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Abstract. Our ability to quantify the likelihood of present-
day extreme sea level (ESL) events is limited by the length
of tide gauge records around the UK, and this results in sub-
stantial uncertainties in return level curves at many sites. In
this work, we explore the potential for a state-of-the-art cli-
mate model, HadGEM3-GC3, to help refine our understand-
ing of present-day coastal flood risk associated with extreme
storm surges, which are the dominant driver of ESL events
for the UK and wider European shelf seas.

We use a 483-year present-day control simulation from
HadGEM3-GC3-MM (1/4◦ ocean, approx. 60 km atmo-
sphere in mid-latitudes) to drive a north-west European
shelf seas model and generate a new dataset of simulated
UK storm surges. The variable analysed is the skew surge
(the difference between the high water level and the predicted
astronomical high tide), which is widely used in analysis of
storm surge events. The modelling system can simulate skew
surge events comparable to the catastrophic 1953 North Sea
storm surge, which resulted in widespread flooding, evac-
uation of 32 000 people, and hundreds of fatalities across
the UK alone, along with many hundreds more in mainland
Europe. Our model simulations show good agreement with
an independent re-analysis of the 1953 surge event at the
mouth of the river Thames. For that site, we also revisit the
assumption of skew surge and tide independence. Our model
results suggest that at that site for the most extreme surges,
tide–surge interaction significantly attenuates extreme skew
surges on a spring tide compared to a neap tide.

Around the UK coastline, the extreme tail shape parame-
ters diagnosed from our simulation correlate very well (Pear-
son’s r greater than 0.85), in terms of spatial variability, with
those used in the UK government’s current guidance (which

are diagnosed from tide gauge observations), but ours have
smaller uncertainties.

Despite the strong correlation, our diagnosed shape pa-
rameters are biased low relative to the current guidance. This
bias is also seen when we replace HadGEM3-GC3-MM with
a reanalysis, so we conclude that the bias is likely associated
with limitations in the shelf sea model used here.

Overall, the work suggests that climate model simulations
may prove useful as an additional line of evidence to inform
assessments of present-day coastal flood risk.
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1 Introduction

Around GBP 150 billion of assets and 4 million people in
the UK are at risk from coastal flooding (Haigh et al., 2017),
and estimated damages to the UK from coastal flooding are
of the order of GBP 500 million per year (Edwards, 2017).
It is neither technically feasible nor economically afford-
able to prevent all such flooding, so policymakers use a risk-
based approach. Typically, coastal flood protection is man-
dated based on an extreme high water “return level” with an
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estimated average recurrence interval, which is the expected
average time between exceedances of that level (conceived as
averaged over a period including many such exceedances).
The average recurrence interval is sometimes called a “re-
turn period”. We use these names interchangeably here, al-
though some authors use a different definition of the return
period. Typically, assets with high value and/or high vulner-
ability will have a mandate for protection against a return
period of a 1000 or even 10 000 years. Typical tide gauge
records cover much shorter periods (of the order of 30 to
150 years). To address this, the traditional approach is to
fit a statistical extreme value model in order to extrapolate
from the observations. Many different statistical approaches
have been used (Haigh et al., 2010; Batstone et al., 2013); see
Sect. 3.3. However, even using the current best practice, the
inevitable extrapolation involved means that the uncertainties
in the magnitude of very rare (perhaps unprecedented) events
may be very large. For example, the size of the 90 % confi-
dence interval on the 10 000-year return level at Sheerness is
around 1.6 m (Environment Agency, 2018). For comparison,
the 90 % confidence interval on model projections of regional
mean sea level rise to 2100 relative to the 1981–2000 average
under representative concentration pathway RCP8.5 for the
same location is around 0.62 m (Palmer et al., 2018). Coles
(2001) discusses some of the advantages and disadvantages
of the statistical modelling approach; he says

Caution is required in the interpretation of return
level inferences especially for return levels corre-
sponding to long return periods . . . , estimates and
their measures of precision are based on an as-
sumption that the model is correct.

The statistical models which are fitted to the observational
data in order to infer the levels of unprecedented extremes
are supported by mathematical arguments which may re-
quire assumptions such as the assumption that the events are
stochastic. We know that the real-world events are determin-
istic, and furthermore may be auto-correlated over a range
of timescales. Such auto-correlation can be accounted for
within the statistical framework, for example by the use of an
extremal index (Tawn, 1992; Batstone et al., 2013). Alterna-
tively, a physically based numerical model has the potential
to directly address both determinism and auto-correlation by
simulating them. Coles (2001) goes on to say

Though the [extreme value statistical] model is
supported by mathematical argument, its use in ex-
trapolation is based on unverifiable assumptions,
and measures of uncertainty on return levels should
properly be regarded as lower bounds that could be
much greater if uncertainty due to model correct-
ness were taken into account.

An alternative approach is to exploit a physically based nu-
merical model of the coastal shelf waters. Such models typi-
cally parameterize the surface stress associated with winds

and pressure from an atmospheric forecast model and are
routinely used to make short-range (e.g. less than 48 h) fore-
casts of storm surges whenever a potentially hazardous at-
mospheric storm is identified in the atmospheric forecast.
Bernier and Thompson (2006) found that when the atmo-
spheric forecast model is replaced by an atmospheric hind-
cast, realistic extreme storm surge events were simulated in
the north-west Atlantic.

Another approach is to make plausible modifications to the
strength, track, or speed of selected observed atmospheric
events and use the resulting simulated atmospheric forcing
to drive the coastal shelf model (Brown et al., 2010). Very
recently Horsburgh et al. (2021) used this approach. They
selected the storm of 5 December 2013 and made manual
adjustments to the quasi-geostrophic potential vorticity field,
inverting it to get dynamically self-consistent fields of sea
level pressure and wind. They showed that this approach can
produce synthetic surges which are substantially larger than
any in the observational record, for sites on the UK east coast.
However, this approach does not offer a way of quantifying
the probability of the synthesized events.

Yet another approach, adopted here and discussed further
in Sect. 3.4, is to simulate extreme atmospheric events using
a physically based numerical climate model, which in turn is
used to drive the coastal shelf model.

An obvious advantage of this approach is that the model is
based on verifiable real-world physics. Many climate model
simulations extend over periods longer than the tide gauge
record. In particular, in order to evaluate model performance,
modellers use control simulations (with greenhouse gas forc-
ing fixed at either pre-industrial or present-day levels) which
may extend over many hundreds or even thousands of years.
Ensemble simulations provide another potential source of
data effectively covering a much longer period than the ob-
servations. Using the data from such simulations provides a
further line of evidence in the effort to predict the magnitude
and frequency of unprecedented events. Van den Brink et al.
(2004) used this approach to simulate storm surges at Hoek
van Holland using the ECMWF seasonal forecast ensemble,
successfully reducing the uncertainty in the 10 000-year re-
turn level by a factor of 4 compared to using the observations
alone. This method was applied to seasonal rainfall totals in
the UK (Thompson et al., 2017), and Grabemann et al. (2020)
applied the method to extreme storm surges for locations
in the German Bight, successfully identifying a number of
simulated water levels exceeding those in the observational
record since 1906.

This article reports a preliminary investigation into the
value of using this approach to help form return level curves
of storm surge around the UK coast with a view to providing
improved likelihood information on the most extreme coastal
water levels.
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Climate change

Mean sea level is increasing, and will continue to increase,
both at the UK national scale (Palmer et al., 2018, 2020) and
at the global scale (IPCC, 2019), and this will exacerbate fu-
ture coastal flood risk. However, for many locations around
the UK (exemplified by Sheerness as described above) the
uncertainty in the projections of future mean sea level rise is
not as large as the uncertainty associated with, say, the 1000-
year return level of storm surge, and it is the effort to re-
duce this larger uncertainty that we are concerned with here:
we are trying to “focus the snapshot” of conditions in the
current climate. Thus we do not explicitly address mean sea
level change in this work, but rather we note that the effects
of mean sea level change and its uncertainty will need to be
considered in addition to the present-day hazard which we
discuss here, for example through the use of a sea level rise
allowance (Howard and Palmer, 2020). The trend due to sea
level rise can be seen in the tide gauge observations and was
carefully removed before making a statistical fit to the ex-
tremes. For details see Environment Agency (2018). Our nu-
merical model of the shelf sea does not include any change in
mean sea level. Also, we do not consider the effects of long-
term change in the mean strength or location of the North
Atlantic storm track (Shaw et al., 2016; Shepherd, 2014).
Many studies (e.g. Palmer et al., 2018; Lowe et al., 2009;
Sterl et al., 2009; Howard et al., 2019) have suggested that
the change in local mean sea level will be the main contribu-
tor to the changes in the sea level extremes, as it has been in
the past (Menéndez and Woodworth, 2010), with the change
in the storm track making a smaller secondary contribution.
We do not consider this secondary contribution here.

2 Nomenclature and notation

For ease of reference, some terms which arise throughout this
article are given in Table 1.

3 Models, methods, and data sources

3.1 The CS3 coastal shelf model

Our barotropic coastal shelf model, CS3 (Continental
Shelf 3; Horsburgh et al., 2008; Flather, 2000, 1994) is very
similar to the CS3X (Continental Shelf 3 Extended) model
which until very recently was used in the UK operational
storm surge forecast and warning system. The domain and
grid of CS3 are shown in the appendix in Fig. A1a. The
model produces a numerical solution of the discretized non-
linear shallow water equations with friction. The model is
barotropic in the sense of solving the depth-averaged equa-
tions (i.e. it is a two-dimensional model). The horizontal res-
olution is approximately 1/9◦ latitude by 1/6◦ longitude (ap-
proximately 12 km). The model has been shown to perform

particularly well during extreme storm surges in the southern
North Sea (Horsburgh et al., 2008), forecasting surge in the
Thames estuary to within 10 cm when driven by re-analysed
meteorology. CS3 is “one of the most validated operational
storm surge forecasting models in the world” (Horsburgh
et al., 2021). Further details of storm surge model evaluation
can be found in Furner et al. (2016), O’Neill et al. (2016),
Palmer et al. (2018), and Flather (2000). Typical RMSEs
when forced with numerical weather prediction model atmo-
spheric data are of the order of 10 cm.

3.2 Coastal flood boundary conditions for the UK:
update 2018

Coastal flood boundary conditions for the UK: update 2018
(Environment Agency, 2018) (henceforth CFB2018) con-
tains the latest UK government best estimates and uncer-
tainty estimates for the distribution of extreme still water
level (SWL) under present-day mean sea level. SWL can be
thought of as the water level averaged over about 5 min to re-
move the short-period oscillations due to surface waves. It in-
cludes the astronomical tide and storm surge and is the level
that is reported at the tide gauges. The CFB2018 approach
is based on data from tide gauge observations, without ref-
erence to model simulations. Discussion of their approach is
included below.

3.3 Statistical modelling of extreme values

To identify, for example, the 1000-year return level based
solely on tide gauge observations, some philosophy for mak-
ing out-of-sample estimates is required. The usual approach
is to exploit the most extreme observations, and theories con-
cerning their behaviour, under some restrictive assumptions.

3.3.1 Annual maxima

One popular and simple approach is fitting a generalized ex-
treme value (GEV) distribution to the annual maxima. The
GEV distribution (GEVD) arises as the limiting case for
block maxima as the block size tends to infinity. In the case of
annual maxima, “block” means 1 year. The GEVD is charac-
terized by three parameters. For readers unfamiliar with the
GEVD, it may be helpful to picture the effect of these pa-
rameters in terms of a return-level curve, such as the ones
shown in Fig. 1. The location parameter, µ, is comparable to
an intercept. An increase in µ slides the whole curve up the
Y axis. µ is the Y value (return level) evaluated at the 1-year
return period. The GEV scale parameter, σ , is the gradient of
the curve, evaluated at the 1-year return period:

σ =
dy
dL

∣∣∣
L=0

, (1)

where L= log(return period) and y is the return level. The
shape parameter, ξ , determines the curvature. Negative ξ cor-
responds to a curve which flattens out at high return periods,

https://doi.org/10.5194/nhess-21-3693-2021 Nat. Hazards Earth Syst. Sci., 21, 3693–3712, 2021



3696 T. Howard and S. D. P. Williams: Model constraints on extreme sea levels

Table 1. Abbreviations and symbols.

Abbreviations or symbol Description

CS3 Continental Shelf 3: our north-west European storm surge model. See Sect. 3.1.

HadGEM3-GC3-MM Hadley Centre Global Environment Model in the Global Coupled configuration 3, Medium resolution
atmosphere, Medium resolution ocean.

CFB2018 Coastal Flood Boundary Conditions for the UK: update 2018 (Environment Agency, 2018).

CMIP5 Climate Model Intercomparison Project, Phase 5 (Taylor et al., 2012).

CMIP6 Climate Model Intercomparison Project, Phase 6 (Eyring et al., 2016).

SWL Still water level. Still water level includes the astronomical tides and surge but does not include the short-
period oscillations due to waves. See Sect. 3.2.

GEV, GEVD Generalized extreme value (distribution) (Coles, 2001). See Sect. 3.3. Under appropriate conditions, annual
maxima are expected to follow a GEVD.

GPD Generalized Pareto distribution (Coles, 2001). See Sect. 3.3. Under appropriate conditions, all extreme values
over a high threshold are expected to follow a GPD.

POT Peaks over threshold. A POT model uses all values over a high threshold (see GPD).

MLE Maximum likelihood estimator (Coles, 2001). See Sect. 3.3.

PMLE; GMLE Penalized maximum likelihood estimator; generalized maximum likelihood estimator. Used
synonymously here. See Sect. 3.3.4.

Prior, penalty, constraint These all refer to PMLE. See Sect. 3.3.4.

µ GEV location parameter. See Sect. 3.3.

σ GEV scale parameter. See Sect. 3.3.

ξ Shape parameter. See Sect. 3.3.

σ̃ GPD scale parameter. See Sect. 3.3.

R Return period in years. See Sect. 3.3.

L Natural logarithm of return period. See Sect. 3.3.

y Return level. See Sect. 3.3.

approaching an upper bound as the return period tends to
infinity. With positive ξ , the curve has no upper bound but
has a lower bound as the return level decreases. When ξ = 0,
the curve is a straight line and has neither a lower nor upper
bound. This follows the convention of Coles (2001) for the
shape parameter. However, not all sources follow this con-
vention. In CFB2018, “shape parameter” refers to the nega-
tive of our ξ . In the wider literature the “shape parameter”
may refer to the negative or the reciprocal of our ξ . To make
our shape parameter notation unambiguous: if Y is a random
variable with GEV distribution, our shape parameter ξ is de-
fined such that the distribution of Y is given by

P(Y < y)= exp

{
−

[
1+ ξ

(
y−µ

σ

)]−1/ξ
}
. (2)

This can be more simply expressed as the corresponding re-
turn level curve, which is

y−µ

σ
=
Rξ − 1
ξ

, (3)

where the average recurrence interval (or “return period”)
is R and the corresponding return level is y. The connection
between Eqs. (2) and (3) is seen by regarding exceedances
of the R-year return level y as Poisson-distributed random
occurrences, occurring at an average rate:

λ= 1/R. (4)

The probability of no such occurrences in a given year is then
given by standard Poisson statistics:

P(no occurrences)= P(Y < y)= exp(−λ). (5)

Combining Eqs. (3)–(5) gives Eq. (2). The particular case
ξ = 0 is obtained by taking the limit as ξ → 0.

Nat. Hazards Earth Syst. Sci., 21, 3693–3712, 2021 https://doi.org/10.5194/nhess-21-3693-2021



T. Howard and S. D. P. Williams: Model constraints on extreme sea levels 3697

Figure 1. Empirical return level plots of skew surge, comparing
simulated and observational (tide gauge) data at Sheerness and
Workington.

3.3.2 Peaks over threshold

The most extreme storm surges in the UK are caused by the
storminess of the winter atmosphere, so the annual maximum
event is always expected to occur in winter. Thus, an advan-
tage of the annual-maxima approach described above is that
the annual maxima are typically very well separated from
each other and thus can be considered independent, particu-
larly if the nominal year change is taken to be in the summer.
A disadvantage of the approach is that it uses only the annual
maxima. On the other hand, the peaks-over-threshold (POT)
approach uses all of the data exceeding a chosen threshold.
This formed part of the approach taken by CFB2018 (En-
vironment Agency, 2018). An advantage of this approach
is that, if a low-enough threshold is used, it has the poten-
tial to exploit more of the available data (i.e. an average of
more than one extreme event per year), whilst including only
extreme events. Such exploitation of more data usually re-
duces the uncertainties in inferred statistics (e.g. the out-of-
sample estimates). This is particularly desirable when short
observational records limit the available extremes. However,
if the threshold is too low, some of the data included can no
longer be considered “extreme” and may bias the result. This
is the well-recognized bias–variance trade-off. Another dis-
advantage is that including more than one event from a win-
ter may compromise the independence of the events. (Skew
surge can be evaluated for every high tide, and a weather
system can generate a substantial skew surge on successive
high tides.) Dependence is accommodated by CFB2018 us-
ing an extremal index (Tawn, 1992; Batstone et al., 2013).
For a detailed comparison of the annual-maxima and POT
approaches, see Arns et al. (2013).

The usual POT approach is to fit a generalized Pareto dis-
tribution (GPD) to the peaks. The GPD has two parameters.
The shape parameter ξ is shared with the GEVD. The GPD
scale parameter, σ̃ , is the gradient of the plot of return level

against log of return period at the return period of the chosen
threshold, u,

σ̃ =
dy
dL

∣∣∣
y=u

. (6)

This is a property of both the extreme value distribution and
the chosen threshold. The GEV scale parameter, σ , on the
other hand, is a property of the extreme value distribution
only and is thus a more fundamental parameter for making
comparisons: it can be used in a like-for-like comparison of
the results of different thresholds, or for comparison of GEV
and GPD results. The two different scale parameters are re-
lated by σ = σ̃ λξu, where λu is the expected number of ex-
ceedances of u per year.

Though not formally a parameter of the GPD, a threshold
must be chosen. CFB2018 tested 14 different thresholds and,
finding no clear support for dismissal of any, elected to evalu-
ate statistics based on each threshold and identify the median
as the best estimate.

3.3.3 Maximum likelihood estimation

As a model-fitting approach, CFB2018 adopted maximum
likelihood estimation (MLE; Coles, 2001) and so do we.

3.3.4 Penalized maximum likelihood estimation and
generalized maximum likelihood estimation

A recognized problem of short records such as the rela-
tively short tide gauge record at some sites is the diagno-
sis of “noisy” and implausible shape parameters by MLE
(see Appendix C). We also show in Appendix C that the un-
certainty in estimating unprecedented events from observa-
tional records using MLE is dominated by uncertainty in the
shape parameter. One fix for this is to put a prior (or “penalty
function”) on the shape parameter (Coles and Dixon, 1999;
Martins and Stedinger, 2000). This method was used by
CFB2018. It is variously known as generalized maximum
likelihood estimation or penalized maximum likelihood es-
timation (PMLE). We also refer to the penalty function as a
constraint. CFB2018 employed a data-based prior using all
the information provided by the separately estimated shape
parameters for the UK skew surge. The effect of this was
simply to move shape parameter estimates more towards the
UK average, with the larger changes coming for sites with
shorter record lengths.

3.3.5 Skew surge joint probability method

The large return-level uncertainties for long-return-period
events are mitigated by the use of the skew surge joint proba-
bility method, the current state-of-the-art approach. Extreme
SWLs are composed of a high astronomical tide and a mete-
orological surge. The metric of choice for the meteorological
component is the skew surge (de Vries et al., 1995): the dif-
ference between the (deterministic, predictable) astronomi-
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cal high tide and the actual high water level (which typically
arrives at a slightly different time). See Palmer et al. (2018)
for a schematic diagram illustrating the definition of skew
surge (their Fig. A1.3.4). Under the assumption of tide–skew
surge independence, which has substantial observational sup-
port (Williams et al., 2016), the level of the high tide is as-
sumed to have no effect on the magnitude of the skew surge,
and thus any skew surge can combine with any high tide. This
suggests a method (exploited by CFB2018) whereby the ob-
served surges are decomposed into tide and skew surge to
give a skew surge distribution, which can be convolved with
the full known distribution of high tides to form the full dis-
tribution of high water levels. The extreme value modelling
is only involved in establishing the high tail (i.e. the outside-
sample part) of the skew surge distribution. The implication
of this convolution is that although a very rare high water
level might be a combination of an equally rare skew surge
and an ordinary tide, it could also be formed by a very rare
high tide (the distribution of which is well known) and an
ordinary skew surge. A consequence is that uncertainties in
very rare high water levels map to the uncertainties in less
rare skew surges, and these uncertainties are smaller than
the uncertainties in very rare skew surges. In other words,
for a given return period, the high-water-level uncertainty is
smaller than the skew surge uncertainty. This is good, be-
cause it is the high water level that we are concerned about
from a coastal flooding point of view. Having said all that,
we do not have cause to use the skew surge joint probability
method in this work; we only mention it due to its relevance
to the CFB2018 estimates. We revisit the assumption of tide–
skew surge independence in Sect. 5.2.

3.4 A free-running climate model as a driver of
synthetic storm surges

The atmospheric jet over the north Atlantic, which is asso-
ciated with the extratropical cyclones which drive surges on
the UK coast, has complex variability with a trimodal lati-
tudinal behaviour (Woollings et al., 2010). A lot of effort in
the climate modelling community is directed to understand-
ing and improving the quality of models’ simulation of this
behaviour, owing to its importance in projections of climate
change in the mid-latitudes (Shaw et al., 2016; Shepherd,
2014). Ongoing improvements in the representation of the
North Atlantic storm track in global climate models are dis-
cussed by Roberts et al. (2018) and Priestley et al. (2020).

Williams et al. (2015) show improvements in the repre-
sentation of storm tracks in the CMIP6 (Eyring et al., 2016)
generation Hadley Centre models relative to HadGEM2-AO
(the Hadley Centre model which contributed to CMIP5), with
both HadGEM3-GC2 and HadGEM3-GC3 simulating the
winter latitudinal variability well. Both models employ the
ENDGame revision to the dynamical core, which reduces
the numerical damping associated with the semi-implicit
advection scheme and has been shown to increase synop-

tic variability (Williams et al., 2015). This suggests that a
surge simulation driven by HadGEM3-GC3 surface wind
and pressure might yield realistic storm surges for the UK.
We exploited a 483-year control simulation of HadGEM3-
GC3-MM (Williams et al., 2018, and references therein). In
this simulation, greenhouse gas concentrations are fixed at
pre-industrial levels. Its atmospheric horizontal resolution is
N216 (approximately 60 km in mid-latitudes), and ocean hor-
izontal resolution is approximately 1/4◦. The atmospheric
component (Walters et al., 2019) of this model exhibits a very
good representation of the storm track (as measured against
the ERA-Interim (Dee et al., 2011) reanalysis) when forced
with present-day sea surface temperatures (Julia Lockwood,
by email, personal communication, 2020).

One argument that might be made against this approach is
that the spatial resolution of the global climate model may
be inadequate to resolve all of the physical processes that
might be important in generating extreme events, particularly
small-scale extremes. For example, contemporary global cli-
mate models do not have adequate resolution to synthesize
a small convective event such as a thunderstorm. However,
three factors argue against this being a problem in the case of
UK storm surge modelling.

– Storm surge in the UK is usually driven by atmospheric
baroclinic instability, which is a large-scale process,
much larger than the scale of a single thunderstorm, and
well captured by atmospheric models.

– Storm surge effectively integrates the driving atmo-
spheric wind and pressure over a large area and time
(Sterl et al., 2009), so that shortcomings in the simula-
tion of small temporal- or spatial-scale phenomena are
relatively less important than they would be in the simu-
lation of, for example, localized short-duration extreme
rainfall events.

– Storm surge generation occurs over the sea. It has been
well recognized for some time that the orographic drag
schemes used in atmospheric modelling improve the
column-average wind speed at the expense of realistic
surface wind speeds over high ground (e.g. Howard and
Clark, 2007). On account of this, we might expect to
find issues with simulation of the surface wind clima-
tology over land, particularly over high ground. Whilst
this issue might also affect the ocean points nearest to
the coast, it has little effect over the open sea, where
most of the surge is generated. The study of de Winter
et al. (2013) evaluated 12 global climate models in terms
of their simulation of wind over the North Sea, includ-
ing two models from the HadGEM family. Their results
show that these two models (along with two models
from the GFDL-ESM family) exhibit a particularly re-
alistic distribution of extreme winds (evaluated against
a reanalysis), being well within the uncertainties of the
reanalysis.
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The UK Climate Projections 2018 Marine Report (Palmer
et al., 2018) provides extensive evidence of the realism of
storm surges simulated by CS3 when driven by climate
model winds and pressure.

4 Results and discussion

Example empirical return level plots of skew surge, compar-
ing model and observational (tide gauge) data at two sites,
are shown in Fig. 1. We take the model grid cell closest to
the location of the real-world tide gauge to represent that tide
gauge. The two sites chosen for this illustration are Sheer-
ness, at the mouth of the river Thames in south-east England,
a site of great economic and societal importance, and Work-
ington, a coastal site in the north-west of England which is
typically affected by different storms (Haigh et al., 2016).

Figure 1 shows good model vs. observation agreement at
Workington, and even these two sites alone illustrate that
our modelling system is able to simulate unprecedented skew
surge events (i.e. events of a magnitude not found in the tide
gauge record). However, the quality of agreement shown at
Workington is not exhibited everywhere. Empirical return
level plots of skew surge for a set of 44 tide gauge loca-
tions around the UK coastline are shown in the appendix
in Fig. B1. This gives a qualitative, visual sense of the re-
alism of the model in terms of the simulated extremes. The
good agreement at Workington can be contrasted with the
poor agreement at, for example, Newlyn or Aberdeen, where
the simulated extremes are negatively biased relative to the
corresponding observations. The model does not give higher
quantiles than the observed data at any site. We argue (below)
that the simulation may nevertheless be able to add value to
estimations of unprecedented events, even where a bias ex-
ists.

4.1 Quantitative evaluation of simulation of extremes

To make some quantification of the realism of the simu-
lated extremes, we used the statistical models described in
Sect. 3.3 to fit the simulated extremes. We fitted a GEV
model (Sect. 3.3.1) to the simulated annual maxima using the
MLE method (Sect. 3.3.3). We fitted the model pointwise: for
each tide gauge, the closest ocean model grid cell is taken to
represent that gauge and the GEV model parameter fitting
is performed independently of the fitting at any other gauge.
This gives a spatial distribution of diagnosed parameters. We
find good agreement between the simulation-based and tide-
gauge-based location and scale parameters (Fig. 2). We also
find a surprisingly good correlation between the spatial dis-
tribution of simulation-diagnosed shape parameters and the
corresponding spatial distribution of shape parameters diag-
nosed by CFB2018. Pearson’s r for the shape parameter cor-
relation is 0.72 when we use a GEV fit to the simulated an-

Figure 2. Comparison of simulation-based and observation-based
skew surge extreme value distribution parameters. (a) Location pa-
rameter. (b) GEV scale parameter (σ ). (c, d) Shape parameter. The
correlation seen in all panels shows that the model successfully sim-
ulates the observed spatial variations in the extremes. Pointwise un-
certainties in the estimated shape parameters are included in pan-
els (c) and (d). The CFB uncertainty shown is the 95 % confidence
interval of the GPD fit at a 95 % threshold. In panel (d) (the last
panel), the simulation uncertainty shown is evaluated in the same
way. In panel (c) (next-to-last), the simulation uncertainty shown is
the 95 % confidence interval of the GEV fit to the simulated annual
maxima. For further details see the main text.

nual maxima and 0.86 when we use a GPD fit to the simu-
lated peaks over a threshold (see Sect. 4.2).

A detailed description of Fig. 2a–c follows. A complete
description of Fig. 2d is deferred to Sect. 4.2. The correla-
tion in all panels shows that the model successfully simulates
the observed spatial variations in the skew surge extremes.
In particular, good representation of the scale parameter at
each site is important because this means that the temporal
variability is well simulated at that site. The absolute size of
the scale parameter is significant, so we include zero in the
Y axis of Fig. 2b. A scale parameter of zero would indicate
no inter-annual variation in the extremes.

If we were to base our assessment on, for example, SWL
relative to local chart datum (instead of skew surge), then the
absolute value of the location parameter would have no par-
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ticular significance: it would depend on a local offset. How-
ever, for skew surge the absolute value of the location pa-
rameter does have a significance: it represents a hypothetical
absence of any atmospheric effects. For that reason we also
include zero in the Y axis of Fig. 2a. A location parameter of
zero would indicate no atmospheric effect on sea levels.

For all sites shown in Fig. 2, we obtained sufficient infor-
mation regarding the CFB fit to the observations (Jenny San-
som, by email, personal communication, 2019) to enable us
to evaluate their GEV scale parameters (Fig. 2b). Their shape
parameters (Fig. 2c and d) can be read from Fig. E.1 of Envi-
ronment Agency (2018). For the location parameter (Fig. 2a),
we used our own more crude fit to the tide gauge annual max-
ima. We confirmed this crude fit against additional CFB in-
formation at a sample of nine sites. The crude fit was only
used to estimate the observational location parameter.

Consideration of Fig. 2a shows that the simulation-
diagnosed location parameters are in general slightly low
compared to our crude estimate from the tide gauge data. At
some sites this may be associated with locally poor repre-
sentation of the details of the coast and bathymetry around
the tide gauge due to the surge model resolution. However,
the scale parameter (Fig. 2b) is generally in very good agree-
ment with the CFB2018 results. This is reassuring because it
indicates that the simulation is doing a good job of capturing
the variability in the extremes (scale parameter), even though
it shows an overall bias in the extremes (location parameter).

Figure 2c has the following features.

1. The shape parameters diagnosed from the simulation
are well correlated with the CFB2018 shape parame-
ters. This strong correlation between the two spatial pat-
terns of shape parameter diagnosed from independent
sources (i.e. our model simulation and the tide gauge
data) is remarkable. It both supports the spatial pattern
of the shape parameter as a real, physically determined
phenomenon (as opposed to a statistical artefact) and
gives further credibility to both the CFB2018 approach
and our model. The authors are not aware of any pre-
vious work in which the spatial pattern of skew surge
shape parameters diagnosed from a simulation based on
a free-running climate model has been shown to corre-
late well with the corresponding pattern diagnosed from
observations.

2. The spread (i.e. the size of the spatial variations) of
the shape parameters diagnosed by MLE fit (i.e. with-
out constraint) to annual maxima from the simulation
is comparable to that of the CFB2018 shape parameters
diagnosed by PMLE (i.e. with constraint), which in turn
is similar to the spread of the prior used by CFB2018.
This again suggests that a long climate model simula-
tion may be useful in constraining the shape parameters.

3. The pointwise shape parameter uncertainty (i.e. the un-
certainty in the shape parameter at a given location) of

the GEV fit to the simulated annual maxima is compa-
rable to that of the constrained GPD fit to the observed
surges above the 95 % threshold, in spite of the shorter
observational record lengths. This illustrates the added
certainty of the CFB method over a simple GEV fit.

4. The fitted shape parameters for the simulation are more
negative than the CFB2018 shape parameters. We return
to this in Sect. 4.2.

The sites in Fig. 2 follow a clockwise orbit of the
UK mainland coast starting at Newlyn in the south-west,
with the addition of St Mary’s (Isles of Scilly), Port Erin
(Isle of Man), Stornoway (Outer Hebrides), Lerwick (Shet-
land Isles), and Portrush (Northern Ireland). The sites are
shown in Fig. A1b in the appendix.

4.2 Shape parameter

We return now to the fitted shape parameters for the sim-
ulation, which are more negative than the CFB2018 shape
parameters. This is important because uncertainty in estimat-
ing unprecedented events from observational records using
MLE is dominated by uncertainty in the shape parameter
(see Appendix C). This suggests that the shape parameter is
the aspect where model simulations, with their long record
lengths, may be able to help. We studied the negativity in
several ways, with results which are shown in Figs. 3 and 2c
and d. Simulation results shown in Fig. 2a–c are from a GEV
fit to the simulated annual maxima, whereas CFB2018 re-
sults are from a GPD fit to the observations. To eliminate
this potential source of difference, we also made a GPD fit to
the simulation (Figs. 2d and 3, line C). We applied the same
treatment to simulations as was used by CFB2018 in order
to make a like-for-like comparison. We did not apply a prior
to produce the simulation shape parameters shown in Figs. 2
and 3 (line C).

Details of Fig. 3 follow. Figure 3 (lines A and B) show
shape parameter results from CFB2018. To compensate for
the short observational record lengths, they used a prior to
constrain the shape parameter (see Sect. 3.3.4). The prior (or
“penalty function”) in turn was chosen by expert judgement
informed by unconstrained GPD fits to the tide gauge data.
A total of 14 different thresholds were tested, and results for
each site and each threshold were pooled to form a distri-
bution of unconstrained shape parameters. This distribution
is shown in line (Fig. 3, line B). The green line shows the
range (characterized by 2 standard deviations either side of
the mean). The filled disc labelled “B” shows the mean. The
CFB2018 prior was taken to be a normal with the same mean
but half the standard deviation. For each site, the finalized
(constrained) shape parameter diagnosed by CFB2018 was
chosen as the median of the PMLE results of the 14 different
thresholds. These finalized shape parameters, one for each of
41 sites, are shown by the dots in line (Fig. 3, line A). (This
same information is contained in Fig. 2c and d.) The mean
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Figure 3. Further results related to the model vs. CFB2018 shape parameter difference. Each line shows (X axis; dimensionless) a distribution
of GPD shape parameters, or a derived quantity such as the mean of several shape parameters. “unconstr”: unconstrained. For full details see
the main text.

of these 41 shapes is shown by the filled triangle. We applied
a similar approach (but without the prior) to our simulated
skew surges to give the results shown in line (Fig. 3, line C).
The Pearson’s r correlation between the model-diagnosed
shape parameters using GPD fits (Fig. 3, line C) and the
CFB2018 shape parameters (Fig. 3, line A) is 0.86. Owing
to the much greater record length of the simulation, we did
not need to apply any constraint to obtain the data on line C.

The data of Fig. 3 (line C) vs. the data of Fig. 3 (line A)
show our most like-for-like simulation-vs.-CFB2018 shape
parameter comparison and are also presented in Fig. 2d.
That panel also shows our estimate of the uncertainty in the
CFB2018 shape parameters, expressed as a 95 % confidence
interval. This estimate is based on the standard error of the
CFB2018 fit at the 95 % threshold (Jenny Sansom, by email,
personal communication, 2019). It is not straightforward to
estimate the uncertainty of the CFB2018 shape parameters
owing to their use of a median over results based on different
thresholds ranging from 90 % to 99 %, but we suggest that
the uncertainty in their 95 % threshold result is representa-
tive.

Line (Fig. 3, line D) represents the full distribution of
shape parameters diagnosed by GPD fit to the 483-year
HadGEM3-driven model simulation. The blue line shows the
range (characterized by 2 standard deviations either side of
the mean). The range (as in Fig. 3, line B) comes from vari-
ations in site and threshold used. The filled disc labelled “D”
shows the mean. Thus D (model) corresponds to B (tide
gauge). Clearly the 483-year model-diagnosed shapes are
more negative than those derived from the shorter tide gauge
data.

Given the need for some kind of constraint on the shape
parameter when fitting observational records, use of shape
parameters from a long simulation holds the promise of re-
ducing uncertainties. For example, if we assume that the
model-diagnosed spatial pattern of shape parameters is cor-

rect but uniformly biased by a scalar ξbias (which does not
vary over sites), ξtrue(x)= ξmodel(x)+ξbias, where x is a vec-
tor of sites, then we can use the observations from all sites
to estimate the one scalar parameter ξbias. This could lead
to substantial reductions in the uncertainty of ξtrue estimates
over x.

The more-negative shape parameters diagnosed by fitting
the model data are, potentially, our most important finding,
but further work is required to better understand the causes
of this negativity. On one hand, it could be that limitations
in the realism of either the atmospheric or the coastal shelf
modelling distort the distributional tail relative to the real
world. On the other hand, it could be that the physically based
model simulation gives better guidance on the distributional
tail of the atmospheric storms which drive surges than does
a statistical fit to the relatively short observational record of
the surges themselves. In favour of the simulation, we can
say that the emergence of realistic long-period natural vari-
ability in climate model simulations suggests their suitabil-
ity for generating samples outside the observational record
length. If it could be shown that the long-period variability in
the simulation envelopes the observational results, this would
give much stronger support to the use of the simulation.

Could it be, then, that if the simulation were sub-sampled
in shorter periods to match the tide gauge record lengths, the
value of a new metric (call itD′), the mean of the distribution
of shape parameters diagnosed by GPD fit to the shorter sub-
sampled HadGEM3-driven model simulation, would vary
substantially so as to sometimes include values as large
as “B”? To answer this question, we sub-sampled the model
many times to give a distribution of D′. This distribution is
represented by line E: the blue line shows the range of val-
ues of D′ (characterized by 2 standard deviations either side
of the mean; this range comes from random variations which
we have introduced into the start time of the sub-samples, so
that each sub-sample represents a different randomly chosen
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“era” of the simulation), and the filled blue disc labelled “E”
shows the mean value of D′. It is clear that this distribu-
tion does not include values as large as “B”, meaning that
the apparent positive shape parameter bias of the tide gauge
results (B) relative to the model results (D) is not simply a
“sampling error” associated with the shorter record lengths
of the tide gauges but rather a real negative bias in the model
shape parameters relative to the tide gauges.

However, Fig. 3 (line F) shows the distribution of uncon-
strained shape parameters diagnosed from a 29-year CS3 run
forced by atmospheric surface wind and pressure based on
the ERA-Interim atmospheric reanalysis (Dee et al., 2011)
that has been downscaled with the Swedish Meteorological
and Hydrological Institute (SMHI) Rossby Centre regional
atmospheric model (RCA4) as part of the Euro-CORDEX
experiment (Jacob et al., 2014). This distribution shows at
least as much negative bias as the HadGEM3-driven model
simulation, even though the ERA reanalyses are widely
viewed as the gold standard in terms of representing the
storminess of the real atmosphere. The foregoing suggests
that the negative bias is due to the limitations of the CS3
surge model, which is common to both the HadGEM3-driven
and the ERA-Interim-driven results, and that the HadGEM3
simulation of storminess is comparable (at least by this met-
ric) to the ERA reanalysis. In short, the atmospheric model
is adequate, but we need a better surge model.

Further shape parameter results are shown in Appendix D.
Very recently, Horsburgh et al. (2021) simulated surge

events which are higher than the CFB2018 best estimate of
1000-year return level. This finding is not contradictory to
ours. Horsburgh et al. (2021) seek to identify unprecedented
events which are possible in the present-day climate, with-
out seeking to quantify their probability. Our focus is on
improving the quantification of the probability of unprece-
dented events.

5 Sheerness case study experiments

In view of the societal and economic importance of the
Thames estuary, we further investigate the behaviour at
Sheerness.

5.1 Tide-surge timing

Figure 4 shows results of experiments making small (less
than 24 h) timing shifts in the phase relationship between the
atmospheric forcing and the tide. We chose a spring tide and
shifted the timing of the event relative to the tide. The curve
labelled “SWL 0” shows the SWL of the shift which gives the
maximum skew surge. The curve labelled “SWL 4” shows
the SWL when the event is shifted 4 h later relative to the
tide. The skew surge on the initial high tide (about nominal
hour 24 in the figure) is reduced by about 1.2 m. The overall

Figure 4. A simulated extreme event on a spring tide showing the
effect of a shift of 4 h in the timing of the event relative to the tide.

maximum SWL (which occurs on the next high tide in the
shifted case) is reduced by about 0.8 m.

Clearly, a potentially extreme event may not be realized
as an extreme SWL if it does not happen to be in a con-
ducive timing relationship with the tide. From a coastal de-
fence viewpoint this is good, as it reduces the number of ex-
treme SWLs which are realized. But from the viewpoint of
identifying extreme events in a long model simulation it is a
nuisance, because it can mean that potentially extreme events
are hidden. To overcome this we performed a further simula-
tion with the surge model in surge-only mode (see Sect. 6.1).
In this mode no astronomical tides are included, and there-
fore all potentially extreme atmospheric events are realized
as a surge.

5.2 Skew surge and tide dependence at Sheerness

Work by Williams et al. (2016) has shown that any depen-
dence of skew surge on predicted high water cannot be read-
ily quantified in the observational record, due to the domi-
nance (in the record) of the variability of atmospheric storms.
This conclusion has led to the exploitation of an assumed in-
dependence of skew surge and predicted high water as part
of the effort to estimate present-day still water return levels
– the so-called skew surge joint probability method which is
used by CFB2018 (although they do note that such indepen-
dence is not applicable everywhere).

This independence can be tested in model simulations, by
repeating the same atmospheric storm in different astronom-
ical tidal conditions – for example at spring and neap tide.
Williams et al. (2016) perform four experiments of this kind
(see their supplementary material) using reanalysed real-
world storm data. We extended that work using 16 of the
most extreme forcing events (in the sense that they create an
extreme surge at Sheerness) from our HadGEM3-GC3-MM
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Figure 5. (a) The largest skew surge in the HadGEM3-GC3-MM
483-year surge-and-tide simulation, which happened to arrive on
a neap tide. (b) The same atmospheric forcing applied to a spring
tide. It can be seen that the realized skew surge is dependent on the
tide in this case. Key: e: still water elevation. t: astronomical tide.
r: residual (i.e. e− t). X axis shows time in hours with arbitrary
zero.

control simulation. Results are shown in Appendix E. Here
we give an example of a single event.

The largest skew surge event at Sheerness in the
HadGEM3-GC3-MM simulation happened to arrive on a
neap tide. Figure 5 shows that when this event was moved
to a spring tide, the skew surge was significantly attenuated,
from about 2 m in the case of the neap tide to about 1.63 m in
the case of the spring tide. Williams at al. (2016) their Sup-
plement S5) also found attenuation at Sheerness in model
simulations of four events.

Further skew surge and tide dependence results are shown
in Appendix E. D’Arcy et al. (2021) present observationally
based findings on tide–skew surge interaction.

6 Sheerness: comparison of the most extreme
simulated events with reconstructions of the
1953 event

6.1 Sheerness: surge-only simulations

Our surge-only simulations are motivated by the sensitivity
shown in Figs. 4 and 5 and discussed in Sect. 5. Using a nu-
merical coastal shelf model, it is possible to artificially elimi-
nate the effect of the astronomical tide to create a surge-only
simulation. Thus, issues of the timing relationship between
surge and tide are eliminated in a surge-only simulation and
so the sensitivity is avoided. This makes surge-only simula-
tions well suited to comparing different sets of atmospheric
forcing in terms of their surge-creation potential for a given
location.

Figure 6 shows time series of water level at Sheerness
for 16 events from our HadGEM3-GC3-MM surge-only
simulation, in each case compared with a surge-only sim-
ulation driven by atmospheric data from a reconstruction
(Erik van Meijgaard, by email, personal communication,
2018) of the 1953 storm using the KNMI/DMI limited-area
model RACMO (van Meijgaard et al., 2020). We first se-
lected the largest eight events in terms of the maximum value
of the surge which they produced in surge-only mode. Com-
pared to these events, the 1953 surge-only simulation has
a conspicuously long duration. So we also sought events
of long duration by convolving the surge-only time series
with the kernel shown in Fig. 6i. Then we identified the
eight largest maxima in the convolved signal. All 16 events
are independent (all separated from each other by at least
a year). The kernel was designed to represent the impor-
tant features of the RACMO-driven surge-only simulation,
i.e. the approximate duration and shape of the time series
plot. The purpose of convolution with the kernel is to iden-
tify those events which correlate well (in terms of their time
series plot) with the RACMO-driven simulation, in other
words, events which not only produce a large surge but are
also of comparable duration to the RACMO-driven simula-
tion. The kernel was not used to modify events but simply to
identify significant ones.

This shows that in the 483-year surge-only simulation

1. no simulated event exceeded the 1953 reconstruction in
terms of both maximum surge and duration;

2. two simulated events exceeded the 1953 reconstruction
in terms of maximum surge, and several more were
comparable; and

3. several simulated events were of comparable duration
to the 1953 reconstruction, but exhibited a smaller max-
imum surge.

6.2 Sheerness: surge and tide simulations

Having used the surge-only mode to identify 16 potentially
extreme events in the HadGEM3-GC3-MM simulation, for
each event we experimented with adjusting the timing of the
event in a surge-and-tide simulation to maximize the skew
surge realized. We did this twice: once for a spring tide and
once for a neap tide. Figure 7 shows (bar “S”) the overall
(i.e. over all 16 events) maximum skew surge realized on a
spring tide and similarly the overall maximum skew surge re-
alized on a neap tide (bar “N”). Figure 7 also shows (bar “H”)
the maximum skew surge realized in the original HadGEM3-
GC3-MM surge-and-tide simulation, in which the timings
were not artificially adjusted, so that the surge–tide phase
relationship was essentially random (as in the real world).
For reference, an extreme (entirely artificial) case is shown
(bar “Z”) in which no tidal forcing is included (see Sect. 6.1).
In reality, of course, the tide is always present. Wadey et al.
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Figure 6. A total of 16 events from the HadGEM3-GC3-MM surge-only simulation (“Sim”), in each case compared with the RACMO-driven
surge only simulation (“Rac”). Panels (a)–(h) show the eight largest independent surge-only events. Panels (i)–(p) show events which are
both large and have substantial duration (the original time series before convolution is shown). X axis is time in hours with arbitrary zero.

(2015) tabulate estimates of high water level at Sheerness for
the 1953 event from four different sources. They also give
a best estimate of 4.74 m and a corresponding best-estimate
skew surge of 2.16 m. This implies an astronomical tide of
4.74− 2.16= 2.58 m. Thus, to obtain the four skew surge
estimates labelled “W” in Fig. 7, we subtract this tide from
each of their four tabulated estimates of high water level.

Figure 7 shows that the strongest atmospheric forcing in
the model simulation can produce a skew surge which is
comparable to estimates of the 1953 skew surge at Sheer-
ness. The largest skew surge in the unadjusted simulation
(bar “H”) lies just below the range of skew surge estimates
based on data tabulated by Wadey et al. (2015). The largest
spring-tide skew surge (bar “S”, when the timings of atmo-
spheric forcing are adjusted so that the atmospheric events
coincide with a spring tide) is smaller than the observational
estimates, due to the surge–tide interaction at this site. The
largest neap-tide skew surge (bar “N”, when the timings of at-
mospheric forcing are adjusted so that the atmospheric events
coincide with a neap tide) lies within the range of skew surge
estimates based on data tabulated by Wadey et al. (2015).

7 Summary and conclusions

HadGEM3-GC3-MM is a state-of-the-art global climate
model of the CMIP6 generation. Modifications including
the ENDGame revision to the dynamical core have been
shown to increase synoptic variability (Williams et al., 2015),
improving the representation of the storm tracks compared
to HadGEM2-AO (the Hadley Centre model which con-
tributed to CMIP5). We have shown that a 483-year control
simulation of HadGEM3-GC3-MM, in combination with a
barotropic storm surge model of the north-west European
coastal shelf, is capable of directly simulating realistic ex-
treme storm surges for some sites around the UK coastline,
as evaluated against observations (Fig. 1). In particular, our
modelling system simulates several surge events at Sheerness
(on the Thames estuary) which are comparable to best esti-
mates of the catastrophic 1953 storm (Figs. 6 and 7).

We extend the skew surge–tide dependence results of
Williams et al. (2016). Our simulations suggest that skew
surge–tide dependence can have a substantial effect on the
most extreme surges at Sheerness (Fig. 7 and Appendix E).

Furthermore, around the whole of the UK coastline we find
that the spatial pattern of variations in the three parameters
which describe the extreme tail of the storm surge distribu-
tion is very well reproduced by the simulation (Fig. 2). In par-
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Figure 7. Observed (orange), estimated (green), and modelled
(blue) skew surges at Sheerness. (a) Empirical return level plot
showing annual maxima of skew surge from tide gauge data as
used in CFB2018 (orange) and from the 483-year model simula-
tion (blue). Years with less than 75 % of available data are excluded
from the tide gauge data analysis. (b)) Skew surge maxima. Key:
T(ide): tide gauge (max from panel a). W(adey): data from four
different sources for the 1953 event, as tabulated by Wadey et al.
(2015). H(adGEM3): model max skew. Phase relationship between
atmospheric events and astronomical tide is essentially random over
the 483-year simulation. S(pring): model max skew when events
are artificially shifted to coincide with spring tide. N(eap): model
max skew when events are artificially shifted to coincide with neap
tide. Z(ero): model max skew when astronomical tides are excluded
(surge-only simulation: “Zero tide”).

ticular, the observed spatial variations in the shape parameter
are reproduced by the simulation. This is important because

– it gives further credibility to both diagnoses of the spa-
tial variations,

– the shape parameter is the main source of uncertainty in
estimates of unprecedented events (Appendix C), and

– the length of the simulation (much greater than the
length of the observational record) helps to constrain the
shape parameter.

A typical simulated shape parameter for an individual site
is more negative than (but within the uncertainty of) that di-
agnosed by CFB2018 (Fig. 2d). This negativity arises at a
wide spread of sites. Such spatial uniformity of the nega-
tivity strongly suggests an underlying difference rather than
a chance or sampling difference. Sub-sampling the simula-
tion with sample sizes matching the tide gauge record lengths
supports that suggestion and shows that our model shape pa-
rameters are biased low relative to those diagnosed from tide
gauge observations. However, that is also the case when our
surge model is driven by a good-quality atmospheric reanaly-
sis, suggesting that the bias comes from shortcomings at the
surge modelling stage rather than the atmospheric forcing.
We conclude, then, that our atmospheric model, HadGEM3-
GC3-MM, has the potential to help constrain estimates of
unprecedented UK storm surges but that improvements at the
surge modelling stage are required.

8 Suggestions for further work

The model–observation departures seen in Fig. B1 have a
systematic feature which is consistent over spatial regions,
e.g. south-west and north-west UK. This suggests that it
should be possible to account for these departures through a
smooth spatial function which maps the differences in quan-
tiles between the observations and model data. With this ad-
justment it is possible that the currently identified under-
estimation may be corrected before making the tail-based
GEV–GPD comparisons shown here.

The shape parameter estimates in Fig. 2d show some
site-to-site variations which are more pronounced than the
broader smooth variations across coastlines. This suggests
that they would also benefit from the penalty-based approach
used by CFB2018.

One advantage of modelled data is the ability to give es-
timates at ungauged sites. We have not exploited this ability
here, but we anticipate that it will form the basis of further
work.
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Appendix A: Surge model grid and tide gauge locations

Figure A1. (a) Domain and grid of the CS3 coastal shelf model. Grid size is 1/9◦ in latitude and 1/6◦ in longitude, which results in
near-square grid cells at the latitude of the UK. (b) Tide gauge locations.

Appendix B: Empirical return level plots for UK tide
gauges

Figure B1 shows empirical return level plots for 44 tide
gauge locations around the UK. For simplicity we use an-
nual maxima only. The observational annual maxima are lim-
ited to years in which the tide gauge data is at least 75 %
complete. Plotting positions are evaluated using the Weibull
formula (Weibull, 1939). Working from left to right along
the rows (and then downwards through the rows as in read-
ing), the sequence of plots follows the clockwise sequence of
Fig. 2 as described in Sect. 4.1.

Figure B1 shows some major departures between the
model and observed data across the distribution of skew
surges but particularly in the tails. The model does not give
higher quantiles than the observed data at any site. However,
it can be seen that at some locations the model produces a
plausible simulation of the observed return level plot and a
plausible extrapolation of the return level plot to return pe-
riods outside of the observational record. This is discussed
further in Sect. 4.
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Figure B1. Empirical return level plots for 44 UK tide gauges. Purple shows observational (tide gauge) data. Blue shows data from the
483-year HadGEM3-GC3-MM simulation.

Appendix C: Shape-parameter uncertainty dominance

For short record lengths, unconstrained maximum likelihood
estimation is known to give “noisy” and implausible shape
parameters (Coles and Dixon, 1999; Martins and Stedinger,
2000); see also Sect. 3.3.4. We illustrate this in Fig. C1 with
a GEV fit to tide gauge data.

In similar plots for the location and for the scale param-
eter, the tapering seen here is not exhibited. In this illustra-
tion, tide gauge records of length greater than about 40 years
have a fitted shape parameter which is within the range of the
model fitted shape parameters; only in short records are large
positive or negative shape parameters found. Figure C1b–d
confirm that the tapering is a result of record length.

Associated with this, for observational record lengths, the
uncertainty in the shape parameter dominates the uncertainty
in inferred return levels for long return periods. This is illus-
trated in Fig. C2.
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Figure C1. Short record lengths lead to noisy MLE shape-
parameter estimates. (a) Shape parameter of GEV fit to tide gauge
data against the number of annual maxima fitted (blue dots, one
for each tide gauge) and shape parameter of GEV fit to model data
(orange crosses, one for each tide gauge, all 483 years). Note that
the range of fitted shape parameters decreases (“tapers”) as record
length increases. (b) Model data for each port are cut down to a
(random) sub-sample having the same length as the observational
record at that port and then fitted in the same way as the obser-
vations. A similar tapering pattern emerges. Panel (c) as (b) but a
different random sub-sample. Also shown (grey) is the 5th to 95th
percentile range from 100 such sub-samples at each port. (d) Sim-
ilar to (a–c) but using pseudo-random variates drawn from a GEV
distribution with scale and shape parameter which are typical of
the values found around the UK (0.12 m and −0.06 respectively).
Sample size varies from 5 to 500, as shown by the logarithmically
scaled x axis. For each sample, GEV parameters are fitted by maxi-
mum likelihood estimation. For each sample size, 2000 samples are
drawn and the 5th to 95th percentiles of the fitted shape parameters
are shown by the grey bar. The dashed green line shows a shape
of −0.06. The 5th to 95th percentile intervals for sample sizes 5, 7,
and 10 exceed the Y -axis limits.

Figure C2 shows the sources of uncertainty in return level
for 10 different return periods. The data were constructed as
follows. We took representative shape and scale parameters
(we used the CFB2018 parameters for skew surge at Sheer-
ness) and a representative record length of 45 years. We sim-
ulated 45 years of 94 % threshold exceedance data by inverse
transform sampling. We estimated the (GPD) parameters of
the sample by maximum likelihood estimation without any
prior constraint. For each of 10 return levels, we estimated
the uncertainty using the delta method (e.g. Coles, 2001) as
follows.

Var(R)=
∂R

∂σ̃
Var(̃σ )

∂R

∂σ̃
+
∂R

∂ξ
Var(ξ)

∂R

∂ξ

+ 2
∂R

∂σ̃
Cov(̃σ ,ξ)

∂R

∂ξ
, (C1)

Figure C2. The uncertainty (variance) in different return levels is
partitioned into contributions from uncertainty in the shape param-
eter, uncertainty in the scale parameter, and a negative contribution
from the covariance of these two parameters, shown as an offset to
the base of the bars. Uncertainty in the shape parameter becomes
dominant at long return periods.

where R is return level, σ̃ is the GPD scale parameter, and
ξ is the shape parameter. The variance and covariance terms,
which are determined from the curvature of the likelihood
surface, are evaluated during the likelihood maximization
routine. The three terms on the right-hand side of Eq. (C1)
are the contributions to the return level uncertainty from the
GPD scale parameter uncertainty, the shape parameter uncer-
tainty, and the covariance of the two parameters respectively.
To increase confidence in the uncertainty estimates, we re-
peated the sampling many times and averaged over each con-
tribution. A further contribution to uncertainty is the choice
of threshold, but this contribution is usually found to be small
(Coles, 2001) and is neglected here. We tested some alter-
native approaches (not shown here), for example fitting a
GEVD to the annual maxima instead of GPD to POT. The es-
sential result – the dominance of the shape parameter uncer-
tainty – is robust and was not affected by the use of alterna-
tive approaches. The result holds for all of the nine locations
that we tried: Newlyn, Fishguard, Holyhead, Stornoway, Ler-
wick, Aberdeen, Cromer, Lowestoft, and Sheerness. In each
case we simulated a record length corresponding to the avail-
able tide gauge data for that location.

Appendix D: Further shape parameter results

Figure 3 in the main text shows results of fitting the GPD
distribution to peaks over a threshold. Here, in Fig. D1, we
extend that figure to include results of fitting the GEV distri-
bution to annual maxima.

To probe the model–tide gauge shape parameter bias fur-
ther, we performed some more experiments. We made an un-
constrained GEV fit to tide gauge annual maxima of skew
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Figure D1. Further shape parameter results. (A–F) diagnosed by
GPD fit to POT as Fig. 3. (G–M) diagnosed by GEV fit to annual
maxima.

surge at each of the 41 sites. Owing to the short record length,
the results are very noisy and include some implausible val-
ues. Nevertheless the mean of these 41 results is shown by
the filled square on line L. The mean for the 21 sites with the
longest record lengths is also shown, by the cross on line L.
For comparison, the mean of the GEV fit to simulated data
(41 sites) is shown in line K. The GEV fit to simulated data
for each of the 41 sites is shown in line I (i.e. the square on
line K is the mean of the points on line I). To compensate
for the short observational record length, we experimented
with applying a prior to the shape parameter of the GEV
fit to the observed annual maxima of skew surge. Follow-
ing CFB2018, we used a normal prior with a standard devia-
tion of 0.0343, but we varied the centre (i.e. the mean) of the
prior. For each site, we produced a maximum likelihood fit by
maximizing the log-likelihood in the usual way. We summed
log-likelihoods over all sites to give an overall log-likelihood
for that value of the centre of the prior. The value of the cen-
tre of the prior which maximized the log-likelihood is shown
by the disc in line M. Standard techniques (Coles, 2001) en-
able us to identify a 95 % confidence interval, shown by the
solid straight line in line M. We applied the same approach to
the simulated skew surges to give the results shown in line J.

We did some further shape parameter evaluations with
surges generated by CS3 driven by the ERA-Interim atmo-
spheric reanalysis (Dee et al., 2011) that has been down-
scaled with the Swedish Meteorological and Hydrologi-
cal Institute (SMHI) Rossby Centre regional atmospheric
model (RCA4) as part of the Euro-CORDEX experiment (Ja-
cob et al., 2014). The ERA-Interim GEV mean (correspond-
ing to the square in line L) is shown in line H. The GEV-
optimum centre of prior (corresponding to line M) is shown
in line G. In all cases, our ERA-Interim-based shape parame-
ter results are in better agreement with our model results than
with the CFB shape parameter results. As discussed in the
main text, this suggests that the bias is not a result of any de-
ficiency in the climate-model compared to the ERA-Interim
reanalysis and that it more likely arises from the continental
shelf modelling stage.

Figure E1. (a) Skew surge realized on spring tide (“S”, Y axis)
vs. skew surge realized on neap tide (“N”, X axis). (b) Differ-
ence (N–S) vs. N. Blue dots show our experiments using atmo-
spheric forcing from the 16 most extreme Sheerness events in
the HadGEM3-GC3-MM simulation. Red crosses show data from
Williams et al. (2016).

The GEV fits to skew surge data give more negative shape
parameter results than GPD fits. This is surprising since
both methods (GEV and GPD) are asymptotically unbiased
(Coles, 2001). We further experimented with fitting to some
entirely artificial data (pseudo-random numbers) of compa-
rable size to the simulations. We did not find any evidence
of a consistent negative shape bias in the MLE when using a
GEV compared to a GPD fit for any distribution of pseudo-
random numbers that we tested (including Gumbel, normal,
and GEV with +ve and −ve shape parameters). Thus the
GEV vs. GPD bias may be hinting at a departure from the
conditions which are required for accurate statistical mod-
elling of the extremes.

Appendix E: Further skew surge and tide dependence
results at Sheerness

For each of the 16 extreme events shown in Fig. 6, we re-
ran the simulation, adjusting the timing such that the event
coincided with a spring and then a neap tide. In each case we
also made small timing adjustments to realize the maximum
skew surge. In all cases the skew surge was attenuated on
the spring tide relative to the neap tide. The size of the skew
surge and the spring–neap difference in the skew surge are
shown in Fig. E1.
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Figure E2. Our skew surge and tide interaction results for Sheerness
overlain on a reproduction of Williams et al. (2016), their Fig. S2.
The results for a modelled high water of zero are included for com-
parison. They come from a very artificial simulation in which no
tidal forcing is included. In reality, of course, the tide is always
present.

As discussed in the main text, such experiments have been
conducted before by Williams et al. (2016); their results are
shown by the red crosses in Fig. E1. Williams et al. (2016)
also show scatter plots of observed skew surge and tide. In
Fig. E2 we show our model results overlain on a reproduction
of the Sheerness panel from their Fig. S2. The blue points
show simulated skew surge against simulated astronomical
high water for the 16 extreme atmospheric events with tim-
ing adjusted such that the event coincided with a simulated
spring tide and a simulated neap tide, as described above.
The artificial case of no tide is also shown. Grey points are
as in Williams et al. (2016). It can be seen that our model
results do not look out of context compared to the observa-
tions in terms of the negative correlation. For reference the
extreme (entirely artificial) case of simulated tide–surge in-
teraction is also shown, in which no tidal forcing is included
(see Sect. 6.1). In reality, of course, the tide is always present.

Data availability. The tide gauge data used in the CFB2018 re-
port are available to download from the British Ocean Data Centre
(https://www.bodc.ac.uk/, British Ocean Data Centre, 2021). The
CFB2018 shape parameters can be read from their Fig. E.1 (Envi-
ronment Agency, 2018). The CFB2018 GEV scale parameters as
shown in Fig. 2b, in metres, (for sites Newlyn through Portrush in
the order shown on theX axis of Fig. 2) are 0.0835, 0.0733, 0.0847,
0.1031, 0.1369, 0.1790, 0.1574, 0.1484, 0.1140, 0.0940, 0.1639,
0.1063, 0.1161, 0.1305, 0.1228, 0.1815, 0.1593, 0.1358, 0.1757,
0.1490, 0.1471, 0.1202, 0.0955, 0.1368, 0.0684, 0.0913, 0.0922,
0.0966, 0.1049, 0.1178, 0.1333, 0.1618, 0.1748, 0.2153, 0.1715,
0.1629, 0.1557, 0.1091, 0.0985, 0.0937, 0.0948, 0.1201, 0.0938,
and 0.1273. Simulated sea levels at the tide gauge sites as used in

our analysis are available from the first author on request. All of
the analysis was undertaken using the open-source languages R and
Python.
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