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Abstract. Extreme daily rainfall is an important trigger for
floods in Bavaria. The dimensioning of water management
structures as well as building codes is based on observational
rainfall return levels. In this study, three high-resolution re-
gional climate models (RCMs) are employed to produce
10- and 100-year daily rainfall return levels and their per-
formance is evaluated by comparison to observational re-
turn levels. The study area is governed by different types
of precipitation (stratiform, orographic, convectional) and a
complex terrain, with convective precipitation also contribut-
ing to daily rainfall levels. The Canadian Regional Climate
Model version 5 (CRCM5) at a 12 km spatial resolution and
the Weather and Forecasting Research (WRF) model at a
5 km resolution both driven by ERA-Interim reanalysis data
use parametrization schemes to simulate convection. WRF at
a 1.5 km resolution driven by ERA5 reanalysis data explicitly
resolves convectional processes. Applying the generalized
extreme value (GEV) distribution, the CRCM5 setup can re-
produce the observational 10-year return levels with an areal
average bias of +6.6 % and a spatial Spearman rank correla-
tion of ρ = 0.72. The higher-resolution 5 km WRF setup is
found to improve the performance in terms of bias (+4.7 %)
and spatial correlation (ρ = 0.82). However, the finer topo-
graphic details of the WRF-ERA5 return levels cannot be
evaluated with the observation data because their spatial res-
olution is too low. Hence, this comparison shows no further
improvement in the spatial correlation (ρ = 0.82) but a small
improvement in the bias (2.7 %) compared to the 5 km reso-
lution setup.

Uncertainties due to extreme value theory are explored by
employing three further approaches. Applied to the WRF-
ERA5 data, the GEV distributions with a fixed shape param-

eter (bias is +2.5 %; ρ = 0.79) and the generalized Pareto
(GP) distributions (bias is +2.9 %; ρ = 0.81) show almost
equivalent results for the 10-year return period, whereas the
metastatistical extreme value (MEV) distribution leads to a
slight underestimation (bias is −7.8 %; ρ = 0.84). For the
100-year return level, however, the MEV distribution (bias is
+2.7 %; ρ = 0.73) outperforms the GEV distribution (bias is
+13.3 %; ρ = 0.66), the GEV distribution with fixed shape
parameter (bias is +12.9 %; ρ = 0.70), and the GP distri-
bution (bias is +11.9 %; ρ = 0.63). Hence, for applications
where the return period is extrapolated, the MEV framework
is recommended.

From these results, it follows that high-resolution regional
climate models are suitable for generating spatially homoge-
neous rainfall return level products. In regions with a sparse
rain gauge density or low spatial representativeness of the
stations due to complex topography, RCMs can support the
observational data. Further, RCMs driven by global climate
models with emission scenarios can project climate-change-
induced alterations in rainfall return levels at regional to local
scales. This can allow adjustment of structural design and,
therefore, adaption to future precipitation conditions.

1 Introduction

Extreme rainfall is an important driver for different kinds
of hydrometeorological hazards, such as flooding and mass
movements. The state of Bavaria is exposed to the highest
daily rainfall intensities in Germany. Due to its complex to-
pography and a dense river network, the area is prone to river-
ine flooding and landslides (Grieser et al., 2006; Wieden-
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mann et al., 2016). Furthermore, urban areas are at risk of
urban flooding due to the dense population and a large frac-
tion of impervious areas (Chen and Leandro, 2019). To assess
the risk of heavy precipitation events and to dimension adap-
tation measures, engineers and public authorities often use
the concept of rainfall return levels. In Germany, a rainfall
return level database (“Coordinated heavy precipitation re-
gionalization evaluation”, KOSTRA; Junghänel et al., 2017;
Malitz and Ertel, 2015) is supplied by the German weather
service and is based on rain gauge observations. A similar
product is available for Austria (Kainz et al., 2007). Me-
teoSwiss provides mapped return levels and pointwise data
(MeteoSwiss, 2021). These products are included in building
standards and are, therefore, widely used. Even though the
coverage of rain gauges in Germany, Austria, and Switzer-
land is relatively high, there are uncertainties due to the spa-
tial representativeness of the measuring stations to generate
an area-wide rainfall return level product. This problem ap-
plies even more on a continental scale as the rain gauge den-
sity is distributed heterogeneously over different European
countries, where the available time series might be too short
to capture a sufficient number of extreme events (Lewis et
al., 2019).

Instead of using pointwise measurements, areal precipi-
tation products (e.g. radar, satellite, or reanalysis products)
could be used as the basis for return level calculations. How-
ever, each of these areal precipitation products shows dif-
ferent limitations, which lead to uncertain or unrealistic re-
turn level estimations. Radar data (RADOLAN for Germany;
Kreklow et al., 2020) and satellite products (e.g. CMORPH
– Joyce et al., 2004, or PERSIANN – Hong et al., 2004)
would provide the necessary temporal and spatial resolutions
to capture extreme rainfall events. Yet, the temporal cover-
age of these products extends only to the early 2000s, which
is why the sampling of extreme rainfall events is not suf-
ficient for extreme value analysis. Furthermore, radar esti-
mates (Goudenhoofdt and Delobbe, 2016; Kreklow et al.,
2020) as well as satellite products (Stampoulis and Anag-
nostou, 2012) reveal biases compared to rain gauges. Re-
analysis data (e.g. E-OBS – Haylock et al., 2008; ERA-
Interim – Dee et al., 2011; ERA5 – Hersbach et al., 2020)
would have the necessary temporal coverage, but they show
systematic underestimation of the intensity of extreme pre-
cipitation events (Hu and Franzke, 2020; own calculations,
not shown). Ehmele and Kunz (2019) apply a semi-physical
two-dimensional stochastic precipitation model to calculate
spatial homogeneous return levels over Baden-Württemberg
(Germany). However, the model needs to be calibrated with
observational data and therefore relies on the high rain gauge
density in the area.

Since the frequency and intensity of heavy precipitation
will change due to climate change (Myhre et al., 2019;
Poschlod and Ludwig, 2021; Westra et al., 2014), the use of
climate models would provide the advantage of being able to
estimate climate-change-induced alterations in rainfall return

levels on a physical basis. However, this application requires
careful validation of climate model results for historical con-
ditions.

Regional climate models (RCMs) at a 12 km spatial res-
olution have been proven to deliver appropriate rainfall re-
turn level estimations for 3-hourly to daily durations (Berg et
al., 2019; Poschlod et al., 2021; Nissen and Ulbrich, 2017).
Although the results show a high spatial correlation to ob-
servational products and a low bias averaged over the area,
local deviations are evident, especially in regions with com-
plex topography (Poschlod et al., 2021). Also, the intensity
of short-duration hourly rainfall extremes could not be repro-
duced at a 12 km spatial resolution.

When communicating the results of climate model pro-
jections to local or regional stakeholders, insurance compa-
nies, and governmental authorities in the fields of flood pre-
vention; hydrological modelling; and dimensioning of reser-
voirs, buildings, and water infrastructure, these aforemen-
tioned local biases may prevent the results from being ac-
cepted and implemented (Benjamin and Budescu, 2018).
When presenting the study results (Poschlod et al., 2021;
Poschlod and Ludwig, 2021) to a selection of representatives
of the Bavarian Environment Agency, local deviations in the
climate model data stood in the way of further use or even
implementation of the study results for adaptation measures
to intensifying extreme precipitation events. Such discussion
meetings at the interface between climate science and lo-
cal experts with practical relevance provide valuable insight
into practitioner demands. Therefore, one of the objectives of
this study is to investigate whether higher-resolution climate
models can reduce local biases in extreme precipitation. This
could lead to a higher acceptance of extreme precipitation
data based on climate models by government institutions,
which would also support the implementation of adaptation
measures.

For shorter rainfall durations, many studies have
shown that higher-resolution RCMs, so-called convection-
permitting models (CPMs), improve the reproduction
of high-intensity short-duration convectional precipitation
events (Brisson et al., 2016; Coppola et al., 2020; Fosser
et al., 2014; Kendon et al., 2014). A spatial resolution of a
few kilometres is considered necessary by the RCM commu-
nity to explicitly resolve convection (Langhans et al., 2012;
Panosetti et al., 2020; Prein et al., 2015), whereas at broader
resolutions parametrization schemes are applied to represent
convection. However, long-duration rainfall return levels can
also be influenced by convectional precipitation. In Germany,
convectional rainfall contributes to the 24-hourly return level
for roughly 50 % of the area (Malitz and Ertel, 2015). There-
fore, CPMs are expected to improve the estimations of these
return levels as well. Additionally, the higher spatial resolu-
tion enhances the representation of complex terrain (Karki et
al., 2017; Langhans et al., 2012; Poschlod et al., 2018).

Hence, in this study, three different high-resolution RCMs
featuring 12, 5, and 1.5 km spatial resolutions and driven by
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30-year reanalysis data are applied to reproduce daily 10-
and 100-year rainfall return levels over the complex terrain
of the northern Prealps and Alps. Based on interviews with
stakeholders from the infrastructure sector and on legislative
guidelines, Nissen and Ulbrich (2017) identified the 10-year
return level as a relevant threshold. Following this recom-
mendation, the 10-year return level is chosen in this study as
well, representing “moderate extremes”. However, since the
insurance industry (Ehmele and Kunz, 2019) and flood pro-
tection specialists (Schmitt and Scheid, 2020) are interested
in longer return periods, 100-year return levels are calculated
despite the higher extreme value statistical uncertainties. The
daily duration is relevant for the generation of riverine floods
in the study area (Berghuijs et al., 2019; Keller et al., 2017;
Merz and Blöschl, 2003), such as the two extreme flooding
events in May 1999 and August 2005 in southern Bavaria,
Austria, and Switzerland (BLFW, 2003; Grieser et al., 2006;
LfU, 2007; Stucki et al., 2020) induced by high daily precip-
itation sums. However, the antecedent wetness state of the
catchment also plays a major role in the transition of heavy
precipitation to floods (Schröter et al., 2015).

The daily 10- and 100-year return levels based on the
three RCM setups are evaluated by means of an observa-
tional return level product using national datasets from Ger-
many, Austria, and Switzerland. In a second step, different
extreme value distributions and sampling strategies are ap-
plied to all climate model datasets to explore uncertainties
due to extreme value theory and to investigate possible im-
provements.

The study tries to answer two main research questions:
(1) can existing RCM setups at higher spatial resolutions re-
duce local biases and improve spatial correlation between
the climate model products and the observational product?
(2) How large are the differences due to the application of
different state-of-the-art extreme value statistical approaches
and which approach is recommended?

2 Data and study area

2.1 Observational rainfall return level data

To evaluate the RCMs, an observation-based product is gen-
erated from the three national datasets described below. As
these datasets extend to the national borders and a little
beyond, the arithmetic mean is calculated in the overlap-
ping areas. To compare gridded precipitation from the RCMs
and point measurements from the observations, Breinl et
al. (2020) suggest an areal reduction of 5 % for pointwise
24-hourly 10-year return levels in Austria. However, to be
consistent over the study area, no areal reduction factor is
applied to the daily duration following Berg et al. (2019) and
Poschlod et al. (2021).

2.1.1 Germany

The German weather service offers gridded return level data
derived from daily rain gauge measurements (Malitz and Er-
tel, 2015). The daily measurement window spans 05:50 to
05:50 UTC the next day. The observations cover a maxi-
mum period of 1951–2010, where only May–September are
analysed as the highest rainfall amounts occur during these
months. A peak over threshold (POT) sampling strategy was
applied to 2231 rain gauges, where the threshold corresponds
to the available time period. A maximum of 2.718 events per
year on average was considered. For these samples, an ex-
ponential distribution was fitted. The resulting daily return
levels are increased by 14 % to provide 24-hourly moving-
window estimates (Malitz and Ertel, 2015). The rainfall re-
turn levels were spatially interpolated over Germany at a
roughly 8× 8 km2 resolution. An uncertainty range of 15 %
(20 %) is assumed for the 10-year (100-year) return levels,
which is induced by measurement errors, uncertainties in the
extreme value statistics and regionalization, and the inter-
nal variability in the climate system (Junghänel et al., 2017).
Data are accessed from DWD (2020). As the daily return lev-
els were transferred to 24-hourly moving-window estimates
beforehand, I reduce these values by 14 % to obtain daily es-
timates. This relation between daily fixed windows and 24-
hourly moving windows has also been applied by Poschlod
et al. (2021) following Barbero et al. (2019) and Boughton
and Jakob (2008).

2.1.2 Austria

The Austrian dataset follows a similar approach to the Ger-
man dataset, also applying POT sampling at 141 ombro-
graphs (5 min resolution) and 843 ombrometers (daily res-
olution 06:00 to 06:00 UTC the next day) spatially inter-
polated to gridded return levels at a 6× 6 km2 resolution
(BMLRT, 2018). As the rain gauges are distributed inho-
mogeneously, yielding return level estimations that are too
low, the “orographic convective model” OKM (Lorenz and
Skoda, 2001) was employed to support the observations
(Kainz et al., 2007). The resulting design rainfall is based
on a combination of the observational data and the weather
model simulations. Further details can be found in Kainz et
al. (2007) and BMLRT (2006, 2018). Data are accessed from
BMLRT (2020). Again, this data product provides moving-
window 24-hourly estimates, which is why the 24-hourly re-
turn levels are adjusted to daily values applying a reduction
of 14 % (see Sect. 2.1.1).

2.1.3 Switzerland

MeteoSwiss (2021) provides pointwise daily rainfall return
levels at 336 rain gauges. The daily measurement extends
from 05:40 to 05:40 UTC the next day. The observations
cover the time period from 1966 to 2015. To increase the
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sample size, seasonal maxima were extracted and assumed to
follow a generalized extreme value (GEV) distribution. The
GEV distribution is fitted via Bayesian estimation, and the
according return levels are generated (Fukutome et al., 2015).
Since an areal comparison product is to be produced in this
study, these point return levels are regionalized by means of
ordinary kriging.

2.2 Climate model data

Three different RCM setups are used: the Canadian Regional
Climate Model version 5 (CRCM5) driven by ERA-Interim,
the Weather and Research Forecasting (WRF) model (Ska-
marock et al., 2008) driven by ERA-Interim, and WRF driven
by ERA5. The selection of these three different setups was
based on the following considerations: CRCM5 driven by a
global climate model ensemble has been proven to reproduce
rainfall return levels over Europe with good skill (Poschlod
et al., 2021). However, the study has shown that internal
climate variability has major impacts on the estimation of
return levels. Using reanalysis data as boundary conditions
strongly reduces this source of uncertainty when comparing
with observation-based return levels. As described in Sect. 1,
the resulting return levels of this RCM driven by a global
climate model ensemble were presented to local authorities,
but local biases prevented further implementation of the re-
sults. Therefore, the CRCM5 setup serves as a benchmark.
WRF ERA-Interim at a 5 km resolution represents a setup
optimized for the study area with a higher spatial resolu-
tion but parametrization of convection. WRF ERA5 is the
highest-resolution setup available with a 1.5 km resolution
and calculates convection explicitly. All three climate model
rainfall datasets are openly available.

2.2.1 CRCM5 ERA-Interim

CRCM5 at a 0.11◦ resolution equalling roughly 12 km is
driven by ERA-Interim reanalysis data (Leduc et al., 2019).
No nesting was applied, as with the RCM setups presented
in Kotlarski et al. (2014), which are also driven by ERA-
Interim and have a spatial resolution of 0.11◦. Convectional
processes are parametrized due to the spatial resolution. Pro-
cesses related to deep convection are calculated with the
parametrization scheme by Kain and Fritsch (1990). The
Kuo transient scheme (Bélair et al., 2005; Kuo, 1965) is ap-
plied to represent shallow convection. A more detailed docu-
mentation of the model setup and options used is given by
Hernández-Díaz et al. (2012) and Martynov et al. (2012).
Daily rainfall sums of the 30-year time period of 1980–2009
are extracted for this study.

2.2.2 WRF ERA-Interim

WRF version 3.6.1 is set up in nested domains of 45× 45,
15×15, and 5×5 km2 spatial resolution in its non-hydrostatic
mode and driven by ERA-Interim (ERA-I) reanalysis data at

75× 75 km2 spatial resolution and 6-hourly temporal reso-
lution (Warscher et al., 2019). Spectral nudging is applied
to reduce deviations from the large-scale forcing patterns
in the reanalysis data (Wagner et al., 2018). Convection is
parametrized with the Grell–Freitas scheme (Grell and Fre-
itas, 2014). The detailed model setup as well as an evalu-
ation of different climate variables is given in Warscher et
al. (2019). Here, daily rainfall data of the highest-resolution
domain are used for the time period of 1980–2009. Data are
accessed from Warscher (2019).

2.2.3 WRF ERA5

The WRF model version 4.1 is configured with two one-way
nested domains of 7.5× 7.5 and 1.5× 1.5 km2 grid spacing
centred over Bavaria (Collier and Mölg, 2020). The model
is forced at the outer lateral boundaries by ERA5 reanalysis
data at a 30×30 km2 spatial resolution and 3-hourly temporal
resolution applying spectral nudging. The higher-resolution
1.5 km setup is assumed to explicitly resolve convection,
and therefore no parametrization scheme is applied. The 30-
year simulation was divided into 30 annual slices starting at
1 September of each year. As the model is forced by the lat-
eral boundary conditions at a 3-hourly resolution, slicing the
simulation period is not assumed to have a systematic impact
on the magnitude of rainfall return levels. A detailed descrip-
tion of the model setup and evaluation of various climate
variables are provided in Collier and Mölg (2020). How-
ever, the authors emphasize that the applied schemes and the
model configuration have not been optimized for the study
area due to the high computational expenses of the high-
resolution run. The physics and dynamics options used in the
simulations are based on former convection-permitting WRF
applications (e.g. Collier et al., 2019). In this study, daily
rainfall sums from 1988–2017 are extracted from the climate
model data accessed from Collier (2020). The 1.5 km domain
covers 351× 351 grid cells, whereby the outer 40 cells are
discarded on all sides to exclude boundary effects (Collier
and Mölg, 2020).

2.3 Description of the study area

The area of investigation is given by the analysis domain
of the highest-resolution RCM, which is centred over the
state of Bavaria, and the available observational rainfall re-
turn level data (see Fig. 1). It covers south-eastern Ger-
many, north-western Austria, north-eastern Switzerland, and
Liechtenstein. The area shows altitude levels below 100 m
in the north-west in the Rhine plain up to altitudes above
2500 m in the Alps. It covers various low mountain ranges,
including the Ore Mountains, Odenwald, Swabian Jura, and
Bavarian Forest. The patterns of annual mean precipitation
are governed by the complex topography (see Fig. 2; Hay-
lock et al., 2008). Different rainfall types (convectional, oro-
graphic, stratiform) contribute to this precipitation climatol-
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Figure 1. Topography of the investigated area. The elevation is
based on the Shuttle Radar Topography Mission (SRTM) at a 90 m
resolution (Jarvis et al., 2021).

ogy (Malitz and Ertel, 2015). The lowest annual precipitation
sums amount to 500–700 mm in the north of the study area.
The low mountain ranges induce orographic lifting, leading
to precipitation sums of 1000 to 1500 mm yr−1. The high-
est precipitation sums of more than 2000 mm are found in
the Alps, with dry valleys, such as the Inn valley, having
totals below 1000 mm. Annual average temperatures range
from less than 0 ◦C in the Alps to 10 ◦C in northern Bavaria
(DWD, 2021; ZAMG, 2021).

3 Extreme value approaches

Extreme value theory (EVT) is applied to quantify the
stochastic behaviour of a process at unusually large or small
values. It is commonly used to calculate return levels for dif-
ferent rainfall durations (Coles, 2001).

3.1 Block maxima

A classical approach to sample unusual (“extreme”) rain-
fall intensities is given by the block maxima (BM) approach
(Coles, 2001). Therein, a single value is extracted from a typ-
ically seasonal or annual block. This strategy ensures that the
samples are distant from each other, leading to very low serial
dependence. However, not all sampled values might be ex-
treme. Also, the information of more than one extreme value
per block is lost as these values are discarded.

The Fisher–Tippett–Gnedenko theorem (Fisher and Tip-
pett, 1928; Gnedenko, 1943) states that the distribution of
the block maxima samples tends to follow the GEV distribu-
tion, where the cumulative density function (CDF)G is given

Figure 2. Annual mean precipitation for the period 1980–2009
based on E-OBS (Haylock et al., 2008).

with the sample size n→∞:

G(x;ξ)=

{
exp

(
−
[
1+ ξ

(
x−µ
σ

)]−1/ξ
)
, ξ 6= 0

exp
(
−exp

(
−
x−µ
σ

))
, ξ = 0

. (1)

The location parameter µ governs the centre, and the scale
parameter σ governs the spread of the GEV distribution. The
tail behaviour of G is defined by the shape parameter ξ ,
determining whether the GEV follows the Weibull (ξ < 0),
Gumbel (ξ = 0), or Fréchet (ξ > 0) distribution (Gilleland
et al., 2017). Hence, the GEV is a very flexible distribution.
The drawback of this flexibility shows up in a high estima-
tion variance of ξ resulting in an unstable quantile estimate
(Bücher et al., 2021).

For all three RCM setups, annual maxima of daily precip-
itation are extracted. Then for all grid cells trends are de-
tected applying the Mann–Kendall test at the significance
level of α = 0.05. The significance level describes the prob-
ability of rejecting the null hypothesis H0 given that H0 is
true. As the statistical test is carried out at n grid cells,
H0 would be erroneously rejected at n ·α grid cells on av-
erage by design of the test setup (Ventura et al., 2004). The
rate of these errors is referred to as the false discovery rate
(FDR; Benjamini and Hochberg, 1995). To control the FDR,
the critical p value is adjusted for multiple testing using the
approach from Benjamini and Hochberg (1995) following
Wilks (2016). H0 is rejected at each grid cell g if the p value
of the test pg ≤ pFDR, where

pFDR =
{
g : p(g) ≤ αFDR ·

(g
n

)}
. (2)
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p(g) with g = 1, . . . , n comprises the sorted p values of the
statistical test for all grid cells g of the study area. For αFDR
the value of 2 ·α is recommended (Wilks, 2016).

No significant trends are found for the 30 sampled val-
ues at each grid cell of every RCM setup. The parameters
of the GEV distribution G are optimized to the BM samples
by estimating the L-moments (Hosking et al., 1985). This is
carried out applying the R package “extRemes” by Gilleland
and Katz (2016). Delicado and Goria (2008) recommend the
method of L-moments for sample sizes of n≤ 50 as it is ro-
bust to outliers in the data. The Anderson–Darling test at the
significance level of α = 0.05 is applied to ensure the good-
ness of fit of the estimated GEV distribution at each grid cell
(see Fig. S7). Again, the critical p value is adjusted for mul-
tiple testing. Less than 0.15 % of all fits for all three climate
model setups are rejected. Based on these fits, the 10- and
100-year return levels are derived. The spatial distributions
of the GEV parameters are mapped in Fig. 3.

There, the location parameter is governed by the topogra-
phy (see Figs. 1 and 3a, d, g), where the spatial distribution
of these parameters is similar for all three RCM setups. The
spatial distribution of the scale parameter also corresponds
to the topography but shows more noise. The spatial dis-
tributions of WRF ERA-I and WRF ERA5 are similar and
show the highest values of the scale parameter at the north-
ern slopes of the Alps. The orography of the low mountain
ranges of the Swabian Jura, Odenwald, Ore Mountains, and
Bavarian Forest also impacts the spatial pattern of the scale
parameter (Fig. 3e and h). Lower values are found at the lee
sides of the low mountain ranges and the inner Alpine dry
valleys. The spatial distribution of the scale parameter based
on CRCM5 ERA-I follows the topography less closely and
shows an even noisier pattern (Fig. 3b). Some topographical
features can nevertheless be recognized, such as the Oden-
wald and higher values in the Prealps and on the north-
ern slopes of the Alps. The fitted shape parameter reveals
a chaotic pattern with small patches of positive and nega-
tive values differing for the three RCM setups. This chaotic
pattern corresponds to the high estimation variance of the
shape parameter based on the limited available sample size
of 30 annual maxima.

The histograms of the parameters are given in the Supple-
ment (Fig. S1 in the Supplement). An exemplary fit for the
grid cell of Munich is shown in Fig. S2 for all three RCM
setups. This EVT approach is referred to as GEV-LMOM.

As small samples lead to high uncertainties in estimat-
ing the shape parameter of the GEV distribution, Papalex-
iou and Koutsoyiannis (2013) recommend using a fixed value
of ξ = 0.114. This approach is referred to as GEV-FIX. The
Anderson–Darling test at the significance level of α = 0.05 is
carried out in the same way as for GEV-LMOM (see Fig. S7).
Fewer than 0.01 % of all fits are rejected. Figure S3 provides
an exemplary fit for the grid cell of Munich.

3.2 Peak over threshold

The second classical approach of peak over threshold (POT)
tries to overcome the drawbacks of the BM sampling as all
values s above a threshold u are sampled as extreme values
(Balkema and de Haan, 1974; Pickands, 1975). Therefore,
multiple values per block are allowed. However, additional
restrictions have to be introduced to ensure approximately
independent samples. To prevent successive data points from
being sampled that originate from one persistent rainfall
event, the time series has to be de-clustered. Therefore, a
temporal threshold tdecluster is chosen and all values within
the duration of tdecluster around the sampled extreme value
are discarded (Coles, 2001).

For the POT approach, the exceedances y = s− u are
sampled for the threshold u and samples s > u. Thereby,
the number of exceedances per year is assumed to follow
a Poisson distribution (Davison and Smith, 1990). The ex-
ceedances y of the POT threshold u are described by the two-
parameter generalized Pareto (GP) distribution (Davison and
Smith, 1990; Martins and Stedinger, 2001). The correspond-
ing CDF is given by

H(y;ξ)=

 1−
(

1+ ξy
β

)−1/ξ
, ξ 6= 0, β > 0, y > 0

1− exp
(
−y
β

)
, ξ = 0, β > 0, y > 0

, (3)

where y defines the precipitation excess over the thresh-
old u of the POT sampling. The scale parameter β and shape
parameter ξ describe the spread and tail behaviour of the
GP distribution (Coles, 2001).

The GEV and the GP frameworks can be expressed by the
other one as the GP distribution corresponds to the tail distri-
bution of the GEV (Coles, 2001; Goda, 2011; Serinaldi and
Kilsby, 2014).

For the POT approach, the daily rainfall time series is de-
clustered applying a conservative threshold tdecluster of 5 d.
Typical continental cyclones are found to last up to 2.25 d
in Bavaria, whereas van Bebber-type Vb cyclones can last
up to 3 d (Hofstätter et al., 2018; Mittermeier et al., 2019).
Hence, the threshold of 5 d ensures approximately indepen-
dent samples. Precipitation intensities are assumed to be ex-
treme when exceeding the threshold given by 90 events per
30-year period. This threshold has also been selected by
Berg et al. (2019). Statistical properties of the thresholds are
given in Table 1 for all three RCM setups. Trends are ex-
cluded in the same way as for the GEV-LMOM approach.
For sample sizes of n > 50, Delicado and Goria (2008) and
Madsen et al. (1997) recommend maximum likelihood es-
timation (MLE) as an optimization algorithm to fit an ex-
treme value distribution. Following this recommendation,
MLE is applied to fit the GP distribution to the 90 samples
per grid cell using the software package by Gilleland and
Katz (2016). The goodness of fit is assessed in the same way
as for the GEV-LMOM approach (see Fig. S7), leading to a
rejection of 0.15 % of all fits. An exemplary fit for the grid
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Figure 3. Location, scale, and shape parameters of the GEV-LMOM approach based on CRCM5 ERA-Interim (a–c), WRF ERA-Interim (d–
f), and WRF ERA5 (g–i).

cell of Munich is shown in Fig. S4. This approach is referred
to as GP-MLE.

3.3 Metastatistical extreme value framework

For both classical approaches only a limited number of sam-
ples contribute to the database of extreme values. A newer
approach by Marani and Ignaccolo (2015) samples all “wet”

events assuming that the information of these “ordinary” val-
ues can be used to estimate the distribution of extreme val-
ues. Thereby, wet events are defined by a threshold twet. It
has been successfully applied to extreme daily precipitation
by Zorzetto et al. (2016).

The approach by Marani and Ignaccolo (2015) features
the metastatistical extreme value (MEV) distribution. They
propose a framework supposing that the “metastatistic” of
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Table 1. Statistical properties of the POT threshold u for the three
different model setups in the study area.

Setup Minimum Maximum Mean Median

CRCM5 ERA-I 18.7 mm 63.8 mm 29.4 mm 27.0 mm
WRF ERA-I 18.1 mm 71.8 mm 28.6 mm 25.8 mm
WRF ERA5 12.7 mm 63.1 mm 27.1 mm 23.4 mm

the rainfall sums of wet events per year contains informa-
tion about the intensity of extreme events. They assume the
sampled wet days> twet to be independent following that
the probability distribution of maxima ζm can be expressed
as ζm(x)= F(x)

nj , where nj is the number of wet events
in a year and F(x) is a distribution describing the rain-
fall sums of these events. Based on the results of Wilson
and Toumi (2005), the distribution of rainfall sums during
wet days per year is found to follow a distribution with an
exponential tail. They expressed precipitation as the prod-
uct of mass flux, specific humidity, and precipitation ef-
ficiency. Following statistical relationships, they concluded
that the tail of the distribution of the product of these three
random variables is given by a stretched exponential form.
Marani and Ignaccolo (2015) and Zorzetto et al. (2016) apply
a Weibull distribution to describe this relationship. Hence,
Weibull parameters have to be estimated for each year based
on all wet events of a year. The MEV-Weibull CDF is given
by

ζm(x)=
1
M

M∑
j=1

{
1− exp

[
−

(
x

Cj

)wj ]}nj
, Cj > 0,

wj > 0, (4)

where j is the year (j = 1, 2, . . . ,M) and nj is the number of
wet events in year j . Cj and wj describe the scale and shape
of the Weibull distribution (Marani and Ignaccolo, 2015).

Wet days are defined by exceedance of the threshold twet =

1 mm d−1 in accordance with WMO guidelines (Klein Tank
et al., 2009). This also accounts for the behaviour of RCMs
to produce too many very low intensity precipitation days
(“drizzle effect”; Gutowski et al., 2003). As the MEV frame-
work requires the ordinary wet events to be independent
(Miniussi et al., 2020) and temporal autocorrelation of rain-
fall over mountainous areas tends to be higher (Marra et al.,
2021), the autocorrelation of daily rainfall is analysed fol-
lowing Marra et al. (2018; see Fig. S5). In the study area,
multi-day precipitation events are common especially at the
mountain slopes (Kunz and Kottmeier, 2006; Pöschmann et
al., 2021). Therefore, the temporal autocorrelation is calcu-
lated for lag times of up to 30 d. The autocorrelation between
10 and 30 d drops to very low values and can be assumed to
represent noise without any statistical or meteorological cor-
relation (Marra et al., 2018). The 75th quantile of this long-
lag noise is chosen as the “noise threshold”. The minimum

distance allowed between ordinary events equals the time lag
when the autocorrelation first drops below the noise thresh-
old. Hence, the minimum time interval between ordinary wet
events may vary within the grid cells, but the independence
of the events is ensured by this methodology. The Weibull
distribution is fitted to the annual wet events by means of
the probability weighted moment (PWM) method (Green-
wood et al., 1979) following Zorzetto et al. (2016). Here,
the MLE is not used as an estimation method, as the num-
ber of wet events per year amounts to 40 events on average
due to the de-clustering to remove the temporal autocorrela-
tion. For small sample sizes, the MLE estimator for Weibull
parameters is known to be biased (Ross, 1996), whereas
the PWM method delivers unbiased estimations (Heo et al.,
2001). The MEV fitting procedure and the calculation of re-
turn levels are carried out using the Python software pack-
age “mevpy” (Zorzetto, 2021). The goodness of fit of the an-
nual wet events applying the Weibull distribution is tested
with a Kolmogorov–Smirnov test at the significance level of
α = 0.05, where the p value is adjusted for multiple testing.
Fewer than 0.06 % of all 30 annual fits per grid cell are re-
jected for all climate models. This approach is referred to as
MEV-PWM. An exemplary comparison of the resulting re-
turn level curve to the empirical annual maxima is shown in
Fig. S6 for the grid cell of Munich.

4 Results

4.1 Evaluation of 10-year return levels

All approaches and their performance metrics are summa-
rized in Table 2. A mapped comparison of the 10-year return
levels calculated via GEV-LMOM based on the three differ-
ent RCM setups is given in Fig. 4. For a better visualization,
the observational product is bilinearly interpolated to the re-
spective RCM grid. The following metrics are calculated for
the original data (see Fig. S14 for the natively resolved ob-
servational product). The observational product shows the
highest rainfall intensities above 100 mm d−1 at the northern
slopes of the Alps. The low mountain ranges of the Bavar-
ian Forest, Swabian Jura, Odenwald, and Ore Mountains also
induce enhanced intensities of between 70 and 100 mm d−1.
The lowest return levels are observed in the north of the study
area, amounting to intensities below 50 mm d−1 (Fig. 4b, e,
and h). The 12 km resolution CRCM5 ERA-I can reproduce
the general spatial pattern with a Spearman rank correlation
of ρ = 0.72 (Fig. 4a). The return levels are generally over-
estimated north of 48◦ N and underestimated south of 48◦ N
as well as in the Ore Mountains (Fig. 4c). The spatially aver-
aged bias amounts to+6.6 %. The range of simulated rainfall
return level intensities is similar to the observations for the
whole study area (Fig. 5a) as well as for the southern Alpine
part (Fig. 5d). However, the histogram also reveals that the
bias stems from simulating too few grid cells with return
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level intensities of between 50 to 60 mm d−1 and too many
grid cells with return levels at intensities of 70 to 90 mm d−1

(Fig. 5a).
The 10-year return levels based on WRF ERA-I at a 5 km

resolution can recreate the spatial pattern of the observa-
tions with a Spearman correlation of ρ = 0.82 (Fig. 4d).
The higher intensities due to the orographic precipitation at
the lower mountain ranges and their spatial patterns are re-
produced, though the intensity around the Bavarian Forest
is underestimated. In the Alpine area, WRF ERA-I simu-
lates higher intensities than observed, especially in the Alps
south-east of the Inn valley. However, the results also show a
very pronounced orographic signal with low return levels in
the major Alpine valleys, which has also been described by
Warscher et al. (2019). The overall bias amounts to +4.7 %.
The histogram of simulated return levels is similar to the ob-
served histogram (Fig. 5b); however, the very high intensities
above 110 mm d−1 in the Alpine area are overrepresented.
Also, the range of simulated return levels extends to over
140 mm d−1 (Fig. 5e).

The 10-year return levels based on WRF ERA5 show
a generally similar spatial pattern to those of WRF ERA-
I (Fig. 4g and d). The spatial pattern of orographic pre-
cipitation around the low mountain ranges is recreated,
whereby the intensities at the Bavarian Forest and the Oden-
wald are underestimated. The return levels in south-eastern
Bavaria are underestimated as well. As with WRF ERA-
I, WRF ERA5 also simulates high return levels above
100 mm d−1 in the Alps south-east of the Inn valley. This
results in a Spearman correlation of ρ = 0.82. The spatial
average of the bias amounts to +2.4 %. The range and dis-
tribution of the simulated return levels are very close to the
observations for the whole study area (Fig. 5c) as well as
south of 48◦ N (Fig. 5f).

Figure 6 compares the three different EVT approaches of
GEV-FIX, GP-MLE, and MEV-PWM based on WRF ERA5.
The intensities as well as the resulting spatial distribution of
GEV-FIX and GP-MLE are very similar to those of GEV-
LMOM (Figs. 4g, 6a and d). The spatial correlation between
GEV-FIX and the observations amounts to ρ = 0.79 and the
overall bias to +2.5 %. For GP-MLE, the spatial correlation
is ρ = 0.81 and the overall bias is +2.9 %. The MEV-PWM
method also shows a similar spatial pattern (Fig. 6g), which
is slightly more homogeneous than those of GEV-LMOM or
GP-MLE. The 10-year return levels based on MEV-PWM are
estimated to be generally lower than those of the classical ap-
proaches. The spatial correlation between MEV-PWM and
the observations amounts to ρ = 0.84 and the overall bias
to −7.8 %. The 10-year return levels of the other combina-
tions of the climate model and EVT approach that are not
presented in the main article are provided in the Supplement
(Figs. S8–S10).

4.2 Evaluation of 100-year return levels

The summary of the performance of all RCM setups and
EVT approaches in the reproduction of the 100-year return
level is given in Table 3. Figure 7 shows the 100-year re-
turn levels based on the GEV-LMOM approach compared
to the observational product. The observational return lev-
els reach values from 150 up to 200 mm d−1 at the northern
slopes of the Alps. In the Bavarian Forest and Ore Moun-
tains return levels from 100 up to 150 mm d−1 are observed.
The low mountain ranges of the Swabian Jura and Odenwald
show intensities between 90 and 120 mm d−1. The lowest re-
turn levels of 50 to 60 mm d−1 are observed in the plains
and leeward sides of the low mountain ranges (Fig. 7b, e,
and h). The 100-year return levels based on CRCM5 ERA-I
and the GEV-LMOM approach show a similar spatial pat-
tern to that of the 10-year return levels; however, very high
intensities of over 180 mm d−1 are generated in the centre of
the study area around 49◦ N. These values correspond to the
high shape parameter values at these grid cells (see Fig. 3c).
Apart from in these areas, this approach produces too many
grid cells in the range of 90 to 140 mm d−1 and too few in
the range of 60 to 90 mm d−1 (see Fig. 8a). In the Alps, the
simulated 100-year return levels slightly underestimate the
observations (Fig. 8d). Overall, this approach cannot well re-
produce the general spatial pattern (ρ = 0.38). The spatial
average of the bias amounts to +15.5 %.

GEV-LMOM based on WRF ERA-I also suffers from
single grid cells with unrealistically high return levels (>
200 mm d−1 north of the Alps) due to a high shape parameter
(Fig. 3f). The return levels in the areas of all low mountain
ranges except the Bavarian Forest are overestimated, espe-
cially in the Odenwald in the north-west of the study area
(see Fig. 7f). This general overestimation is also visualized
in the histogram of Fig. 8b. In the Alps, the 100-year return
levels also show the strong orographic signal of WRF ERA-
I, leading to a greater variance of return levels than observed
(Fig. 8e). The spatial pattern is recreated with ρ = 0.55 and
the overall bias amounts to 17.8 %.

Applying GEV-LMOM to WRF ERA5 also leads to sin-
gle grid cells with very high return levels scattered over the
study area (Fig. 7g), where the shape parameter is greater
than 0.5 (Fig. 3i). Apart from in these locations, the spatial
features of the observed 100-year return level are well repro-
duced (ρ = 0.66). On average, the intensities are overesti-
mated (Fig. 8c), amounting to a bias of 13.3 %. In the Alpine
area, the simulated rainfall return levels show a greater mean
and variance (Fig. 8f).

The application of the further three EVT approaches is
shown (Fig. 9) and discussed based on WRF ERA5. The full
overview of all climate models and EVT approaches is pro-
vided by Figs. 7 and S11–S13. Fixing the shape parameter to
ξ = 0.114 can eliminate the single grid cells with unrealistic
return levels (compare Figs. 7g and 9a). The general spatial
pattern is similar; however, GEV-FIX leads to less variance
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Figure 4. The 10-year rainfall return levels applying GEV-LMOM based on CRCM5 ERA-Interim (a), WRF ERA-Interim (d), and
WRF ERA5 (g). The middle column (b, e, h) shows the observational product bilinearly interpolated to the respective climate model grid.
The right column (c, f, i) provides the percentage difference calculated as the climate model return level minus the observational return level.

over the whole study area as the shape parameter is restricted
to one value. Hence, areas with very low intensities based on
GEV-LMOM are higher than those based on GEV-FIX, and
high return levels of GEV-LMOM are reduced by GEV-FIX
(Figs. 7g and 9a). The comparison to the observational prod-
uct (Fig. 9c) results in a spatial correlation of ρ = 0.70 and
an overall bias of 12.9 %.

The GP-MLE approach also generates single scattered val-
ues with higher intensity, e.g. in the Swabian Jura and in the
north-west of the study area (Fig. 9d). These intensities are
not as high as for GEV-LMOM, but these cells differ inho-
mogeneously from their respective neighbouring cells. Gen-
erally, the spatial patterns and the range of return level values
are similar to those of GEV-LMOM. Hence, the performance
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Figure 5. Histograms of the resulting 10-year return levels in the whole study area (a–c) and the Alpine area south of 48◦ N (d–f). Gaussian
kernel density estimates are plotted to enhance the readability.

metrics in terms of spatial correlation (ρ = 0.63) and overall
bias (11.9 %) are also close to the metrics of GEV-LMOM.

The 100-year return levels based on the MEV-PWM ap-
proach differ from the other EVT approaches in terms of
the spatial pattern and rainfall intensities. The spatial pattern
north of 48◦ N is very similar to the observations with slight
underestimations around the Odenwald and the Prealpine ar-
eas in south-eastern Bavaria. However, in the Alpine foreland
and on the northern slopes of the Alps, the rainfall intensities
are underestimated. In sum, this results in a spatial correla-
tion of ρ = 0.73 and an averaged bias of 2.7 %.

5 Discussion

Generally, the high values of Spearman’s rank correlation as
well as the visual comparison to the observational product
(Fig. 4) prove that all three RCM setups are able to cap-
ture the topographic and climatic differences within the study
area. Furthermore, the overall low bias of the 10-year re-
turn levels indicates that the complex climate of heavy daily
precipitation is reproduced by the climate models. For the
100-year return levels, the choice of the EVT approach has a
greater impact on the performance metrics.

Both the overall bias and the spatial correlation of 10-
and 100-year return levels imply that the WRF setups at
5 and 1.5 km spatial resolutions can slightly better repro-
duce the observed return levels than the broader-resolution
CRCM5 ERA-I (Tables 2 and 3). There, both WRF setups
show similar performance metrics. However, this equivalent
performance may be caused by the spatial resolution and spa-
tial representativeness of the observational data (see Fig. S14
for the native resolution). The German dataset is natively

resolved at roughly 8 km and the Austrian dataset at 6 km,
whereas the Swiss data are given by single gauges interpo-
lated via ordinary kriging. Hence, small-scale spatial features
below such resolutions cannot be evaluated by comparison
to this observational product. Comparing WRF ERA-I and
WRF ERA5 (Figs. 4d, g and 7d, g) reveals a similar spa-
tial pattern, where the more highly resolved WRF ERA5 in
particular can add more topographically driven spatial vari-
ability in the Alps.

5.1 Uncertainties in the observational datasets

As the German, Austrian, and Swiss data are based on rain
gauge measurements, these data are subject to the usual
measurement inaccuracies leading to an underestimation of
rainfall (Westra et al., 2014). For flat areas in Germany,
this deviation is estimated at about 5 % during summer
(Richter, 1995). In mountainous areas, this deviation is ex-
pected to increase due to higher wind speeds. According
to Sevruk (1981), it amounts to 7 % for Switzerland during
summer. In addition to these systematic underestimations,
different rain gauge types yield varying rainfall measure-
ments, inducing additional uncertainty (Vuerich et al., 2009).
This applies to the different meteorological networks in the
study area (Kainz et al., 2007; Frei and Schär, 1998; Rauthe
et al., 2013; Zolina et al., 2008).

Apart from these measurement errors, the gridded return
level products suffer from a limited number of rain gauges
(see Sect. 2.2), which also differ in their temporal coverage
(Isotta et al., 2014). However, not only the number of sta-
tions but also their spatial representativeness is important for
an appropriate interpolation from pointwise measurements
to gridded estimations (Ahrens, 2006). In mountainous ar-
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Table 2. Summary of the applied RCM setups and EVT approaches. Performance metrics of the comparison to observational 10-year return
levels are given in terms of the spatially averaged bias and spatial correlation (Spearman). The entries are sorted first by resolution and then
by amount of bias.

RCM Reanalysis Spatial Convection Sampling EVD EVD parameter Bias Spatial
data resolution optimization correlation

WRF ERA5 1.5 km Explicitly Block GEV L-Moments +2.4 % 0.82
calculated maxima

WRF ERA5 1.5 km Explicitly Block GEV Maximum likelihood +2.5 % 0.79
calculated maxima estimation, fixed

shape parameter

WRF ERA5 1.5 km Explicitly Peak over GP Maximum likelihood +2.9 % 0.81
calculated threshold estimation

WRF ERA5 1.5 km Explicitly All wet MEV Probability weighted −5.8 % 0.84
calculated events moments

WRF ERA-Interim 5 km Parametrized Block GEV Maximum likelihood +4.1 % 0.84
maxima estimation, fixed

shape parameter

WRF ERA-Interim 5 km Parametrized Block GEV L-Moments +4.7 % 0.82
maxima

WRF ERA-Interim 5 km Parametrized Peak over GP Maximum likelihood +5.4 % 0.81
threshold estimation

WRF ERA-Interim 5 km Parametrized All wet MEV Probability weighted −7.1 % 0.88
events moments

CRCM5 ERA-Interim 12 km Parametrized All wet MEV Probability weighted −2.6 % 0.84
events moments

CRCM5 ERA-Interim 12 km Parametrized Block GEV L-Moments +6.6 % 0.72
maxima

CRCM5 ERA-Interim 12 km Parametrized Peak over GP Maximum likelihood +7.0 % 0.72
threshold estimation

CRCM5 ERA-Interim 12 km Parametrized Block GEV Maximum likelihood +7.3 % 0.74
maxima estimation, fixed

shape parameter

eas, the spatial representativeness of a station is even more
limited due to the heterogeneous topography. In addition,
the station distribution with elevation is not representative.
Due to easier maintenance conditions, more stations are lo-
cated in valleys than on the tops of the mountains (Ahrens,
2006; Sevruk, 1997), leading to an underestimation for spa-
tially interpolated rainfall in these areas (Isotta et al., 2014).
Although the monitoring network density in the Alps makes
this one of the best-monitored regions with complex topogra-
phy, Isotta et al. (2014) estimate the “real” spatial resolution
of the observations to be 10–25 km. The regionalization of
these pointwise measurements induces additional uncertain-
ties. For the German dataset, the orography is employed as
an additional variable to interpolate the return levels (Malitz
and Ertel, 2015, following Bartels, 1992). Due to the lim-
ited spatial representativeness of the rain gauges in the Alps,

the weather model OKM at a 1.5 km resolution (Lorenz and
Skoda, 2001) was used to support the spatial interpolation
of the Austrian return level data (BMLRT, 2018; Kainz et
al., 2007). Thereby, not only the spatial distribution of return
levels but also the intensity of the resulting design rainfall
return levels was supported by the weather model simula-
tions. The return levels based on observations only are clas-
sified as “probably too low” due to the spatial distribution
of the rain gauges, whereas the weather model return lev-
els are estimated to be “probably too high” (BMLRT, 2006,
2018). Hence, the resulting design rainfall return level is a
weighted averaging combination of the measured rainfall in-
tensities and the intensities simulated by the weather model
(BMLRT, 2006). This leads to the conclusion that the devia-
tions of the 10- and 100-year return levels between the WRF
setups (see Figs. 4f, i and 7f, i) and the observational data
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Figure 6. The 10-year rainfall return levels based on WRF ERA5 featuring GEV-FIX (a), GP-MLE (d), and MEV-PWM (g). The middle
column (b, e, h) shows the observational product interpolated to the WRF-ERA5 grid. The right column (c, f, i) provides the percentage
difference calculated as the climate model return level minus the observational return level.

in the Austrian Alps may be caused by the limited spatial
representativeness of the measurement stations.

For the Swiss data, ordinary kriging is applied to regional-
ize the available pointwise return levels. As different interpo-
lation methods yield differing results (Hu et al., 2019), this
processing step induces additional uncertainty.

In summary, it can be stated that the study area offers good
temporal and spatial coverage of measurements, especially

compared to other regions in Europe (Poschlod et al., 2021),
which are, however, subject to the uncertainties mentioned
above. Additionally, uncertainties due to the application of
different EVT approaches contribute to the overall uncer-
tainty and are discussed in Sect. 5.3 as they apply to both
observations and climate model data.

Hence, the 10-year return levels (Fig. 4b, e, and h) and
100-year return levels (Fig. 7b, e, and h) provide the best
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Figure 7. The 100-year rainfall return levels applying GEV-LMOM based on CRCM5 ERA-Interim (a), WRF ERA-Interim (d), and
WRF ERA5 (g). The middle column (b, e, h) shows the observational product bilinearly interpolated to the respective climate model grid.
The right column (c, f, i) provides the percentage difference calculated as the climate model return level minus the observational return level.

guess based on observations but are still subject to substantial
uncertainties, especially in the Alps.

5.2 Uncertainties in the RCM datasets

Generally, climate model simulations of historical conditions
are subject to two major uncertainty factors (Hawkins and
Sutton, 2009). Due to the chaotic nature of atmospheric pro-
cesses, the climate system is governed by internal variabil-

ity. These non-linear dynamics lead to the behaviour of the
system where slightly differing starting conditions may re-
sult in significantly differing climate realizations (Deser et
al., 2012). However, in this study the degree of internal vari-
ability is constrained as the RCMs are forced by reanaly-
sis data. The large-scale atmospheric flows are imposed by
the lateral boundary conditions, and therefore this source of
internal variability is not present in these three RCM se-
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Figure 8. Histograms of the resulting 100-year return levels in the whole study area (a–c) and the Alpine area south of 48◦ N (d–f). Gaussian
kernel density estimates are plotted to enhance the readability.

tups (Christensen et al., 2001). Still, RCMs are governed by
smaller-scale atmospheric variability. Alexandru et al. (2007)
have shown that a 20-member RCM ensemble of the CRCM
driven by the same lateral boundary conditions with slightly
perturbed starting conditions leads to a reasonable spread of
simulated precipitation. Even seasonal weather model fore-
cast simulations, which are initialized every month, still show
variability, especially for precipitation extremes (Kelder et
al., 2020; Thompson et al., 2017). Hence, internal variability
cannot be fully excluded as an uncertainty source.

Since models can only represent a simplified image of
reality, the structure of climate models leads to the sec-
ond major uncertainty factor. Even though mainly physically
based, RCMs make use of parametrizations with a differ-
ing degree of complexity (Jerez et al., 2013). Model un-
certainty includes all limitations of the climate model setup
such as model-inherent simplifications, parametrizations and
schemes, the lateral boundary conditions, nesting, nudging,
spin-up times, and spatial resolution.

Multi-model experiments using the same boundary and
starting conditions yield deviating simulations of the climate
(Holtanová et al., 2019; Solman et al., 2013). Yet the same
model applying differing physics options and parametriza-
tion schemes can also lead to significant variability in the
model results (Laux et al., 2019). Hence, climate model se-
tups can be optimized by choosing different model options
and schemes and comparing the simulations to observed cli-
mate conditions. For the WRF-ERA-I setup, this has been
carried out for the whole domain covering central Europe
following Wagner et al. (2018; Warscher et al., 2019). The
CRCM5-ERA-I and the WRF-ERA5 setups are based on for-
mer applications of the respective climate model in differ-
ent domains. Adapting the applied options to the study area

could potentially improve the model performance (Collier
and Mölg, 2020).

Additional uncertainty is induced by the boundary condi-
tions as different reanalysis datasets show considerable de-
viations from each other (Keller and Wahl, 2021). Here,
two different reanalysis datasets at a 75 km (ERA-I) and
30 km (ERA5) spatial resolution covering differing time pe-
riods are used to drive the RCMs. Stucki et al. (2020) ar-
gue that the difference in the driving conditions regarding the
spatial resolution can alter the simulation results, especially
over complex terrain.

The different time windows (1980–2009 for ERA-I and
1988–2017 for ERA5) lead to different events being sam-
pled. Due to the small sample size, this variance can also
lead to deviations in the resulting return levels.

The overall differences between the three RCM setups in-
dicating model uncertainty are less apparent in the result-
ing return levels than in the evaluation of individual ex-
treme events. For the close reproduction of extreme rainfall
events, Stucki et al. (2020) have shown that initialization
of the RCM briefly before the respective events improves
the performance at recreating rainfall intensities. Here, the
RCMs are run in climate mode featuring transient 30-year
simulations (CRCM5 ERA-I, WRF ERA-I) or annual initial-
ization (WRF ERA5). It cannot be expected that single ex-
treme events are closely reproduced due to the internal vari-
ability. Hence, such comparison is not appropriate to eval-
uate the skill of the model but to visualize the differences
due to internal variability and model uncertainties. There-
fore, the daily rainfall intensities of the two extreme events
in May 1999 and August 2005 are given in the Supplement
(Figs. S15 and S16). Furthermore, such a comparison makes
it clear that the compared setups are climate model setups
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Table 3. Summary of the applied RCM setups and EVT approaches. Performance metrics of the comparison to observational 100-year return
levels are given in terms of the spatially averaged bias and spatial correlation (Spearman). The entries are sorted first by resolution and then
by amount of bias.

RCM Reanalysis Spatial Convection Sampling EVD EVD parameter Bias Spatial
data resolution optimization correlation

WRF ERA5 1.5 km Explicitly All wet MEV Probability weighted +2.7 % 0.73
calculated events moments

WRF ERA5 1.5 km Explicitly Peak over GP Maximum likelihood +11.9 % 0.63
calculated threshold estimation

WRF ERA5 1.5 km Explicitly Block GEV Maximum likelihood +12.9 % 0.70
calculated maxima estimation, fixed

shape parameter

WRF ERA5 1.5 km Explicitly Block GEV L-Moments +13.3 % 0.66
calculated maxima

WRF ERA-Interim 5 km Parametrized All wet MEV Probability weighted −1.3 % 0.72
events moments

WRF ERA-Interim 5 km Parametrized Block GEV Maximum likelihood +13.9 % 0.76
maxima estimation, fixed

shape parameter

WRF ERA-Interim 5 km Parametrized Peak over GP Maximum likelihood +14.7 % 0.57
threshold estimation

WRF ERA-Interim 5 km Parametrized Block GEV L-Moments +17.8 % 0.55
maxima

CRCM5 ERA-Interim 12 km Parametrized All wet MEV Probability weighted +4.2 % 0.72
events moments

CRCM5 ERA-Interim 12 km Parametrized Peak over GP Maximum likelihood +12.6 % 0.37
threshold estimation

CRCM5 ERA-Interim 12 km Parametrized Block GEV L-Moments +15.5 % 0.38
maxima

CRCM5 ERA-Interim 12 km Parametrized Block GEV Maximum likelihood +17.7 % 0.62
maxima estimation, fixed

shape parameter

and not weather model setups, despite the high spatial res-
olution (Kelder et al., 2020). While the simulation of indi-
vidual extremes can differ greatly, the 10- and 100-year re-
turn levels as a climatic indicator for extreme precipitation
show a high degree of agreement (see Figs. 4 and 7). This
suggests that despite all the simplifications and differences
leading to model uncertainty, the models can reproduce the
climatic character of extreme precipitation in the study area.

5.3 Uncertainties due to EVT

The concept of classical EVT (see Sect. 3.1 and 3.2) holds
under rather restrictive assumptions (Papalexiou et al., 2013),
and each step featuring the choice of the distribution and
fitting the distribution parameters induces additional uncer-
tainty (Miniussi and Marani, 2020). For the GEV approach,

Eq. (1) holds for a large number of samples n (ideally the
sample size n→∞). In practice, the limited available time
series make it very difficult to determine whether the distri-
bution of extreme samples is close to its asymptotic GEV
limit (Cook and Harris, 2004; Koutsoyiannis, 2004; Miniussi
and Marani, 2020).

The POT approach partly overcomes the limitation of very
low sample sizes by using the threshold u to define extreme
events. However, the choice of this threshold is crucial as the
assumptions of a Poisson arrival of exceedances y as well
as the GP distribution of these exceedances hold only for a
threshold u, ensuring both the sampled events to be extreme
and a large number of samples n (Pickands, 1975; Miniussi
and Marani, 2020).

Furthermore, uncertainty is induced by the parameter opti-
mization of the respective EVD to adapt the theoretical EVD
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Figure 9. The 100-year rainfall return levels based on WRF ERA5 featuring GEV-FIX (a), GP-MLE (d), and MEV-PWM (g). The middle
column (b, e, h) shows the observational product interpolated to the WRF-ERA5 grid. The right column (c, f, i) provides the percentage
difference calculated as the climate model return level minus the observational return level.

to the extreme precipitation samples, even though appropri-
ate methods are chosen (see Sect. 3.3; Muller et al., 2009).
Assessing the goodness of fit by quality measures or statisti-
cal testing (e.g. the Anderson–Darling test) can lower the un-
certainty due to the aforementioned assumptions. However,
the goodness of fit can only assess the quality of the fit be-
tween the theoretical EVD and the empirical distribution of
the samples. It cannot evaluate if the samples are a “good

representation” of possible extreme rainfall events within the
boundaries of internal variability in the climate system.

Uncertainty is therefore apparent as the different sampling
approaches, EVDs, and fitting methods may lead to differing
estimations of rainfall return levels (Lazoglou and Anagnos-
topoulou, 2017). For GEV-LMOM (Fig. 4g) and GP-MLE
(Fig. 6d) based on WRF ERA5, the mean absolute devia-
tion (MAD) between the 10-year return levels based on both

https://doi.org/10.5194/nhess-21-3573-2021 Nat. Hazards Earth Syst. Sci., 21, 3573–3598, 2021



3590 B. Poschlod: Using high-resolution regional climate models to estimate extreme precipitation

approaches amounts to a spatial average of 1.7 %. The MAD
between the respective 100-year return levels amounts to
8.0 %. Hence, despite different sampling, distributions, and
fitting methods, the results are close to each other on aver-
age. Larger deviations occur at single grid cells.

However, both classical approaches still suffer from draw-
backs. Papalexiou and Koutsoyiannis (2013) as well as Seri-
naldi and Kilsby (2014) argue that producing stable fits of
the shape parameter of the GEV and GP distributions needs
larger sample sizes than are typically available. They have
shown that the estimation of the shape parameter of the
GEV and GP distributions is dependent on the sample size,
whereby it is also influenced by the geographical location.
Papalexiou and Koutsoyiannis (2013) propose to restrict the
shape parameter of the GEV to a window described by a nor-
mal distribution around the mean value of 0.114 or to apply
a fixed shape parameter of ξ = 0.114. Indeed, the shape pa-
rameter of GEV-LMOM shows a heterogeneous spatial dis-
tribution with small patches of positive and negative values
for all three RCM setups (Fig. 3c, f, and i). This spatial dis-
tribution can be interpreted as “noise” due to sample sizes
that are too small, where the 30 annual maximum precip-
itation events do not fully represent the range of possible
extreme precipitation within the boundaries of internal cli-
mate variability. The distribution of the shape parameter ξ
based on all three RCM setups is centred around a value
close to 0.114 (see Fig. S1c). However, Papalexiou and Kout-
soyiannis (2013) suggest that 99 % of the distribution should
be between 0 and 0.225, whereas the distribution of all three
RCM setups reveals a larger spread. When restricting the
shape parameter to ξ = 0.114, however, the 10-year return
levels only differ very slightly from those of GEV-LMOM,
resulting in an average MAD of 3.4 % (see Fig. 6a). As ξ only
defines the tail of the distribution, it is more relevant for
longer return periods. Hence, high values of the shape pa-
rameter (Fig. 3c, f, and i) strongly influence the resulting
100-year return level. The outcome of this issue shows up
as unrealistically high rainfall intensities (Fig. 7a, d, and g)
at single grid cells. The GP-MLE approach also suffers from
this problem to a lesser extent (Fig. 9d). The fixed shape pa-
rameter prevents this issue (Figs. 9a and S11). However, re-
stricting the shape parameter also restricts the flexibility of
the GEV, which results in a smaller range of 100-year return
levels. The low return levels in the plains and leeward areas
are therefore slightly overestimated. However, the resulting
100-year return levels show a higher degree of homogeneity
than the 100-year return levels of GEV-LMOM or GP-MLE
(compare Fig. 9a to Figs. 7g and 9d).

In addition to unstable parameters fits, the sampling strate-
gies of both classical EVT approaches only use a small frac-
tion of available data. In this study, only 0.3 % (GEV) and
0.8 % (GP) of the daily precipitation sums from the RCMs
are sampled. Especially with respect to short available obser-
vation time series but also with respect to the extensive com-
putational power and related costs of such high-resolution

climate models, this sampling is a waste of valuable infor-
mation (Miniussi and Marani, 2020). The sampling of the
MEV approach overcomes this limitation and uses the in-
formation of rainfall intensities of all wet days as well as the
frequency of these days. This is found to result in more stable
fits (Zorzetto et al., 2016). Zorzetto et al. (2016) concluded
that the MEV outperforms the classical GEV approach due to
the more stable parameter fits if the return period exceeds the
length of the available samples. Furthermore, they found that
the MEV is better than the GEV at predicting return levels
if the EVT models are calibrated on samples that are inde-
pendent from the samples used to calculate the return lev-
els. In this study, the MEV-PWM return levels are on av-
erage lower than the return levels based on the other EVT
approaches (Tables 2 and 3). While this leads to an average
underestimation of the observational product at the 10-year
return levels, the MEV can outperform the other EVT ap-
proaches at the 100-year return levels. In terms of the spa-
tial correlation, MEV-PWM leads to superior results overall
than the other approaches for both calculated return levels.
The moderate to strong underestimation of rainfall intensi-
ties at the 100-year return period in the area of the Prealps
and northern Alps (Fig. 9i) is mainly attributed to the climate
model data, as all EVT approaches yield lower intensities
in this area as well (Figs. 7i, 9c and f). The other EVT ap-
proaches “compensate” for these low intensities by their ten-
dency to overestimate the 100-year return levels (see Figs. 7i
and 9). Schellander et al. (2019) apply the MEV optimized
via the PWM method and GEV optimized via MLE to 55 rain
gauges with more than 100 years of measurements in Aus-
tria, which is partly covered by the study area. They split the
data, and up to 50 years is used to calibrate the EVT models.
The remaining data are the basis to calculate the return lev-
els, which are used for the evaluation of the GEV and MEV.
They find that the MEV can outperform the GEV for return
periods of 30 years or longer when less than 30 years of data
is available. For the two cases of this study (sample size of
30 years and return periods of 10 and 100 years), they report
a slightly superior performance of the GEV for 10-year re-
turn levels and a slightly superior performance of the MEV
for 100-year return levels. In sum, the results of their study
are in line with the findings of this study, even if the differ-
ences between GEV and MEV in this investigation are a little
more pronounced, especially for the 100-year return period.

6 Conclusion

Various combinations of high-resolution regional climate
models driven by reanalysis data and state-of-the-art EVT
approaches have been explored to reproduce 10- and 100-
year return levels of daily rainfall. The 5 km WRF-ERA-I
setup reveals added value in terms of spatial correlation and
bias compared to the lower-resolution 12 km CRCM5 ERA-
I. The very high resolution 1.5 km WRF ERA5, accompanied
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Figure 10. (a) Observational 100-year return levels based on the German (8 km), Austrian (6 km), and Swiss (interpolated via ordinary krig-
ing) data at the original resolution. (b) The 100-year return levels based on WRF ERA5 applying the MEV-PWM approach. (c) Combination
of (a) and (b) by applying a Gaussian filter to the differences.

by an explicit simulation of convective processes, can only
slightly improve the performance metrics. This is possibly
since the observational product is resolved natively between
6 and 8 km. Hence finer-scale spatial features cannot be eval-
uated by such comparison. Despite the improvement in over-
all performance metrics, local biases on the order of 30 %
to 40 % still remain. Therefore, the criticism of the practi-
tioners that was expressed for the CRCM5 return levels from
Poschlod et al. (2021; see Sect. 1) would also be present for
the return levels shown here.

The resulting 10-year return levels based on the four dif-
ferent EVT approaches applied show good agreement with
each other and with the observational product. This suggests
that the methodological uncertainty for return levels of mod-
erate extremes is relatively low. However, if return periods
outside the sample size are to be extrapolated, the estima-
tion uncertainty in the shape parameter governing the tail
of the GEV and GP distributions becomes more important.
The 100-year return levels based on GEV-LMOM and GP-
MLE suffer from single grid cells with unrealistically high
return levels due to high estimations of the shape parame-
ter. Two approaches are studied to overcome this uncertainty.
The GEV with a fixed shape parameter shows 100-year re-
turn levels, and its performance metrics are almost equivalent
to the three-parameter GEV optimized via L-moments. How-
ever, the resulting return levels are homogeneous and do not
show any unrealistic outliers. The rather new EVT approach
by Marani and Ignaccolo (2015) featuring the MEV distribu-
tion leads to a slight underestimation of 10-year return levels
but produces the best results for the 100-year return period.
This methodology shows great potential for the extrapolation
of longer return periods due to the larger sampling and, there-
fore, increased stability of the fits (Schellander et al., 2019;
Zorzetto et al., 2016).

The question remains to be answered as to what the find-
ings of this study can contribute to in practice.

First, in regions with a low density of rain gauges, such
RCM setups can contribute to a homogeneous spatial estima-
tion of return levels. Even in regions where the rain gauges
cannot represent the spatial heterogeneity, RCMs can be ap-
plied to support observational products. This is already be-
ing done in Austria using a convective-permitting weather
model, and the results of this study reinforce such use of re-
gional climate models. It is also conceivable to use the high-
resolution spatial patterns of CPMs as an auxiliary variable
for the interpolation of the return levels based on measured
data (e.g. via kriging with external drift – Haberlandt, 2007;
spatial GEV models – Davison et al., 2012; or a spatial repre-
sentation of the simplified MEV – Schellander et al., 2019).
A visualization of a simple combination approach for such
a subsequent enhancement of 100-year return levels is pro-
vided in Fig. 10. Therein, the differences at each grid cell be-
tween the observational product and the WRF-ERA5 MEV-
PWM results are smoothed with a Gaussian filter and again
added to the climate model return levels. However, this rather
naive approach only serves to provide a visual impression of
a possible enhancement.

Second, different EVT approaches are explored based on
30 years of data with daily rainfall. For moderate extremes
(10-year return level), the differences between the EVT ap-
proaches are minor. Due to the slight underestimation of the
MEV-PWM, GEV and GP approaches can be recommended
for such applications. For return periods that are longer than
the available data coverage, the estimation uncertainty in the
shape parameter of the GEV and GP distributions induces
unrealistic return level values at single grid cells. Fixing the
shape parameter can prevent this issue. However, the MEV
framework using the information of all ordinary wet events
produces stable fits and shows the best performance at the re-
production of 100-year return levels. It is recommended for
applications where the return period needs to be extrapolated.
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Further conclusions regarding the future use of RCMs fol-
low from these findings. Third, large ensembles of RCMs can
be set up to increase the sample size within the boundaries of
the internal climate variability. On the one hand, increased
sample sizes lower the uncertainty related to EVT; on the
other hand large ensembles enable the quantification of un-
certainties due to internal variability (Poschlod et al., 2021).

Fourth, RCMs driven by global climate models following
different emission scenarios allow the simulation of climate-
change-induced alterations of return levels (Ban et al., 2020;
Poschlod and Ludwig, 2021). Even though an increase in
extreme precipitation intensities has been known about for
decades (Trenberth et al., 2003), there is a lack of operational
implementation and adaptation. In 2004, a climate change
surcharge of a flat +15 % on top of the 100-year flood return
level was introduced in Bavaria for the planning of flood pro-
tection facilities (LfU, 2021). Indeed, trends in the magnitude
of floods in Bavaria can be detected (Blöschl et al., 2019).
However, such an adaptation for extreme rainfall has been
missing so far, even though there is a much higher consen-
sus in the scientific community about the increase in extreme
rainfall intensities than about the increase in floods (Sharma
et al., 2018; Merz et al., 2021).

Despite all model-specific uncertainties, the evaluation of
RCMs in this study proved that they are suitable for repro-
ducing daily extreme precipitation intensities over complex
terrain.

Data availability. The observational rainfall return level data
are available at the German weather service (https://opendata.
dwd.de/climate_environment/CDC/grids_germany/return_periods/
precipitation/KOSTRA/KOSTRA_DWD_2010R/asc/, DWD,
2020), the Austrian Federal Ministry of Agriculture, Regions
and Tourism (https://ehyd.gv.at/, BMLRT, 2020), and Me-
teoSwiss (https://www.meteoswiss.admin.ch/home/climate/
swiss-climate-in-detail/extreme-value-analyses/standard-period.
html?station=int, MeteoSwiss, 2021).

The daily precipitation of WRF ERA-I and
WRF ERA5 is publicly available in Warscher (2019,
https://doi.org/10.5281/zenodo.2533904) and Collier (2020,
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