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Abstract. Recently, many remote-sensing datasets provid-
ing features of individual fire events from gridded global
burned area products have been released. Although very
promising, these datasets still lack a quantitative estimate of
their accuracy with respect to historical ground-based fire
datasets. Here, we compared three state-of-the-art remote-
sensing datasets (RSDs; Fire Atlas, FRY, and GlobFire)
with a harmonized ground-based dataset (GBD) compiled
by fire agencies monitoring systems across the southwestern
Mediterranean Basin (2005–2015). We assessed the agree-
ment between the RSDs and the GBD with respect to both
burned area (BA) and number of fires (NF). RSDs and the
GBD were aggregated at monthly and 0.25◦ resolutions,
considering different individual fire size thresholds ranging
from 1 to 500 ha. Our results show that all datasets were
highly correlated in terms of monthly BA and NF, but RSDs
severely underestimated both (by 38 % and 96 %, respec-
tively) when considering all fires > 1 ha. The agreement be-
tween RSDs and the GBD was strongly dependent on indi-
vidual fire size and strengthened when increasing the fire size
threshold, with fires > 100 ha denoting a higher correlation
and much lower error (BA 10 %; NF 35 %). The agreement
was also higher during the warm season (May to October)
in particular across the regions with greater fire activity such
as the northern Iberian Peninsula. The Fire Atlas displayed
a slightly better performance with a lower relative error, al-
though uncertainty in the gridded BA product largely out-
paced uncertainties across the RSDs. Overall, our findings
suggest a reasonable agreement between RSDs and the GBD
for fires larger than 100 ha, but care is needed when examin-
ing smaller fires at regional scales.

1 Introduction

Vegetation fires are a common and destructive hazard in the
southwestern Mediterranean Basin. Over the past 4 decades,
there were, on average, 47 766 fires and 413 209 ha burned
annually in this region (San-Miguel-Ayanz et al., 2017) caus-
ing extensive economic and ecological losses and even hu-
man casualties (Keeley et al., 2011; Molina-Terrén et al.,
2019). Fire is a complex phenomenon due to the confluence
of several factors, including climate, weather, human activ-
ities, and vegetation (Bowman et al., 2009). The Mediter-
ranean fire regime is dominated by human-caused ignitions
(Ganteaume et al., 2013), with most of the total burned area
(BA) linked to a limited number of large fires during the
summer (Turco et al., 2016). These large fire events are
facilitated by dry conditions and high temperatures, which
are both expected to increase in the future under climate
change (Dupuy et al., 2020; Ruffault et al., 2020; Turco et
al., 2018a). Additional factors such as landscape changes,
as well as changes in forest and fire management, may also
shape future fire activity (Moreira et al., 2020; Pausas and
Fernández-Muñoz, 2012). Projecting future changes in fire
activity requires modeling efforts across broad geographi-
cal scales to better understand processes and mechanisms
conducive to fire ignition and spread. However, one of the
main limitations in fire modeling lies in the lack of reliable
and homogeneous information on fire activity across space
(Hantson et al., 2016; Williams and Abatzoglou, 2016). This
is particularly true in Europe where the lack of data shar-
ing, as well as the lack of consistent quality-control proce-
dures of national ground-based fire datasets, has hampered
the analysis of fire regimes across broader regional or conti-
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nental scales (Mouillot and Field, 2005; Turco et al., 2016).
To overcome this limitation, the European Forest Fire Infor-
mation System (EFFIS; San-Miguel-Ayanz et al., 2015) is
increasingly using remote-sensing techniques for monitoring
fire activity across Europe.

In the last decade, remote sensing has contributed to fos-
tering fire-related products with spatial and temporal consis-
tency and global coverage (Chuvieco et al., 2019; Mouillot
et al., 2014). The MODIS sensor stands out as one of the
best data providers for most burned area products such as
MCD64A1 (Giglio et al., 2018) and FireCCI50 (Chuvieco et
al., 2018). In particular, the latest generation of BA products,
the MCD64A1v006, sets the basis for an exhaustive global
estimation of fire-related carbon emissions, which is com-
piled in the GFED4 database (Giglio et al., 2013; Randerson
et al., 2015; van der Werf et al., 2017). Although BA prod-
ucts typically offer information about the pixels that burned
in a given day, they do not provide information such as start-
ing/ending dates or the final extent of individual fire events
(Mouillot et al., 2014). This limitation has hampered efforts
to distinguish fire regimes dominated by different fire sizes
as both small but frequent fires and large but rare fires may
contribute equally to total burned area.

In this sense, global datasets of individual fires derived
from pixel-level BA information have recently emerged as an
important resource for the fire community in improving our
understanding of fire regimes (Andela et al., 2019b; Artés
et al., 2019; Laurent et al., 2018a). Unlike raw BA prod-
ucts, remote-sensing datasets of individual fires provide in-
formation beyond the BA, such as fire shape, daily rate of
spread, and the number of fires (NF). The Fire Atlas (Andela
et al., 2019a, b), FRY (Laurent et al., 2018a, b), and GlobFire
(Artés et al., 2019; Artés Vivancos and San-Miguel-Ayanz,
2018) represent the most recent individualized fire datasets.
These datasets were built from specific algorithms to recon-
struct fire patches from MCD64A1 pixel-based BAs. In spite
of using different methodologies and different assumptions,
these datasets share a common objective: to aggregate neigh-
boring burned pixels with sequential burn dates into individ-
ual fire patches.

Although very promising, remote-sensing datasets of in-
dividual fires have been sparingly compared to historical
ground-based fire databases that are generally thought to be
the most reliable source of data regarding fire occurrence and
fire extent (Moreira et al., 2011; Mouillot et al., 2014). Pre-
vious studies indicated that a rigorous evaluation of satellite
data with ground-based data is needed (Turco et al., 2019).
Most validation procedures of these remote-sensing datasets
were based on comparisons between different satellite prod-
ucts (Andela et al., 2019b; Laurent et al., 2018a) with, how-
ever, scarce attention paid to independent ground-based ob-
servations (Artés et al., 2019).

In this work, we compared for the first time the three most
recent remote-sensing datasets of individual fires (Fire Atlas,
FRY, and GlobFire) with quality-controlled fire databases

compiled by regional agencies across the most active fire
region in Europe (i.e., southwestern Mediterranean Basin)
during the common period of observations (2005 to 2015).
While most previous studies have evaluated remote-sensing
data on a fire-by-fire basis, this study aggregates individual
fires across months and pixels (0.25◦) and seeks to estimate
to what extent the temporal variability in both fire frequency
and burned area are captured by remote-sensing datasets. We
sought to provide a solid answer to the following questions.
(i) Are remote-sensing datasets capturing the actual pattern
of fire occurrence and burned area? (ii) To what extent is their
accuracy dependent on fire size? To answer these questions,
we examined the agreement between remotely sensed and
ground-based fire datasets aggregated at monthly and 0.25◦

resolutions across a range of individual fire size thresholds (1
to 500 ha). This study may inform end users about remote-
sensing datasets’ ability to proxy actual fire activity but also
inform them of their limitations.

2 Data and methods

2.1 Ground-based fire data

The ground-based dataset (GBD) was built from multiple fire
agency sources, including fire records from Portugal, Spain,
France, and Sardinia in Italy (Table 1). All these ground mon-
itoring systems provide high-quality datasets that have been
extensively used in previous studies across France (Curt et
al., 2014), Portugal (Pereira et al., 2011), Sardinia (Salis et
al., 2013), and the Mediterranean basin (Rodrigues et al.,
2020; Turco et al., 2016). Although not free of errors, these
datasets constitute the most accurate source of historical in-
formation about fires available across the region.

We extracted the following information from each regional
dataset: the day of ignition, the fire size, and the location of
each fire. To ensure consistency across regions and scales,
we analyzed the overlapping recording period among the
datasets, i.e., 2005–2015. Small fires (< 1 ha) were discarded
to ensure the coherence of the analysis since these were not
reported systematically by agencies over the studied period.
The harmonized dataset contained 95 561 fire records, in-
cluding only events that required a firefighting response (i.e.,
disregarding agricultural and prescribed fires) (see Fig. 1).

2.2 Remotely sensed fire data

We used the most recent global remote-sensing datasets
(RSDs) of individual fires: Fire Atlas (Andela et al., 2019a,
b), FRY (Laurent et al., 2018a, b), and GlobFire (Artés et al.,
2019; Artés Vivancos and San-Miguel-Ayanz, 2018). These
datasets provide the date and the spatial extent of individ-
ual fires from the pixel-based burned area MODIS product
MCD64A1 Collection 6 (Table 2). The combined Terra and
Aqua MCD64A1 is derived from the surface reflectance im-
agery and active fire observations. It provides a global cover-
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Table 1. Fire agencies and reference links to the data used to build the harmonized ground-based dataset (GBD) across the southwest
Mediterranean Basin.

Agency Country Coverage Reference link

DECIF Portugal National http://www2.icnf.pt/portal/florestas/dfci/relat/rel-if
(last access: 10 January 2020)

EGIF Spain National https://www.mapa.gob.es/va/desarrollo-rural/
estadisticas/Incendios_default.aspx
(last access: 18 December 2019)

Prométhée France Regional https://www.promethee.com/
(last access: 16 December 2019)

Regione Sardegna Italy Regional http://webgis2.regione.sardegna.it/download/
(last access: 22 January 2020)

Figure 1. (a) Mean annual burned area (BA; depicted by circle size) and mean annual number of fires (NF; depicted by color) as observed in
the GBD at 0.25◦ resolution over the study period (2005–2015). (b) Spatial extent of the study area.

age of burned area estimation at a resolution of 500 m (Giglio
et al., 2018). Fires were individualized from different algo-
rithms, such as a progression-based algorithm (Andela et al.,
2019b), a flood-fill algorithm (Laurent et al., 2018a), and data
mining (Artés et al., 2019), which share a common objective:
to assemble burned pixels that were adjacent in both space
and time to identify and outline individual fire events. All
RSDs provide fire start and end dates, location, and the final
burned area for each retrieved fire event.

A key parameter of these algorithms is the cutoff value,
which is defined as the maximum burn date difference al-
lowed between two neighboring pixels to be considered as
belonging to the same fire event. This cutoff influences the
size, shape, and degree of clumpiness and fragmentation of
individual fire events (Laurent et al., 2018a; Oom et al.,
2016). Fire Atlas used spatially varying cutoff thresholds

(4 to 10 d) depending on the fire frequency (Andela et al.,
2019b), while the FRY algorithm processed four different
cutoff scenarios (3, 5, 9, and 14 d) used in previous studies
(Archibald and Roy, 2009; Hantson et al., 2015; Nogueira
et al., 2017). Finally, GlobFire defined a fire event as a set
of burned pixels that are connected within a 5 d window and
that have not been burned over the 16 previous days (Artés
et al., 2019). For simplicity, we only reported the FRY cutoff
value that performed the best (5 d). The comparison with all
FRY cutoff values is available in Appendix A (Fig. A1).

2.3 Methodology

We compared burned area (BA) and number of fires (NF)
estimated by RSDs with the ground-based reference dataset
(GBD; Fig. 2). Only the common period between RSD and
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Figure 2. The general framework for comparison of RSDs with the GBD in terms of burned area (BA) and number of fires (NF) across a
range of individual fire size thresholds (1 to 500 ha).

GBD records (2005–2015) has been considered. We evalu-
ated the ability of RSDs to reproduce the temporal and spatial
patterns of fire activity observed in the GBD by fitting ordi-
nary least squares (OLS) linear regressions and using differ-
ent metrics (OLS slope, R2 correlation, and relative error).
We calculated the relative error (ε) as follows:

ε = 100×
BARSD−BAGBD

BAGBD
, (1)

where BARSD represents the BA detected by remote-sensing
datasets and BAGBD represents the BA registered in the
ground-based dataset over the study period. The analysis was
repeated for the number of fires (NF).

We applied a land cover filter to the RSD data using
CORINE Land Cover (CLC) to exclude fires located within
agricultural or artificial lands that are not always reported by
fire agencies. To account for the land cover changes over the
study period, we used CLC 2006 as a reference to filter RSDs
from the 2005 and 2009 period and CLC 2012 from 2010 and
2015. A sensitivity analysis to the land cover filter is shown
in Appendix A (Fig. A2).

As RSDs are prone to omit smaller fires (< 25 ha) due
to the coarse spatial resolution of the MODIS product
MCD64A1 (500 m) and other limitations, we investigated
different fire size thresholds increasing from 1 to 500 ha.
Analyses were repeated for each size-filtered sample (i.e., ex-
cluding fires smaller than a given threshold).

2.3.1 Temporal agreement

All datasets were aggregated to a monthly scale over the
whole study area. We retrieved the slope coefficient of OLS
regressions and the coefficient of determination (R2) as a
proxy of agreement between RSDs and the GBD. Slope val-
ues greater than 1 indicated an underestimation of fire activ-
ity as seen by the GBD and vice versa. A slope equal to 1
would imply a perfect agreement.

2.3.2 Spatial agreement

We then sought to examine how the agreement between
RSDs and the GBD varies across space. There is much un-
certainty in estimating the ignition point from satellite data
mainly due to the spatial and temporal proximity of fire pix-
els and the possibility of multiple ignition points in a single
fire event (Benali et al., 2016). Likewise, the GBD do not sys-
tematically provide ignition points. Thus, to overcome this
limitation, we aggregated both the RSDs and the GBD onto
a 0.25◦ grid (≈ 25 km), setting a common ground for both
datasets.

We calculated the relative error (Eq. 1) between the RSDs
and the GBD for each grid cell. Finally, we estimated the
overall spatial error, computed as the ε averaged across all
grid cells for each RSD.
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Figure 3. (a) Monthly burned area and (b) number of fires (> 1 ha) in each fire dataset across the southwestern Mediterranean Basin over
2005–2015.

Figure 4. (a) Median and interquartile range of the seasonal error (ε) observed each year for burned area and (b) number of fires in each RSD
for all fires > 1 ha in the studied area. Cool season from November to April and warm season from May to October. Dashed lines represent
the perfect agreement between the datasets.

3 Results

3.1 Temporal agreement

We first analyzed the monthly distributions of BA and NF
for all fires (> 1 ha) aggregated across the whole studied
area. Figure 3 shows that RSDs follow a similar variabil-
ity in terms of monthly BA but systematically underesti-
mate BA and NF with respect to the GBD. The best agree-
ment between RSDs and the GBD occurs mainly during the
warm season (May to October; see Fig. 4). This is usually

the period experiencing the largest fires which account for
the bulk of the BA in the region (Turco et al., 2016). Con-
versely, the poorest agreement was found during the cool
season (November to April), a period dominated mainly by
small fires linked to agricultural activities.

Table 3 presents the total BA and NF, as well as the
monthly (i.e., including the seasonal cycle) and annual (i.e.,
excluding the seasonal cycle) correlation between RSDs and
the GBD for all fires (> 1 ha). Monthly correlations showed
a stronger agreement for BA (R2

≈ 0.98) than for NF (R2
≈

0.89). Annual correlations, for which the effect of the sea-
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sonal cycle was removed, also showed very high values
(R2
≈ 0.99). Despite the fact that RSDs underestimated the

total BA by 38 % and the NF by 96 % for all fires, they re-
produced almost perfectly the temporal variability in both
monthly and annual bases. The difference in absolute num-
bers thus relates to undetected small fires in RSDs.

The monthly agreement of BA and NF (Fig. 5) strongly
varies with fire size thresholds (1, 50, 100, and 500 ha). The
positive slope of the linear trends indicates that RSDs gen-
erally underestimate both BA and NF when accounting for
all fires (>1 ha). However, they become progressively more
accurate as the fire size threshold increases, a feature that is
particularly evident in NF estimates (Fig. 5e–h).

Figure 6 shows the evaluation of RSDs through different
metrics over the continuum of fire size thresholds. Except
for R2 (Fig. 6e) which saturates for fires > 100 ha for NF, all
metrics present a similar behavior, showing better agreement
when increasing the fire size threshold. Overall, BA (Fig. 6a,
b, and c) is better estimated than NF (Fig. 6d, e, and f). De-
spite the different methodologies used to reconstruct individ-
ual fires, all datasets showed similar scores, although Fire
Atlas (FA) displayed lower relative error (ε) for NF.

3.2 Spatial agreement

Figure 7 shows the spatial distribution of the relative error (ε)
for BA over different individual fire size thresholds (for all
fire size thresholds see Supplement). As expected from pre-
vious results, RSDs strongly underestimated BA, especially
when including smaller fires. However, a few exceptions are
seen for fires < 50 ha mainly over eastern Spain, suggesting
that RSDs detect in that case more fires than the GBD. This
may be related to a few small prescribed fires that were not
reported in the GBD. Also, we found much lower ε in regions
with higher fire activity, such as the northern Iberian Penin-
sula. This is rather expected as an absolute change in regions
with a high (low) baseline will result in a small (large) per-
centage change.

Likewise, RSDs strongly underestimated NF (Fig. 8),
likely disregarding those smaller fires not detected by
MODIS. Surprisingly, a few areas showed positive differ-
ences in NF for fires > 100 ha across parts of Spain. This
overestimation of large fires may be related to the fact that
RSD algorithms are likely to split larger fires into multiple
events. Nevertheless, the overall relative error between RSDs
and the GBD decreases when focusing on larger fires for both
NF and BA.

4 Discussion

Understanding global changes in fire activity calls for ef-
ficient and harmonized approaches to record fire activity.
Satellite-borne spectral and thermal sensors offer several
global fire products, evolving from BA mapping and ac-
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Table 3. Correlation between RSDs and the GBD of monthly and annual burned area and number of fires for all fires (>1 ha) between 2005
and 2015.

Dataset Burned area Number of fires

Total (ha) Mo. correlation Yr. correlation Total (n) Mo. correlation Yr. correlation

GBD 2 527 603 – – 95 561 – –
FA 1 609 267 0.99 0.99 3875 0.90 0.99
FRY_M05 1 524 171 0.99 0.99 2134 0.88 0.99
GF 1 562 001 0.98 0.99 4637 0.90 0.99

Figure 5. Comparison of the GBD and RSDs with respect to monthly burned area (a–d) and the number of fires (e–h) when considering
(a) all fires (> 1 ha), (b) fires > 50 ha, (c) fires > 100 ha, and (d) fires > 500 ha. (e–h) Same as (a–d) but for the number of fires. The 1 : 1
dashed lines represent the perfect fit between the datasets.

tive fire detection to novel developments postprocessing BA
products into single fire datasets (Chuvieco et al., 2019). The
ongoing challenge lies in determining their reliability and
usefulness. Here, we compared RSDs with the GBD across
the southwestern Mediterranean Basin to better understand
RSD limitations and to guide end users.

Although RSDs may miss a substantial number of fires, the
temporal variations in both NF and BA match very well with
ground-based observations. Our results also demonstrate that
the agreement between RSDs and the GBD is strongly de-
pendent on individual fire size. Focusing on larger fires (fire
typically > 100 ha), RSDs were in stronger agreement with
the GBD regardless of the evaluated metrics. Fires >100 ha
had a much lower error (BA 10 %; NF 35 %), especially in
regions with higher fire activity such as the northwest of the
Iberian Peninsula or southern Sardinia. Our findings are in
agreement with previous studies which pointed at fire size
as the primary limiting factor for remotely sensed fire data

(Campagnolo et al., 2021; Rodrigues et al., 2019; Ying et al.,
2019; Zhu et al., 2017).

The ability of RSDs to identify individual fires depends
mainly on two features: the processing algorithm and the
underlying reliability of the BA product. The relatively low
capacity of the latter to detect small fires is related to the
coarse spatial resolution (500 m) of the MODIS sensor. Sev-
eral recent studies have shown that MODIS products reli-
ably detect fires over 40–120 ha but miss a number of smaller
fires (Fusco et al., 2019; Giglio et al., 2018; Rodrigues et al.,
2019; Zhu et al., 2017). Although other BA products, such as
FireCCI50 (Chuvieco et al., 2018), provide a finer spatial res-
olution (250 m), a substantial number of small and/or highly
fragmented fires remain undetected, leading to a considerable
underestimation of BA (Roteta et al., 2019). In addition, all
space-borne BA products face many other well-documented
limitations, such as the variability in orbital coverage, satel-
lite overpass time, and satellite view obstruction (Cardoso et

https://doi.org/10.5194/nhess-21-73-2021 Nat. Hazards Earth Syst. Sci., 21, 73–86, 2021
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Figure 6. Evaluation of RSDs through different metrics including the slope (a, d), R2 correlation (b, e), and relative error (c, f) for both
burned area (a–c) and the number of fires (d–f) over a range of individual fire size thresholds (1 to 500 ha). Dashed lines indicate a perfect fit
between RSDs and the GBD.

Figure 7. The relative error (ε) of the total burned area computed as the relative difference between RSDs and GBD data over different
individual fire size thresholds (1, 50, 100, and 500 ha). The overall ε is indicated on each map.

Nat. Hazards Earth Syst. Sci., 21, 73–86, 2021 https://doi.org/10.5194/nhess-21-73-2021
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Figure 8. Same as Fig. 7 but for number of fires.

al., 2005; Padilla et al., 2014). In this sense, detectability may
vary regionally across the globe, and without ground-based
fire datasets, it may be difficult to properly validate their re-
liability (Turco et al., 2019). Nonetheless, the limitations of
MCD64A1 are inherent to all RSDs since all of the analyzed
products were built on this basis. Hence, differences among
RSDs are rather expected to be associated with the underly-
ing algorithm used to identify single fire events.

RSDs were found to better estimate BA than NF. This dis-
parity relies on the complexity of extracting individual fires
from gridded BA products. Environmental conditions (e.g.,
topography, cloud/smoke cover) may influence the sensor de-
tection power, resulting in a break in BA continuity, thereby
increasing the risk of artificially splitting single fires into dif-
ferent fire events. Likewise, if a fire lasts longer than the de-
fined cutoff window, it will be automatically split into differ-
ent events (Oom et al., 2016). By contrast, if multiple fires
occur simultaneously in the same region, the parameteriza-
tion of the RSD algorithms may merge multiple individual
fires (Archibald et al., 2013). Lastly, regional features of the
fire regime may constrain RSD accuracy. For instance, the
Mediterranean fire regime is known for hosting numerous
small fires which are unlikely to be detected by satellite ob-
servations (Turco et al., 2016). These fires do not contribute

very much to the total annual burned area but significantly
harm the performance of the RSDs in terms of NF.

The selection of an appropriate fire size threshold depends
on the objectives of each analysis. However, in this study, we
can generally recommend a minimum size of 100 ha, which
stands out as a change point in multiple statistics (Figs. 6 to
8), with the relative error sharply decreasing in both BA and
NF above this threshold. Among the analyzed RSDs, FA dis-
played a slightly better performance with a lower relative er-
ror. This may arise from the use of a spatially explicit cutoff
threshold, taking both fire spread rate and satellite coverage
into account to track the extent of individual fires (Andela
et al., 2019b). However, uncertainty in MODIS largely out-
paces the uncertainties across the RSDs. The low capacity of
gridded BA products to detect small to mid-sized fire events
(< 100 ha) can be improved by the generation of products
based on higher-resolution sensors in the range of 10–30 m
(Roteta et al., 2019). RSDs of individual fires derived from
finer-gridded BAs would provide a better estimate of actual
NF. In addition, the MCD64A1 product already incorporates
the uncertainty of detection as an auxiliary variable of grid-
ded BA data (Giglio et al., 2018). RSDs could benefit from
this and report similar information at the individual fire level.
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The spatiotemporal aggregation applied in our study is
expected to increase the signal-to-noise ratio and thus de-
crease the uncertainty in RSD estimates. According to
Turco (2019), the agreement between remotely sensed and
ground-based fire data increases at lower resolutions, being
generally best when aggregating the data onto a 1◦ grid (ap-
proximately 110 km) or beyond. Likewise, aggregating the
data over time (either monthly or annually) also increases
the signal-to-noise ratio by filtering out sub-monthly varia-
tions (Spadavecchia and Williams, 2009). Evaluating RSDs
on shorter timescales and/or at finer spatial resolutions would
likely deteriorate the agreement with the GBD. Nevertheless,
the spatiotemporal aggregation, such as the one employed
here, has been extensively used in previous studies analyz-
ing fire regimes at regional (Barbero et al., 2014; Jiménez-
Ruano et al., 2020; Parisien et al., 2014) and global (Bedia
et al., 2015; Di Giuseppe et al., 2016; Turco et al., 2018b)
scales.

Further studies are still needed to evaluate RSD spatiotem-
poral variability in the fire patch level (i.e., assign individual
fires from RSDs to the GBD) in order to more precisely quan-
tify the dataset accuracy at the fire scale.

5 Conclusion

In this work, we built upon previous research and investi-
gated the reliability of three RSDs of individual fires over a
range of fire size thresholds across the southwestern Mediter-
ranean Basin. Overall, RSDs contain only a small fraction
of the total number of fires documented by the GBD. How-
ever, they capture reasonably well the temporal variability in
fire activity across monthly and annual scales. Despite the
different methodologies used to reconstruct fire patches, all
RSDs performed similarly and were increasingly accurate
when focusing on larger fires. Specifically, when consider-
ing fires > 100 ha, RSDs showed reasonable agreement with
the GBD.

Generally, the RSDs’ underestimation of BA and NF for
smaller fires is related to the coarse spatial resolution (500 m)
of the pixel-based BA product and other observation lim-
itations which prevented the detection of small fires. Fea-
tures of the fire regime at regional scales may also influence
the agreement between RSDs and the GBD (e.g., fire dura-
tion, density, and spread rate). In this sense, our analysis was
framed in the southwestern Mediterranean region to capture
homogeneous conditions in terms of fire regimes.

We found a better agreement during the warm season (May
to October), the main fire season in southern Europe, espe-
cially in regions with higher fire activity (northern Iberian
Peninsula and southern Sardinia). Also, RSDs were found to
better estimate BA than NF. This is rather expected as nu-
merous small fires, which are not detected by satellites, do
not contribute very much to the total burned area across the
study region.

In practical applications, our results may provide guid-
ance for end users. A quantitative estimate of uncertainty
is crucial for the correct interpretation of RSDs, and users
should take into account their limitations. Our findings sug-
gest that global RSDs of individual fires can be used to proxy
variations in fire activity on monthly or annual timescales;
however, caution is advised when drawing conclusions from
smaller fires (< 100 ha) across the Mediterranean region. Fire
agencies may also benefit from the spatial and temporal con-
sistency of remote-sensing data to support their operational
fire mapping system at the regional/national level. Future
studies using high-quality ground-based fire data in other re-
gions of the world featuring different fire regimes would pro-
vide further insights into RSD uncertainties.
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Appendix A

Figure A1. Evaluation of RSDs including all FRY cutoff values (3 to 14 d) through different metrics including the slope (a, d), R2 correla-
tion (b, e), and relative error (c, f) for both burned area (a–c) and the number of fires (d–f) over a range of individual fire size thresholds (1
to 500 ha). Dashed lines indicate a perfect fit between RSDs and the GBD.

Figure A2. Evaluation of “raw” RSDs (i.e., without the land cover filter) through different metrics including the slope (a, d), R2 correla-
tion (b, e), and relative error (c, f) for both burned area (a–c) and the number of fires (d–f) over a range of individual fire size thresholds (1
to 500 ha). Dashed lines indicate a perfect fit between RSDs and the GBD.
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