient, called Manning’s n, has be-
come a critical input in many hydrological models and has
also been shown to be a good predictor of event-based flood
susceptibility (Mobley et al., 2019). For this study, rough-
ness values were assigned to each NLCD land cover class us-
ing the values suggested by Kalyanapu et al. (2010) and, like
Ksat, were averaged across the contributing upstream area for
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each raster cell for the years 2001, 2004, 2006, 2008, 2011,
2013, and 2016.

3.2.4 Topographic

Elevation and slope are topographic variables frequently
used to model flood hazard (Lee et al., 2017; Tehrany et al.,
2019a; Rahmati and Pourghasemi, 2017; Bui et al., 2019;
Hosseini et al., 2019; Mobley et al., 2019; Darabi et al.,
2019). Low-lying areas tend to serve as natural drainage
pathways, making them more susceptible to flooding and
ponding during rainfall events. Elevation and slope were cal-
culated using the National Elevation Dataset (NED), which
was provided as a seamless raster product via the LAND-
FIRE website at a 30 m resolution (LandFire, 2010).

Three continuous proximity rasters were used in this
study: distance to stream, distance to coast, and Height
Above Nearest Drainage (HAND). Proximity to streams and
the coastline has been shown to be a significant indicator of
flood damage (Brody et al., 2015) as these areas are typi-
cally much more prone to overbanking and surge, respec-
tively. More recent flood hazard studies have used prox-
imity to streams (Lee et al., 2017; Dodangeh et al., 2020;
Janizadeh et al., 2019; Tehrany et al., 2019a, b; Rahmati and
Pourghasemi, 2017; Bui et al., 2019; Hosseini et al., 2019;
Mobley et al., 2019; Darabi et al., 2019), whereas proximity
to coasts has been less common (Mobley et al., 2019). Dis-
tance to both stream and coast was calculated based on the
National Hydrography Dataset (NHD) stream and coastline
features.

HAND is calculated by defining the height of a location
above the nearest stream to which the drainage from that
land surface flows (Garousi-Nejad et al., 2019). Areas with
high measures of HAND are more buffered from flooding be-
cause it requires increasingly more stormwater of short du-
rations to create the peak flows that would reach those loca-
tions. This measure has been used to calculate flood depths,
the probability of insured losses from floods (Rodda, 2005),
soil water potential (Nobre et al., 2011), groundwater po-
tential (Rahmati and Pourghasemi, 2017), and flood poten-
tial (Nobre et al., 2011). HAND was downloaded from the
University of Texas’ National Flood Interoperability Exper-
iment (NFIE) continental flood inundation mapping system
(Liu et al., 2016) at a 10 m resolution.

The Topographic Wetness Index (TWI) (Beven and
Kirkby, 1979) is a popular measure of the spatial distribu-
tion of wetness conditions and is frequently used to identify
wetlands. The TWI is used to quantify the effects of topog-
raphy on hydrologic processes and is highly correlated with
groundwater depth, and soil moisture (Sörensen et al., 2006).
This measure has been found to be an influential and, in some
cases, a significant predictor for estimating flood hazard (Lee
et al., 2017; Tehrany et al., 2019a; Bui et al., 2019; Hosseini
et al., 2019; Tehrany et al., 2019b). The TWI is calculated by

the following equation:

TWI= ln
(A · 900)+ 1

tan
(
(S0·π)

180

) , (1)

where A is the contributing area (or flow accumulation),
and S0 is the average slope over the contributing area. High
values of TWI are associated with areas that are concave,
low-gradient areas where water often accumulates and pools,
making them more vulnerable to flooding.

3.3 Random forest model

Random forest models categorize samples based on the high-
est predicted probability for each class. We developed a ran-
dom forest algorithm at the parcel level (Fig. 2). The NFIP
flood claims dataset was split between a training and test
dataset. The test dataset was based on 30 % of the initial
dataset. Within the training dataset, cross-validation is used
to decide the final variables and parameters. A k-fold sam-
pling method uses 90 % of the training dataset to predict the
other 10 %. This sampling method helps to measure the ro-
bustness of the model as variables are pruned, and param-
eters are tweaked. The cross-validation assessment uses a
10-sample stratified k-fold. Structures were randomly sam-
pled, reducing the potential for storm-event-based bias. In
addition to the k-fold cross-validation, a year-by-year assess-
ment was performed by removing 1 year as a validation sam-
ple for a model based on all other years. For example, 1976
through 2016 were used to predict flood hazard in 2017, then
1977 through 2017 were used to predict 1976, and so forth.
This year-by-year assessment helps to identify the limita-
tions of this flood hazard approach. All random forest com-
putations were performed with the scikit-learn package (Pe-
dregosa et al., 2011) in Python version 3.8.

Creating a properly calibrated random forest requires tun-
ing two parameters to minimize error, and variable selection
to improve generalizability. The two parameters tuned were
the number of trees and the maximum tree depth. The num-
ber of trees controls the size of the forest used for the predic-
tive model. Increasing the number of trees reduces error rates
and increases the attributes used in the decision (Liaw and
Wiener, 2002), but it comes at the cost of increasing com-
putation time. Tree depth controls the maximum number of
decisions that can be made, but too large of a tree will in-
crease the chance of the model overfitting the data and reduce
generalizability. The model used 200 trees and a maximum
tree depth of 90 after optimizing error rates using the k-fold
analysis. Variable reduction reduces the complexity of the
model and decreases the likelihood of the model overfitting
while speeding up the final training and raster predictions. An
out-of-bag error score (OOB) isolates a subset of the training
dataset which is used to measure error rates of each variable
(Breiman, 1996) and generates feature importance. Initially,
all variables were added to the model; those variables with
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Figure 2. Conceptual framework to develop the annualized flood probability.

Figure 3. Feature importance chart. Note that variables below 0.05 were removed from the final model. The red line denotes the cutoff value
for the final model.

the lowest contribution to feature importance were removed
from the final model. Two variables were removed from the
final model for not meeting the required threshold TWI and
flow accumulation (Fig. 3).

A series of metrics were used to identify whether the
model was properly calibrated. Average accuracy and sen-
sitivity are measured for each iteration of the k-fold analy-
sis. Accuracy measures the percentage of correctly identified
flooded and non-flooded samples. Sensitivity estimates the
probability that the flooded sample will be predicted, with
a higher likelihood of flooding than a non-flooded sample
(Metz, 1978) and based on the area under the curve (AUC)
of the receiver operating characteristic (ROC). In practice
AUCs are robust for continuous probabilities and are not lim-
ited by the number of features in a model or a threshold to use
for classification. Both accuracy and sensitivity were com-

pared against the final model and the test sample. Ideally,
the final model should be similar in accuracy and sensitiv-
ity to the average found in the k-fold analysis. A calibration
plot shows how well the model predicts probabilities given
the proportion of flooded points in each bin. A properly con-
figured model will fall along a diagonal on the plot. Random
forest outputs can either be a classification or represented as a
probability. In this study, the final output was based on prob-
ability of flooding.

As an additional validity check we compared the random
forest prediction against the FEMA SFHAs by examining the
amount of area and number of structures exposed to specific
annual exceedance probabilities. The random forest model
predicts the probability that a location floods over the 42
years of the study. To convert the random forest probabili-
ties to annual exceedance probabilities, we used the follow-
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Figure 4. (a) The receiver operating characteristic (ROC) shown for 10-iteration k-fold cross-validation. (b) The ROC shown for the year-
by-year analysis. The year-by-year analysis shows generalizability of the model by predicting how well stand-alone years with flooding will
fit within the model. This approach also identifies years with storm outliers.

ing equation:

exceedence= 1− (1−pflood)
(1/T ). (2)

This procedure allows for a more direct comparison between
the FEMA SFHA and flood hazard.

4 Results

4.1 Model performance

Ten-iteration k-fold cross-validation was performed to pre-
dict flood hazard across 12 watersheds in the study area.
From the k-fold analysis, the mean model accuracy was
81.9%±0.00198, while the final test accuracy is 82.2 %. The
model had an average sensitivity of 0.893± 0.00184 (Fig. 4,
left), while the final model produced a sensitivity of 0.895.
In the year-by-year analysis, years predicted with a high sen-

sitivity fall within relatively normal events, while the ex-
treme events such as Hurricane Harvey (1.5+m of rain) and
Hurricane Ike (high storm surge) perform poorer in relation.
The year-by-year analysis showed more variation in sensi-
tivity (Fig. 4, right); mean AUC is 0.884± 0.0482. The year
with Hurricane Ike had the lowest sensitivity, at 0.730, and
the year with Hurricane Harvey performed poorly as well,
at 0.761. The highest sensitivity was predicted in 1997, at
0.929. This analysis sheds light on how the model performs
for extreme events. For example, years such as 2017 perform
worse as the conditions brought on by Hurricane Harvey are
rarely seen.

The calibration plot (Fig. 5) suggests that the model
slightly underpredicts flooded points at lower probabilities
and slightly overpredicts flooded points at higher probabili-
ties. The underprediction is explained by the histogram be-
low the plot. Most non-flooded structures have a probability
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Figure 5. Calibration plot (top) with histogram of flooded and non-flooded samples and their predicted values.

Table 2. Represents the number of structures with at least a 1.0 % or 0.2 % probability of flooding within the modeled flood hazard and the
SFHA.

Layer Probability Study area Lake Conroe Houston (Meyerland) Port Arthur

Flood hazard 1.0 % 649 000 6040 87 300 26 000
0.2 % 1 810 000 23 100 198 000 44 300

SFHA 1.0 % 207 000 1210 27 500 3080
0.2 % 500 000 1540 58 000 32 900

below 30 %, while the largest proportion of flood loss points
occur above 90 %.

4.2 Comparison with the FEMA SFHA

Flood hazard probabilities were converted to annual ex-
ceedance (Fig. 6), which allowed us to compare the amount
of area and number of structures exposed to specific an-
nual exceedance probabilities with the FEMA SFHAs (Ta-
ble 2). Note as a reminder that the 100-year floodplain has
an annual exceedance of 1 %, and the 500-year floodplain
has an annual exceedance of 0.2 %. Based on the modeled
flood hazard, 13 810 km2 of land and 649 140 structures have

a 1 % chance of flood any given year, and 26 348 km2 and
1.81 million structures have a 0.2 % chance of flooding any
given year. In contrast, 8000 km2 are classified within the 1 %
SFHA, encompassing 207 000 structures, while the 0.2 %
floodplain increases in size to 9 900 km2 and encompasses
500 000 structures.

Focusing on three flood-prone areas, the model shows high
flood hazards currently not identified by the FEMA SFHA
(Fig. 7). In Conroe (Fig. 7a–c), for example, the 1 % areas
appear visually similar for the SFHA and the flood hazard
model, but when counted, the flood hazard model predicts
7.5 times more structures around Lake Conroe that have at
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Figure 6. Continuous flood hazard map for the pilot study area
based on model output. Road layers originated from the US Cen-
sus Bureau.

least a 1 % chance annually of flooding compared with the
1 % SFHA. In the Meyerland area (Fig. 7d–f) both the FEMA
SFHA and the flood hazard model clearly predict flooding
along the rivers and identify areas where the floodplain ex-
pands. However, the flood hazard model identifies a much
larger area with at least a 1 % chance of annualized flood-
ing. Finally, within Port Arthur (Fig. 7g–i) the flood hazard
model expects that the whole area has a flood hazard of at
least 0.2 %, a significantly larger area than FEMA’s 0.2 %
floodplain.

5 Discussion

The results illustrate that flood hazards can be accurately es-
timated using a machine learning algorithm. The model is
computationally efficient and scalable and can be used to pre-
dict flood hazards over relatively large regions. Training and
image prediction were run in 1 h on a high-end desktop com-
puter; in comparison physical models can run for 20 min or
up to 10 h for an area 0.15 % of the size of the study area
(Apel et al., 2009). Overall, the model demonstrates strong
predictive power for estimating historic damages and accu-
rately represents the spatial distribution of the flood hazard
across those 40 years of flood damages. When compared
against similar studies using machine learning approaches
to predict flood hazards (Dodangeh et al., 2020; Janizadeh
et al., 2019), our model demonstrates lower sensitivity. The
differences are likely attributed to the high topographic re-
lief of these regions where fluvial flood hazards predomi-
nate (Tehrany et al., 2019b), likely contributing to the pre-
dictive capacity of the models. In contrast, southeast Texas
is characterized by little topographic relief where flooding
may emanate from pluvial, fluvial, and marine sources, mak-

ing flood prediction more complex. In fact, when comparing
model sensitivities across the study region, we find that the
model performance increases in more steeply sloped inland
areas than flat coastal areas.

Another aspect impacting model performance was sample
selection. A systematic approach that identifies areas that did
not flood (Darabi et al., 2019) can be important to increas-
ing model performance (Barbet-Massin et al., 2012). While
the model is based on a comprehensive record of observed
flood claims in the study area from 1976 to 2017, there is
no comparable record for structures that have not flooded.
One option would be to randomly sample areas that have no
claims; however this would not control for bias in the ab-
sence data and would come at the expense of model perfor-
mance (Wisz and Guisan, 2009). To overcome this potential
bias, we generated pseudo-absences by randomly selecting a
sample of non-flooded structures by watershed and year to
minimize this selection bias (Phillips et al., 2009). Based on
the calibration plot (shown in Fig. 5), this is an appropriate
assumption.

Another source of bias comes from how contextual vari-
ables were associated with the claims dataset. That is, the
contextual variables that were attached to the claims came
from the closest year for which the data were made avail-
able. However, this can cause some skewed behavior, partic-
ularly for the older claims, because some of the contextual
variables only start in 2001, whereas the claims date back to
1976. Variables impacted the most by this are the result of
large-scale changes in urbanization over time, which include
imperviousness and roughness. More specifically, the imper-
viousness and roughness conditions attached to claims are
going to be less representative of the actual conditions dur-
ing the time of loss the further one goes back in time. How-
ever, a large majority of the claims (approximately 75 %) oc-
curred after 2001, and most of the contextual variables do not
change or change minimally over time (e.g., HAND, eleva-
tion, distance to coast, etc.), mitigating the influence of this
bias.

Statistically generated flood hazard maps that can be com-
pared to FEMA’s regulatory floodplains are a novel outcome
of this analysis. That is, we used the predicted model likeli-
hoods to generate 1 % and 0.2 % annual exceedance prob-
ability thresholds or, equivalently, the 100- and 500-year
flood hazard areas. The statistically generated flood hazard
areas differed from the regulatory floodplains in that they are
(1) nearly 3 times as large and (2) captured areas that are
hydrologically disconnected from streams and waterbodies.
The findings suggest that this approach can better capture
small-scale variability in flood hazard by implicitly detecting
underlying drivers that manifest themselves through subtle
changes in historic damage patterns and trends. This corrobo-
rates previous research findings showing that the current 100-
year floodplain underestimates and fails to accurately repre-
sent flood risk, particularly in urban areas (Blessing et al.,
2017; Galloway et al., 2018; Highfield et al., 2013).
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Figure 7. Side-by-side visual comparison for three areas affected by differing flood types. (a–c) Lake Conroe Area, (d–f) Houston (Meyerland
Area), and (g–i) Port Arthur. Maps compare (a, d, g) current effective 100- and 500-year FEMA SFHA (ca. 2016), (b, e, h) areas within the
1 % and 0.2 % annual flood zones based on the random forest estimate, and (c, f, i) continuous flood hazard map. Road layers originated from
the US Census Bureau, and floodplains originated from the Federal Emergency Management Agency.

It should be noted that the interpretation of the predicted
random forest flood hazard areas differs from existing regula-
tory floodplains in that they are detecting the return period for
structurally damaging inundation. The differences between
the statistically generated flood hazard areas and regulatory

floodplains are likely a result of multiple advantages of a
data-driven approach in identifying the conditions in the un-
derlying drivers (Elith et al., 2011), in other words, a data-
driven model to better capture the reality of flood hazard by
using actual historic impacts and simultaneously identifying
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small-scale variations in flood exposure. By using historic
losses, the random forest model accounts for extreme events
that have occurred, but projecting future hazard is currently
limited. The model does not currently incorporate precipi-
tation patterns. Future work should examine the sensitivity
of the model to precipitation as an input. With precipitation
added to the model, there is still potential for error by under-
estimating the probability of future extreme events.

6 Conclusions

In this paper we demonstrate the efficacy of a random for-
est statistical model in spatially identifying flood hazards
in southeast Texas, encompassing the Houston metropolitan
area. In comparison with FEMA SFHA, we show that a sta-
tistical machine learning flood hazard model can (1) better
capture the reality of flood hazard by using actual historic
impacts; (2) better capture small-scale variability in flood
hazard by implicitly detecting underlying drivers that man-
ifest themselves through subtle changes in historic damage
patterns and trends; (3) avoid the uncertainty associated with
estimating rainfall return periods, stormwater infrastructure
characteristics, and flood depths; (4) easily include alter-
native drivers of flood hazard such as HAND; and (5) be
quickly updated using recent insurance claim payouts.

Nat. Hazards Earth Syst. Sci., 21, 807–822, 2021 https://doi.org/10.5194/nhess-21-807-2021



W. Mobley et al.: Quantification of continuous flood hazard using random forest classification 819

Appendix A

Figure A1. Sensitivity performance for each watershed. Note that the higher elevations occur in the northwest portion of the study area.
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Data availability. All independent drivers for the flood
hazard model can be found at the Dataverse repository
(https://dataverse.tdl.org/dataverse/M3FR (CTBS, 2021). The
flood hazard output can be found at the following DOI:
https://doi.org/10.18738/T8/FVJFSW (Mobley, 2020). Flood
loss data cannot be publicly shared due to privacy concerns. The
sources of Python libraries used are as follows: scikit-learn library
(https://dl.acm.org/doi/10.5555/1953048.2078195, Pedregosa
et al., 2011); Rasterio (https://github.com/mapbox/rasterio; Gillies
et al., 2013); NumPy (https://doi.org/10.1038/s41586-020-2649-
2; Harris et al., 2020; van der Walt et al., 2011); and Pandas
(https://doi.org/10.25080/Majora-92bf1922-00a; McKinney,
2010).
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