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Abstract. Wildfire risk is latent in Chilean metropolitan
areas characterized by the strong presence of wildland-
urban interfaces (WUIs). The Concepcién metropolitan area
(CMA) constitutes one of the most representative samples of
that dynamic. The wildfire risk in the CMA was addressed by
establishing a model of five categories (near zero, low, mod-
erate, high, and very high) that represent discernible thresh-
olds in fire occurrence, using geospatial data and satellite
images describing anthropic—biophysical factors that trigger
fires. Those were used to deliver a model of fire hazard using
machine learning algorithms, including principal component
analysis and Kohonen self-organizing maps in two experi-
mental scenarios: only native forest and only forestry plan-
tation. The model was validated using fire hotspots obtained
from the forestry government organization. The results indi-
cated that 12.3 % of the CMA’s surface area has a high and
very high risk of a forest fire, 29.4 % has a moderate risk, and
58.3 % has a low and very low risk. Lastly, the observed main
drivers that have deepened this risk were discussed: first, the
evident proximity between the increasing urban areas with
exotic forestry plantations and, second, climate change that
threatens triggering more severe and large wildfires because
of human activities.

1 Introduction

In the last few decades, the world has seen an increasing
trend in wildfires affecting large populations (Moritz et al.,
2012), generally being attributed to atmospheric warming fu-
eled by anthropogenic climate change (Spies et al., 2014)

and extreme weather events (Stott, 2016) creating a riskier
environment. However, wildfire hazard is a product of inter-
linked socio-environmental processes including the proxim-
ity between wildland—urban interfaces (WUIs) and urban ar-
eas (Kumagai et al., 2004; Kolden and Henson, 2019; Gold-
man, 2018; Sarricolea et al., 2016); unregulated extractive
economic activities in fire-prone landscapes (Castree, 2008;
Spies et al., 2014; Freudenburg, 1992; Gago and Mezzadra,
2017); traditional cultural practices which increase the avail-
ability of flammable material — in construction, forestry, or
agriculture (Harari, 2013; Frene and Nuiiez, 2010); and the
traditional practice of clearing land called “slash and burn”
(Shahriar et al., 2019, p. 1). The analysis of this hazard must
consider biophysical factors such as altitude, slope, climate
conditions, solar radiation, and vegetation cover (Chuvieco
et al., 2004, 2011). For example, windy and dry conditions
with steep slopes rapidly lead to quick fire spread and burn
large areas of forest within a short time (Shahriar et al., 2019,
p- 2).

Identifying and managing fire hazards is part of a political
agenda rather than a solely biophysical concern (Pyne, 2009;
Doerr and Santin, 2016; Change, 2017). Experiences with
fire in underdeveloped countries are radically different from
those in developed countries, which have controlled burns, a
strict forestry policy, and solid territorial planning and usu-
ally take advantage of the ecological benefits of the fire for
ecosystems and livelihoods (Hutto, 2008; Gonzdlez, 2005;
Gonzalez-Mathiesen and March, 2018; Adams, 2013).

Risk and vulnerability mapping usually identifies the cat-
egories of wildfire likelihood that correspond to one of the
most used tools in research. The use of risk categories is
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considered a useful method to provide understandable infor-
mation for policymaking and decision-making as attested by
the style of the “Summary for Policymakers”, a document
regularly delivered during the publication of the IPCC (Inter-
governmental Panel on Climate Change) assessment reports
and that contains many examples of categorically organized
information (IPCC, 2014, 2019). However, feeding the pre-
dictive models with precise data of land cover changes, ac-
curate meteorological data, and human activities that could
start a wildfire in real time remains a challenge, mainly be-
cause data are sparse or outdated and sometimes stored in
multiple agencies (Dapeng et al., 2019; Otero and Nielsen,
2017; Knowles et al., 2015).

To diminish the exposure of the population to wildfire haz-
ard, a steady provision of tools that support landscape plan-
ning to minimize wildfire occurrence (Gonzalez-Mathiesen
and March, 2018) and manage the social impacts after the
disturbance (Paveglio et al., 2015) is required. This approach
is essential in highly fragile regions such as Mediterranean
ecosystems (Turco et al., 2016; Pausas et al., 2008; Darques,
2015; Diffenbaugh, 2007) existing in Spain (Vilar del Hoyo
et al., 2011), Italy (Terranova et al., 2009), Australia (McGee
and Russell, 2003), Portugal (Gémez-Gonzilez et al., 2018),
California (Koltunov et al., 2012), and Chile (de la Barrera et
al., 2017).

Chile’s central-south region (~ 35 to ~40°S) (Fig. 1) is
one of the most transformed in the country, with a long
history of mining, industrialization, and forest exploitation
(Bustamante and Varela, 2007; Aguayo et al., 2009). Here,
intensive land use changes interact with the replacement of
native land cover by plantations, urban sprawl, and socio-
environmental conflicts associated with forest property (An-
dersson et al., 2016; Nahuelhual et al., 2012; Altamirano et
al., 2013; Heilmayr et al., 2016; McWethy et al., 2018; Cid,
2015; Schulz et al., 2010) that lead to a characteristic envi-
ronment prone to wildfire occurrence.

The Concepcién metropolitan area (CMA) is a conspicu-
ous example of wildfire activity in this region of Chile. Avail-
able studies suggest that wildfires will become more frequent
and aggressive, given the changing climate conditions in the
CMA (Castillo et al., 2003; CONAF, 2017, 2018; Sarricolea
et al., 2020; CR2, 2020) following global trends (Moritz et
al., 2012). One of those changes is related to more frequent
droughts (Fernandez et al., 2018), which are coincident with
recent findings that attribute part of precipitation decrease to
anthropogenic sources (Boisier et al., 2016), impacting the
lives, crops, and neighborhoods of more than a million peo-
ple (Gomez-Gonzdlez et al., 2018; de la Barrera et al., 2018;
CONAF, 2018; Araya-Muiioz et al., 2017; Cid, 2015).

In this work, a model for wildfire risk mapping in the CMA
(~36°42'S, ~73°3' W; Fig. 1) was applied and validated.
An updated categorical map at a relatively high spatial reso-
lution was delivered. This model aims to support urban plan-
ning for and further studies of wildfire hazards. The paper is
organized as follows: Sect. 2 describes the study area, mate-
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rials, and methods; Sect. 3 presents and analyzes the results;
Sect. 4 corresponds to the discussion, and in Sect. 5 we con-
clude while suggesting avenues of future work.

2 Materials and methods

Located in Chile’s Biobio administrative region, the CMA
(~36°42' S, ~73°3" W, Fig. 1) is the third-largest urban area
with a total population of over 1 million (INE, 2021). CMA
has many interconnected small urban centers (Rojas Quezada
et al., 2009), which are expanding rapidly, mostly for hous-
ing development and industry (Rojas Quezada et al., 2013).
Also, the region contains a variety of important biodiver-
sity hotspots (Smith-Ramirez, 2004) and wetlands (Martinez
Poblete, 2014).

A Mediterranean climate with warm, dry summers and
cold, wet winters characterizes this region (Sarricolea et
al., 2020), with an average temperature of 12.4°C and an-
nual rainfall of 1332 mm, of which 70 % is concentrated be-
tween May and August (BCN, 2021). The CMA has one of
the largest wildland—urban interfaces (WUIs) in the country
(Ruiz et al., 2017).

Several economic activities have been developed in the
CMA and its surroundings since its foundation in the
18th century. However, today the region is mainly known for
timber production and export from plantations of exotic fast-
growing species (Torres et al., 2015), maintaining a steady
number of forestry plantations despite urban growth since
1974 when there was 44 123 ha of forestry plantations com-
pared to more than 46 697 ha in 2016 (INFOR, 2017).

Previous work on wildfire hazard mapping indicates the
need to include a number of spatially distributed factors
that contribute to the susceptibility of the landscape, such as
slopes, orientation, and the effect of insolation (You et al.,
2017), and these types of models organize space into cate-
gories as a result of weighted sums of contribution factors.
In this case, available research portrays wildfires as products
of human activities, topographic characteristics, land cover,
and climate (CONAF, 2017; de la Barrera et al., 2018; Ubeda
and Sarricolea, 2016). While most approaches to mapping
wildfire hazards have been based upon frameworks tested in
other regions, data-driven approaches are still under-utilized.
This hazard modeling takes advantage of available national
databases and satellite products, which are included in ma-
chine learning algorithms to produce maps that allow the
spatially distributed identification and assessment of wildfire
hazards. The model combines principal component analysis
(PCA) and Kohonen self-organizing maps (SOMs) to deter-
mine locations classified into five categories: near zero, low,
moderate, high, and very high. The following subsections
present the steps to compile the analyzed database, the model
development, and the experiments performed.
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Figure 1. Map of the study area. The right map highlights Chile’s Biobio region in a continental context, and the CMA is shown on the left
map. Source: CEDEUS (2016). © OpenStreetMap contributors 2021. Distributed under the Open Data Commons Open Database License

(ODbL) v1.0.

2.1 Geodatabase compilation

Input data for the modeling corresponded to a 12-variable
geodatabase that included several descriptors related to fire
hotspot recurrence, such as topographic features, land cover
characteristics, built environment descriptors, and climatic
indices (Table 1). Fire hotspot locations were utilized as
reference coordinates to produce a raster that counted the
number of spots within a 900 m pixel size. Center coordi-
nates of each pixel are the locations utilized in the compiled
geodatabase. The 900 m spatial resolution corresponds to a
trade-off between the representations of the different input
databases, which range from 30 m to 5 km. Locations of fire
hotspots used for the geodatabase correspond to the period
20082019, available from the Chilean National Forest Cor-
poration (CONAF, Corporacién Nacional Forestal). The for-
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est fire database is constructed from information collected by
brigades and private forestry companies at wildland—urban
interfaces and in rural (forestry) areas. Forest fire detection
is carried out in three ways: (a) fixed terrestrial (observation
towers), (b) mobile terrestrial (surveillance), and (c) aerial
detection (Tapia and Castillo, 2014). Fixed ground detection
makes it possible to reach extensions of up to 20 km of vi-
sion and monitoring since it uses large structures (greater
than 20 m high) in which a person is constantly watching
with the help of binoculars. The mobile terrestrial detection
only covers a predial scale (generally carried out by private
companies) and is performed in sectors of better accessibil-
ity for different types of motorized vehicles. Aerial detection
allows for reaching a large area per unit of time since small
airplanes are used to detect forest fires at a great distance.
Detected fires are then GPS georeferenced and subsequently
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added to a geographic information system (GIS) using a pre-
defined grid in which each cell represents 4 km? (2 x 2km).
The minimum area for a forest fire to be mapped is 10 m?.
These data thus correspond to a spatially explicit database
where each cell centroid represents burned and/or burning
areas. The databases with which the country’s forestry ser-
vices work are becoming more and more accurate and are
continually being revalidated and refined. In recent years, the
minimum unit of detection of forest fires by private compa-
nies has reached thresholds below the millimeter scale and
the public forestry service (CONAF) reaches 0.001 m.

Spot locations were also used to determine their distances
to the closest streams, urban centers, and major roads and
then were averaged at the 900 m pixel size to be assigned
to the corresponding location in the geodatabase. These vec-
tor data, including the stream network, were retrieved from
the map portal (publicly available at http://datos.cedeus.cl/,
last access: 29 November 2021) of the Centre for Sus-
tainable Urban Development (CEDEUS). Elevations of the
study area were retrieved from the ASTER GDEM ver-
sion 2, which is a digital elevation model produced at a
30m pixel size using stereo-correlation techniques applied
to scenes from the ASTER sensor of the Terra satellite
(Abrams et al., 2010). Three land cover characteristics were
included in the database: a raster land cover map, a normal-
ized difference infrared index (NDII), and a normalized dif-
ference vegetation index (NDVI). The land cover map was
derived from two Landsat images obtained from the platform
Earth Explorer (https://earthexplorer.usgs.gov, last access:
29 November 2021). The images were corrected geometri-
cally, radiometrically, and atmospherically (Chuvieco, 2002;
Heilmayr et al., 2016). A maximum likelihood statistic of the
supervised classification method (Chuvieco, 2002) was used
to classify native forest, scrub, pasture and/or cropland, urban
areas, exotic plantations, water bodies, bare soil, and burned
areas. We used approximately 700 training points for each
classified image, acquired through two sources, (a) a cadastre
of the native plant resources of Chile (CONAF-BIRF, 1999)
and (b) Google Earth (specifically its “time slider”), to obtain
input to classify images.

The NDII and NDVI data that were entered into the geo-
database correspond to a pixel-wise linear-trend map for each
index. All these raster maps were aggregated by simple av-
eraging into a 900 m pixel size and assigned to the nearest
center coordinate in the geodatabase.

Climatic descriptors included average summertime poten-
tial solar radiation, a temperature index, and a precipitation
index. The ASTER GDEM was used to compute average
summertime potential direct solar radiation employing the
insol package within the R programming language, a pack-
age that implements algorithms presented by Corripio (2003,
and references therein). The same procedure described for
elevations was implemented to add these data into the geo-
database.
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For temperatures, the value employed for each location
was the linear trend in the number of summer (December,
January, and February) days in which maximum tempera-
tures were larger than the 90th percentile for all summers
during the period 1980-2016, i.e., the linear trend in the
TX90p climate index (Klein Tank et al., 2009). For precip-
itation, the linear trend included in the geodatabase is from
the number of consecutive dry days (CCDs) in summer for
the period 1980-2016 and an index used in fire risk analy-
sis (da Silva et al., 2020). The climatic data utilized for these
calculations were from the CR2MET product, a gridded cli-
matology at a 5km pixel size at daily to monthly frequency
produced by the Chilean Center for Climate Resilience Re-
search (CR2, 2020) covering the period 1979-2016 (avail-
able at http://www.cr2.cl/datos-productos-grillados/, last ac-
cess: 29 November 2021). CRZMET was produced us-
ing a statistical downscaling of the ERA-Interim reanaly-
sis supplemented by topographic data, land surface tempera-
tures retrieved from satellites, and instrumental observations
(Alvarez-Garreton et al., 2018). The database also included
linear trends of skin temperatures retrieved from the 0.05°
(~ 5km) daytime monthly land surface temperature product
MODI11C3, version 6, derived from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) aboard the Terra
satellite (Wan et al., 2015), accessed from the Giovanni tool
(Geospatial Interactive Online Visualization and Analysis In-
frastructure) at NASA’s Goddard Earth Sciences Data and
Information Services Center (Acker and Leptoukh, 2007).
Within the geodatabase, trends in TX90p, CDDs, and skin
temperatures were added to the closest location falling within
the respective 5 km pixel.

2.2 Category development

Implementing a data-driven approach allows for determi-
nation of discernible susceptibility thresholds according to
the records available, which here are derived from observed
spot recurrence. Thus, one of the first tasks in this research
was the study of the 900 m pixel map to determine whether
there were detectable differences in spot recurrence. The cat-
egories were defined using a geometric sequence of the fol-
lowing form:

CZR]()()%XV. (1)

The five categories (C) were then computed by grouping re-
currences (i.e., fires per year in each pixel) within the 2008—
2019 period. Rjpo9 represents the maximum value in the
study area, assumed to have 100 % recurrence. Thus, accord-
ing to Eq. (1) the very high (VH) category considered recur-
rences from the maximum to half that recurrence, while near
zero (NZ) included the minimum of 0 % recurrence (r = 0).
Thresholds for the intermediate categories high (H), moder-
ate (M), and low (L) recurrence are calculated using a ratio
r ={0.5,0.25,0.125}, applied to Rioo %, respectively.
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Table 1. Data sources of satellite products used in this study.
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Source Associated factor Original spatial  Date
resolution
ASTER GDEM Elevation and summertime so- 30m Various
lar radiation
LANDSAT NDII and NDVI land cover 30m 2016
CEDEUS Human infrastructure and ac-  Vector 2016
tivities (highways and rail-
ways, roads, controlled burn ar-
eas, high-voltage power lines,
camping zones
Center for Climate Resilience Research (CR2) Consecutive dry days (CDDs) 5km 1979-2016
and TX90p
CONAF (Chilean National Forest Corporation)  Locations of fire hotspots Vector 2008-2019
MODIS Locations of fire hotspots and 1 and Skm 2008-2019

skin temperature

2.3 Model implementation, validation, and
experiments

Based upon the known locations showing different recur-
rence categories, the modeling involved the development of
a supervised classification scheme meant to determine the
recurrence probability in the whole study area. To do so,
two procedures were applied to the compiled geodatabase:
first, a principal component analysis (PCA) to reduce di-
mensionality from the 11 descriptors (excluding spot recur-
rence) to a new set of uncorrelated variables, called prin-
cipal components or PCs, which maximize the explained
variance while reducing redundancy among similar variables
from the original database (DemSar et al., 2013). In this pro-
cedure, land cover classes were included using binary en-
coding, effectively enlarging the database to 18 descriptors.
Afterwards, the PCs explaining most of the variance were
used as input to a supervised classification using a Kohonen
self-organizing map (SOM) algorithm (Kohonen, 1990). A
SOM is a class of neural networks that reveals the structure
of a dataset by competitive learning. The supervised clas-
sification was implemented as an iterative process where a
random selection of locations from the recurrence categories
were presented to the SOM, using the corresponding PCA
output as descriptors. During a given iteration the algorithm
selected 50 locations per category, classified by comparing
those locations with the rest of the study area. With the out-
put of all iterations, the model calculates a simple proba-
bility of determining into which category a certain location
falls more often, assigning the respective value. Computation
of the SOM’s network size and iteration number was deter-
mined following recommendations by Kohonen (1990) and
Vesanto (2000). Evaluation and validation of model output
included using the MCD14ML product, a MODIS standard-
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quality thermal anomalies/fire locations database, accessed
through NASA’s Fire Information for Resource Management
System (FIRMS).

A long-standing debate exists on whether forestry planta-
tions enhance wildfire occurrence in this region (Ubeda and
Sarricolea, 2016a; Urrutia-Jalabert et al., 2018; de la Barrera
et al., 2018). This presented model allows testing the sensi-
tivity of the study area to different scenarios, and thus two ex-
treme situations were compared. A first model configuration
assumed all non-urban areas were covered by native vegeta-
tion, while a second scenario considered all non-urban areas
plantation. Inclusion of these two scenarios into the SOM
model was through using the corresponding weights of the
PCA to recalculate the score of each location relative to the
selected PCs.

3 Results — fire hazard in a metropolitan area, analysis
of factor maps and model output

3.1 Analysis of geodatabase components

From the 5404 fires recorded in the database, spatial patterns
of recurrence during the period under study were associated
with wildland—urban interface areas of the CMA, since the
quadrants with a recurrence of more than 20 fires were found
at less than 650 m from urban centers and highways. In fact,
the pixel with the maximum number of fires between 2008
and 2019, 154 or 14 per year, is located at the middle of the
study area near the city of Lota (~37.10° S, 73.13° W) and
is surrounded by a number of locations with high recurrence,
above 25 % (see Supplement Fig. S1). This suggests that the
causes of these forest fires are mostly anthropogenic. On the
contrary, the areas that did not record fire outbreaks during
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the study period were associated with remote locations with
an average elevation of 250 m, 8.1 km distant from urban cen-
ters and 1.5 km from highways.

As presented in Table 2, climatic descriptors show a gen-
eral increase of 0.59 °C/yr for TX90p and 0.51 d/yr in CDDs,
with a decrease of —0.52°/yr in skin temperature. TX90p
shows a range of 1.8°/yr and a standard deviation of 0.4°/yr,
indicating that most locations have been undergoing an in-
crease in maximum temperatures. In fact, only 7 % of the
pixels present negative linear trends, with most of them lo-
cated on a buffer of about 5 to 7km from the southeast of
the main urban area of Concepcién. The distribution of CDD
trends, on the other hand, is completely positive, with a min-
imum value of 0.26 d/yr and maximum of 0.8 d/yr. Skin tem-
perature is the only variable with a relatively clear spatial
differentiation; while 62 % of the region records a decreas-
ing trend, the 38 % of the study area that shows the opposite
behavior is in or near urban sectors of the CMA. This satellite
dataset indicates cooling of as low as —4.2°/yr and warming
of 4.6°/yr, with a standard deviation of 4.02°/yr.

The comparison of CONAF hotspot distances to streams,
roads, and urban areas suggests a significant impact of roads
on fire occurrence since on average hotspots are mapped at
about 1.3 km from roads. In turn, streams and urban areas are
at 5.5 and 6.6 km, respectively. Despite this pattern, the large
corresponding standard deviations of 1.1, 5.9, and 6.3 km in-
dicate a significant spread.

The values of the NDVI, which is associated with veg-
etation composition and structure, range from —0.2312 to
0.4460. Negative values of this indicator are related to non-
vegetation land covers/uses such as water bodies, urban ar-
eas, or bare soils. On the other hand, the positive values
are related to coverages from low vegetation such as pas-
tures or scrub (values close to zero) to dense vegetation
such as arborescent scrub, forest plantations, or native for-
est (NDVI > 0.25). Within the study area, 9.1 % of the pix-
els presented negative NDVI values (no vegetation), 35.7 %
corresponded to positive intermediate NDVI values (grass-
lands, scrublands, young forest plantations), and 55.2 % cor-
responded to high NDVI values (adult forest plantations, na-
tive forest). The values of the NDII, which is associated with
the moisture content of the vegetation, range from —0.154
to 0.450. The negative values of this index are related to
cover/uses without vegetation such as water bodies or urban
areas. Positive values are associated with water content in the
vegetation; the value of the index increases with increasing
water content in the vegetation. Within the study area, 7.4 %
of the pixels presented negative NDII values and 42.8 % cor-
responded to positive NDII values (but close to zero), mainly
associated with shrublands and grasslands. Finally, 64.7 %
corresponded to medium-high NDII values, which are asso-
ciated with adult forest plantations and native forest.

The elevation ranges in the study area fluctuated between
0 and 910 m, with an average elevation of 212 m. The high-
est elevations are found in the southern part of the study area
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and are mostly associated with the presence of forest plan-
tations and small fragments of native forest. The western
area presents the lowest terrain elevations, presenting itself
as a coastal plateau where the urban areas of the CMA are
present. The insolation on the ground, which directly influ-
ences the formation of fuel for the formation of forest fires,
reached mean values of 887.7 W/m?2, with insolation rang-
ing from 882.06 to 905.8 W/m?. The highest insolation val-
ues are associated with higher-elevation sectors with a north-
facing terrain aspect. Insolation on the ground showed lit-
tle variation due to the low variability in elevation gradients
in the study area. Finally, with respect to the land use/cover
present in the study area, 55 % of the surface corresponded
to exotic forest plantations of Pinus radiata and Eucalyptus
globulus species, which are associated with the highest ele-
vation of the study area. A further 7 % corresponds to native
forests of Nothofagus sp., which are present in areas of high
slopes (> 30 %). On the other hand, 15.2 % corresponds to
agricultural zones, which are associated with low sectors in
the eastern part of the study area. Finally, urban areas repre-
sent 5.3 % of the total surface area and are found mainly in
the coastal zone (west) of the study area.

When the data of the geodatabase are inspected according
to the categories determined from spot recurrence (Eq. 1),
several patterns emerge (Fig. 2). A first finding is that the
moderate (M) to very high (VH) categories tend to present
much less spread, with almost no outliers. It is also notice-
able that the near zero (NZ) and low (L) categories spread
to about the same range, suggesting that low recurrences do
not conform to a distinguishable pattern of recurrence and
that instead they correspond to random events. Variables as-
sociated with vegetation characteristics, i.e., trends in NDII
(t-NDII) and in NDVI (t-NDVI), tend to show that the VH
category is mostly associated with negative trends, deepen-
ing the decreasing tendency of H.

As expected from the method utilized to calculate insola-
tion, that variable and elevation show a similar pattern, where
M, H, and VH fall in regions of progressively higher val-
ues. Spot distances to urban centers (d-Urban) appear to be
within a narrow range for M, H, and VH relative to L. Al-
though with absolute values lower than d-Urban, distances
to roads (d-Road) are largely shorter than 2 km for the three
highest categories, with the moderate values for VH being
marginally shifted towards 2 km relative to H and M. For the
distance relative to streams (d-Stream), spot recurrence tends
to be higher at a separation below 2.5 km for H and VH.

The distribution of climatic variables according to cate-
gories shows a clear concentration within a narrow range
for VH. As previously detected, the trend in CDDs (t-CDD)
for the CMA is completely positive, although for VH it is
concentrated just below 0.5d/yr. In the case of TX90p (t-
TX90p), results indicate that M, H, and VH spot recurrence
has only occurred in areas with positive change, with H
showing the largest interquartile range. For skin temperature
trends (t-SkinT), most locations with positive trends coincide
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Table 2. Summary of the geodatabase components.
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NDVI
(surface %)

NDII
(surface %)

Elevation

(m)

Climatic descriptors

Land use/cover
(% covered)

Insolation
(W/m?2)

Anthropic features
(mean distance, km)

0.59 °C/yr for TX90p Negative: 9.1  Negative: 7.4  Range: 0to 910  Range: 882.06 to 905.8  Exotic forest: 55  From streams: 5.5
0.51d/yr in CDD Positive: 90.9  Positive: 92.6  Average: 212 Average: 887.7 Native forest: 7 From urban areas: 6.6
—0.52°/yr in skin temperature Agriculture: 152 From roads: 1.3
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Figure 2. The main features of the variables in the geodatabase, grouped according to

the wildfire categories: near zero (NZ), low (L),

moderate (M), high (H), and very high (VH). Units of temperature are degrees Celsius.

with high and very high recurrence. Figure 3 shows the land
use data pertaining to each category. The most striking pat-
tern is that 100 % of VH occurs over plantations, with about
70 % for H and nearly 45 % for M.

In addition, the progressive importance of urban land use
connected with plantations as the recurrence increases sug-
gests that the connection between these two land uses ex-
plains most of the damaging effects of wildfires in the CMA.
As already seen in the distribution of other variables, L and
NZ present a similar partitioning to the whole study area
(“All” in Figs. 2 and 3), further attesting to a random pattern
of low recurrence. This way, the analysis of input variables
tends to indicate that there is a relatively consistent pattern of
landscape conditions that allow for certain locations to record
fires more frequently than others.

3.2 PCA and SOM model output

Six principal components (PCs, labeled PC1-PC6) explain
about 71 % of the geodatabase variance within the study area.
Since the PCA was applied to the whole CMA, these results
represent the relationships including zones with zero fire
hotspots. Although no PC within these six accounts for more
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All

Nz L M H VH

M Native B Plantations W Shrubland Farming [ Urban Bare ground [l Wetlands [l Water

Figure 3. Land use (%) classified for the CMA according to the fol-
lowing wildfire categories: near zero (NZ), low (L), moderate (M),
high (H), very high (VH), and all. All represents the distribution of
the land cover along the whole study area.
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than 20 %, certain patterns emerge that suggest the proce-
dure has been able to suppress redundancies in the database
(Fig. 4). PCI1 reaffirms the relationship between elevation and
insolation and the similar behavior of d-Stream and d-Urban.
TX90p tends to be important in both PC1 and PC2, while in
the latter t-NDVI and t-NDII show the highest weights, indi-
cating important correlations between them. In turn, d-Road
and t-CDD are largely influential mostly in PC3. A remark-
able finding is that this PCA standardization does not show
land use as a prominent variable, as plantations appear to be
somewhat key in PC6 only.

The analysis of the PCA partitioned by recurrence cate-
gories reveals that only certain PCs — M, H, and VH — de-
velop distinct signatures (Fig. 5). These results also reaffirm
the similarity of L with a situation of nearly zero spots. Al-
though in almost all PCs the increase in recurrence shows a
trend of a narrow range relative to the immediately previous
category, there are certain remarkable exceptions, such as the
slight reverse trend of VH relative to H in PC1 and the signif-
icant interquartile range for H in PC6. A noticeable finding
is that VH’s interquartile range seems different from the rest
of the categories for PC1, PC2, and PC4.

SOM output compared with CONAF and MODIS data in-
dicates that this data-driven model is skilled in predicting
an increase in spot density according to the corresponding
category (Table 3). Given that the model was trained with
CONAF data, it is expected that a better match is found in
that comparison. In effect, the model predicts increasing den-
sity according to the recurrence category. The VH’s 10.98
spots per pixel is 3 times denser than that of H’s and about
5 times denser relative to M. For the case of MODIS data,
the model also finds a significant increase in density for VH,
almost 4 times higher than for M and H; however, it does not
predict density differences between M and H and records a
slightly larger density for L. The NZ category is well pre-
dicted by the model compared to both sources of fire hotspot
activity: ~ 6 times smaller for CONAF and about half for
MODIS.

According to the model, 55.8 % of the CMA presents
conditions for low recurrence of fire hotspots, with about
one-third for M and just 12.3 % for high and very high re-
currence. The model also predicts that spot recurrence is a
phenomenon that may affect almost the whole study area
(Fig. 6a).

The native scenario tends to show more pixels in the mod-
erate category than the plantation scenario (Table 4). Also,
the native scenario sees an increase in the VH category. On
the other hand, plantations tend to show an increase in the L
and H categories while reducing NZ. Although these differ-
ences are not extreme, they attest to a different dynamic de-
pending on the prevalent land cover. Both models show clus-
tering patterns in which very low and low values are associ-
ated with higher-elevation sectors within the CMA, which in
turn have the lowest insolation values. On the other hand, the
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Table 3. Comparison of SOM model output versus CONAF and
MODIS fire hotspot density. Density is calculated as the number
of CONAF or MODIS spots that fall within a given CMA model
category divided by the number of pixels corresponding to that cat-

egory.

Category Modeled area  Density (spots per pixel)

covered (%) CONAF MODIS
Near zero 3.3 0.13 0.45
Low 55.8 0.62 0.78
Moderate 28.6 2.13 0.72
High 10.3 3.66 0.72
Very high 2.0 10.98 2.84

Note that MODIS reports 50.04 % fewer hotspots than CONAF.

high and very high values are associated with low elevations
near the roads and urban areas of the CMA (Fig. 6b and c¢).

4 Discussion

In Mediterranean central Chile, land cover changes that char-
acterize current landscape organization resulted mostly from
the application of the government subsidies granted by De-
cree Law 701 for forestry development (DL 701) in 1974
(Nahuelhual et al., 2012; INFOR, 2017, p. 25). This pol-
icy favored plantations of exotic fast-growing species across
the region, with staggering consequences: in 1974, the sur-
face area of forestry plantations was 480000 ha, and during
the 1990s it was close to 2 x 10° ha (Aguayo et al., 2009),
reaching nearly 5 x 10%ha in 2015 (INFOR, 2017, p. 49).
This 10-fold increase in plantations motivated by public pol-
icy contrasts with the little attention paid to restoring na-
tive forests, which have historically contributed to the lo-
cal population’s livelihoods (Reyes and Nelson, 2014; Frene
and Nufez, 2010), requiring that the rural and indigenous
communities must compete for the use of the land against
the plantations and inciting environmental conflicts (INDH,
2015).

Concomitant with the plantation spread throughout the re-
gion, an increase in the recurrence and magnitude of fire dis-
turbances in WUIs has been observed, due to the blurred bor-
der between land covers or the substitution of certain land
use for others (Goldman, 2018; Ruiz et al., 2017). According
to CONAF, over 35 x 10° ha of vegetation is vulnerable to
fires, including grasslands and shrubland (20 x 10 ha), na-
tive forest (13 x 10° ha), and exotic plantations (2.1 x 10° ha)
(Castillo et al., 2003; CONAF, 2018). Of this vegetation, over
50000ha is burned annually in approximately 5900 wild-
fires. Under these political and economic conditions, the land
change cover seems to be a critical factor that contributes
to the wildfire risk and whose conflictive evolution has built
a double-pressure scenario that shows no sign of changing
(Ubeda and Sarricolea, 2016a; Andersson et al., 2016). Like-
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Figure 4. Input to the SOM model presented as percentages of six principal components (PCs).

wise, the urban expansion fomented by the National Policy
of Urban Development (NPUD) from 1979 has been dereg-
ulating the land use market (Brites, 2017), fomenting the ur-
banization of agricultural lands, wetlands, or forests (IDB-
ECLAC, 2007; Vilar del Hoyo et al., 2011; Hidalgo et al.,
2018).

The machine learning model developed in this work shows
that about 40 % of the CMA has at least a moderate proba-
bility of fire recurrence. Wildfire hotspot density is well rep-
resented by the model, which suggests this tool could be
a powerful decision-making tool for the public sector (i.e.,
national government, municipalities) and the private sec-
tor (universities, timber companies, real estate developers).
Hotspot density is concentrated on roads (1.3 km), leaving
the water streams (5.5 km) and urban areas (6.6 km) far be-
hind, consistent with the literature that assigns the major re-
sponsibility of the fire recurrence to the presence of human
infrastructure and human activities (Harari, 2013; Doerr and
Santin, 2016) and with CONAF’s previous reports (CONAF,
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2017, 2018). However, the anthropic factor is not the only
one to count, as Barbati et al. (2013) said, the distance from
the nearest water body is determinant for short-term fire re-
currence in Mediterranean countries, along with other land-
scape factors (slope roughness, exposure, pre-fire dominant
forest type). Additionally, the proximity to roads and maxi-
mum temperature dynamics, both variables severely altered
by human activities, tend to organize the randomness ob-
served in this model. This high random component in the
occurrence of events is associated with a lower wildfire haz-
ard, which reveals that after a random appearance, the re-
currence increases according to the conditions of each zone.
This last idea of random distribution of low and almost zero
recurrences has been around for a long time, and the litera-
ture reports similar results from GIS models in Sardinia, Italy
(Ricotta and Di Vito, 2014); California, USA (Minnich and
Chou, 1997); and Spain (Chuvieco et al., 2011, p. 49; Vi-
lar del Hoyo et al., 2011). Nevertheless, it is contradictory to
the official data from CONAF, which established that “a high
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Figure 5. Boxplots showing the distribution of PC weights according to the recurrence categories. All represents the distribution of each PC
throughout the whole study area.

Table 4. Modeled proportion of spot recurrence within the CMA (%) according to the five categories, considering the scenarios in which the
whole study area is assumed to be covered by native vegetation (native experiment) and exotic plantations (exotic plantation experiment).
The lower section of the table compares spot counts and the surface area per category relative to the full model using the original database
and to the experiments.

Category  Native experiment  Exotic plantation
(%) experiment (%)

Near zero 11.25 10.30

Low 50.73 54.22

Moderate 29.27 25.58

High 6.50 8.49

Very high 2.24 1.41

Category Spot counts Surface (ha)
Full Exotic Native Full Exotic Native
model plantation  experiment model plantation  experiment
experiment experiment

Near zero 86 296 310 6966 23976 25110
Low 1556 1501 1438 | 126036 121581 116478
Moderate 827 732 822 66987 59292 66582
High 280 239 174 22680 19359 14094
Very high 59 40 64 4779 3240 5184
Total 2808 2808 2808 | 227448 227448 227448
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Figure 6. Model results of wildfire recurrence in the CMA. (a) Model results using the original geodatabase. (b) The scenario of only exotic

plantations. (¢) The native forest experiment.

occurrence was recorded in the interface areas of the region,
because of the repeated occurrence of forest fires during the
2015-2016 season” (CONAF, 2020), and the study of central
Chile from McWethy et al. (2018), which stated that “fire
activity was highly variable in any given year, with no statis-
tically significant trend in the number of fires or mean annual
area burned”.

Experiments comparing total plantation and total native
scenarios, while not generating a significant change in cat-
egories, suggest that there are more areas that will be subject
to fires (fewer near-zero areas) when there are more planta-
tions. The fact that the low category tends to increase, even
if it is marginal, perhaps indicates that the probability of pre-
diction is reduced when coverage is mostly plantation as the
system tends to become more random. Also, it is relevant
that the model does detect a difference between scenarios of
total plantation and native forest cover, indicating that the
changes in fire regime and fire occurrence rely heavily on the
vegetal cover for central Chile, which is consistent with the
literature (McWethy et al., 2018; de la Barrera et al., 2018;
Ubeda and Sarricolea, 2016), press reports (CIPER, 2018),
and official reports (CONAF, 2017, 2018). Other studies sug-
gest the same relevance of landscape drivers for Mediter-
ranean countries (Darques, 2015; Pausas et al., 2008; Turco
et al., 2016). By examining the features of the model pre-
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sented here, it is possible to propose two, not necessarily
exclusive, possibilities that may explain the relatively weak
contribution of forest plantations to fire risk. The first is that
anthropogenic activities may become more important at the
local rather than the regional scale. For instance, whereas the
model shows that the urban boundary is overwhelmingly as-
sociated with categories M to VH, if one zooms out to the
whole of Mediterranean central Chile, cities become small
spots. The second possibility may be a “saturation effect”
in the sense that plantations now occupy such a significant
surface area within the CMA that the influence is already
permanent in the current regime of fires, meaning that any
data-driven treatment sees plantations as a constant and thus
attributes a small contribution. That is the reason why the
native-vs.-plantation experiments are important: they indi-
cate that the plantations tend to reduce the areas with near-
zero recurrence relative to the native scenario, although the
difference is marginal, likely associated with the saturation
effect.

Results of the model are thus relevant as they serve to
accumulate and analyze historical, cartographical, and other
types of data, leading to a better understanding of controls on
and drivers of fire activity in the CMA at a high resolution.
However, the model can be substantially improved with near-
real-time (NRT) information from terrestrial platforms (e.g.,
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vehicles, towers, cranes), airborne platforms (e.g., aircraft,
unmanned aerial vehicles (UAVs), helicopters), or space-
borne platforms (e.g., satellites) using electromagnetic sen-
sors (Van Ackere et al., 2019) and leading us to a truly
smart metropolitan area (Costa et al., 2020). In that sense,
it becomes necessary to put in more effort in the future to
extending the timeframe of the present study, as Chuvieco
et al. (2011, p. 54) accurately said, “Since fire occurrence
changes in space and time, the validation of integrated in-
dices should be done with long time series, because short pe-
riods may bias some of the theoretical assumptions that are
required to build the model”.

Future scenarios for the CMA are filled with uncertainty,
especially for climate change and associated impacts. Projec-
tions from the work of Araya-Muiioz et al. (2017) indicated
that the most relevant hazards for the CMA will be wildfires,
water scarcity, and heat stress. Likewise, droughts are be-
coming more recurrent (Garreaud et al., 2020; Fernandez et
al., 2018). As the model suggests, climatic indicators play a
role in fire recurrence, which allows us to infer that changes
in those will lead to increases in wildfire hazard for the
CMA. What is changing fast is the climate conditions, creat-
ing riskier scenarios globally. Therefore, there is an opportu-
nity to improve nature-based solutions or make them manda-
tory: controlled burns for a social-ecological transformation
(Otero and Nielsen, 2017); the ecological restoration of soils,
wetlands, and forests; REDD++; Initiative 20x20; and pro-
moting the carbon emission market for carbon sequestration
(Wright et al., 2000). For example, the Pinus radiata plan-
tations in Chile and Australia have a potential average net
annual rate of CO? accumulation of 4.5t (IPCC, 1996), se-
questering greenhouse gas emissions faster at a lower cost,
returning the investments quickly, and mitigating some of the
impacts of climate change (Pawson et al., 2013).

5 Conclusions

This study aimed to develop, implement, and test a model
of fire risk by combining natural and human factors that are
associated with wildfires’ generation and spread. The com-
bination of data using PCA and SOM allowed us to ponder
the relative importance of each factor, interpret how inter-
weaved they are, and study the impact of land cover. Despite
observed moderate to very high recurrence tending to clus-
ter near urban areas and on plantations, the model presents
a more complex interaction among factors, where climate
(e.g., t-TX90p), elevation, and human aspects (d-Urban and
d-Roads, for instance) are able to predict observed hotspot
densities, leaving land cover as a minor component. How-
ever, the comparison of the different land cover scenarios
points to a detectable influence of plantations in increasing
fire risk and the spatial distribution of recurrence.

Results indicated that 12.3 % of the CMA’s surface area
has a high and very high risk of a forest fire, 29.4 % a mod-
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erate risk, and only 58.3 % a low and very low risk. This
calls for reflection on the importance of spatial planning with
a resilient focus on wildfires according to the recurrence of
these phenomena in these settings as they are increasingly
more forced in WUISs, urban residential areas, and industrial
or port areas. These maps and this model are of vital im-
portance for the Chilean government emergency agencies as
well as for the city governments within the CMA. They are
also relevant for understanding how these phenomena affect
the Mediterranean ecosystems to which the CMA belongs,
and they therefore should be beneficial for researchers in
other latitudes working on similar ecosystems.
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