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Abstract. Reliable information on building stock and its vul-
nerability is important for understanding societal exposure
to floods. Unfortunately, developing countries have less ac-
cess to and availability of this information. Therefore, calcu-
lations for flood damage assessments have to use the scarce
information available, often aggregated on a national or dis-
trict level. This study aims to improve current assessments of
flood damage by extracting individual building characteris-
tics and estimate damage based on the buildings’ vulnerabil-
ity. We carry out an object-based image analysis (OBIA) of
high-resolution (11 cm ground sample distance) unmanned
aerial vehicle (UAV) imagery to outline building footprints.
We then use a support vector machine learning algorithm
to classify the delineated buildings. We combine this in-
formation with local depth–damage curves to estimate the
economic damage for three villages affected by the 2019
January river floods in the southern Shire Basin in Malawi
and compare this to a conventional, pixel-based approach
using aggregated land use to denote exposure. The flood
extent is obtained from satellite imagery (Sentinel-1) and
corresponding water depths determined by combining this
with elevation data. The results show that OBIA results in
building footprints much closer to OpenStreetMap data, in
which the pixel-based approach tends to overestimate. Cor-
respondingly, the estimated total damage from the OBIA is
lower (EUR 10 140) compared to the pixel-based approach
(EUR 15 782). A sensitivity analysis illustrates that uncer-

tainty in the derived damage curves is larger than in the haz-
ard or exposure data. This research highlights the potential
for detailed and local damage assessments using UAV im-
agery to determine exposure and vulnerability in flood dam-
age and risk assessments in data-poor regions.

1 Introduction

Worldwide, flooding is one of the most common and damag-
ing natural hazards in both monetary terms and loss of life
(UNDRR, 2019). Estimating flood damage is essential for
shaping flood risk management before and disaster response
after a flood. This can be done a priori to support strategic
risk reduction by, for example, increasing awareness in areas
that are high in potential damage to therefore reduce vulner-
ability or after a given flood event to quickly derive estimates
of building damage to help with recovery and prioritize ac-
tions. This latter one is known as a damage and needs assess-
ment (DNA), which is usually based for the most part on data
collected on the ground. For DNAs, household field surveys
are conducted as rapid DNAs and post disaster and needs as-
sessments (Jones, 2010). A priori flood damage assessments
are generally modeled and require extensive datasets on flood
hazard characteristics, the exposed elements at risk and the
vulnerability of these elements (Budiyono et al., 2015; Alam,
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A. et al., 2018; UNDRR, 2019). Much work has focused on
improving these damage estimates, quantifying the effect of
different flood scenarios and the consequences (Murnane et
al., 2017; Jongman et al., 2012; de Moel et al., 2015). Unfor-
tunately, sufficient information on the exposure and vulnera-
bility is often lacking or less accessible in developing coun-
tries (van den Homberg and Susha, 2018). Therefore, cal-
culations for flood damage assessments must use the scarce
data available, often aggregated on a high national or dis-
trict level. This lack of data complicates accurate and down-
scaled flood damage assessments, as shown in studies by
Amirebrahimi et al. (2016) and Fekete (2012). The lower
spatial level is, however, required for most flood risk man-
agement applications. Especially building damage remains
hard to quantify as existing classification categories often ne-
glect spatial heterogeneity. This causes many uncertainties
in the assessment about physical structure, content and flood
susceptibility (Wagenaar et al., 2016). Flood damage assess-
ments are a standard procedure to identify potential eco-
nomic losses in flood-prone areas. With growing populations
and economies, the need to accurately estimate flood dam-
age is gaining greater importance (Merz et al., 2010). Such
assessments can enable the allocation of resources for re-
covery and reconstruction by humanitarian decision-makers
when a disaster does strike (Díaz-Delgado and Gaytán Inies-
tra, 2014). For example, severe floods in January 2015 have
demonstrated the need for improved flood damage assess-
ments in Malawi. During this period, the worst flood disas-
ter in terms of economic damage was recorded for 15 of its
28 districts, predominantly in the Southern Region. The to-
tal damage was estimated to be USD 286.3 million, with the
housing sector accounting for almost half of the total damage
at USD 136.4 million (Government of Malawi, 2015). More
recently, the Chikwawa District was subjected to extensive
flooding because of continuous rainfall by Tropical Cyclone
Desmond in January 2019.

Several studies have suggested that flood damage assess-
ments could be improved by incorporating the vulnerability
in building structures. Blanco-Vogt et al. (2015) summarize
different methods to retrieve building characteristics and es-
timate flood vulnerability based on building types in a semi-
urban environment. Different building parameters are dis-
cussed that could affect the building susceptibility to flood-
ing, including height, size, form, roof structure, and the topo-
logical relation to neighboring buildings and open space.
Types are created by taking the remotely sensed data and re-
lating this to potential flood impact. Blanco-Vogt et al. (2015)
note that these types can be used to link buildings to more
detailed damage curves and discuss the challenges in terms
of data resolution and techniques in remote sensing. The
research of De Angeli et al. (2016) builds on the method
of Blanco-Vogt et al. (2015) by developing a flood damage
model that differentiates the urban area (using building clus-
ters based on building taxonomies and footprints) instead of
using a single homogenous land-use class. Remotely sensed

data were used to derive exposure and vulnerability infor-
mation after which it was combined with available building
information. The model was able to assess damage estimates
in an urban setting, with the total average damage deviating
from the refund claims with a percentage error lower than
2 %. Nonetheless, the authors state that a generalization of
the procedure needs to be studied further. Another exam-
ple of using indicator-based approaches regarding physical
vulnerability, specifically tailored for data-scarce regions, is
given by Malgwi et al. (2020). In this study, a conceptual
framework is proposed that combines vulnerability indexes
and regional damage grades (frequently observed damage
patterns) by utilizing a synthetic “what-if” assessment by ex-
perts.

Remote sensing has the potential to generate information
on the exposure and vulnerability input for damage assess-
ments. Numerous studies have been carried out for mapping
land cover, such as built-up areas, with varying methods and
spatial scales (Mallupattu and Sreenivasula Reddy, 2013; Ai
et al., 2020). With new innovations in the resolution of im-
agery, also smaller-scale studies can be conducted where re-
mote sensing can be applied to retrieve information at the
object level (Klemas, 2015; Englhardt et al., 2019). In a re-
view by De Ruiter et al. (2017) it is stated that common
flood vulnerability studies that use land-cover types could be
improved by incorporating object-based approaches, for ex-
ample by developing vulnerability curves for different wall-
material types. A technique to derive useful information from
remotely sensed image data is object-based image analysis
(OBIA). OBIA has the potential to identify exposed elements
and their characteristics accurately when incorporated into a
flood damage assessment, but there is little literature com-
bining the methods. The process involves grouping pixels
into objects based on their spectral properties or external
variables, after which they are combined into spatial units
for image analysis such as image classification (Blaschke,
2010). Spectral properties to group these objects could, for
example, be the mean value or standard deviation of spectral
bands of the image. A conventional workflow to conduct an
OBIA consists of two major steps: (1) segmentation and (2)
feature extraction and classification. The literature demon-
strates that the relationship between the objects under consid-
eration and the spatial resolution is critical for the accuracy
of segmentation and the OBIA, improving with the emer-
gence of higher-resolution imagery (Blaschke, 2010; Belgiu
and Draguţ, 2014; Xu et al., 2019).

In this research, automated object recognition and clas-
sification from high-resolution images, based on an OBIA
workflow, are used to delineate and characterize buildings in
a flood damage assessment. This object-based approach is
applied to the 2019 January flood event for three villages in
the Lower Shire Basin in Malawi and compared to a con-
ventional flood damage assessment based on disaggregated
census data and homogenous land-use pixels (pixel-based ap-
proach). By doing so, this study aims to
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– create a framework to incorporate OBIA in flood dam-
age assessments,

– assess the added value of high-resolution unmanned
aerial vehicle (UAV) imagery in creating object-level
exposure and vulnerability data,

– compare flood damage estimates between an object-
based and conventional pixel-based approach.

In the next chapters we will introduce the case study area
and the data, methods and results related to the pixel-based
and object-based approach. In addition, a sensitivity analysis
is performed to illustrate which components of the risk as-
sessment are most important when it comes to uncertainty in
damage estimates.

2 Study area

Malawi is a landlocked country in sub-Saharan Africa, bor-
dered by Zambia to the northwest, Tanzania to the northeast,
and Mozambique to the east, south and west. The country
is vulnerable to a range of natural hazards including tropical
storms, earthquakes, droughts and floods. Especially floods
affect many sectors from agriculture to sanitation, environ-
ment, and education. A major contributing factor to this risk
is the variable and erratic rainfall, which often causes flood-
ing in lower-lying areas after falling in the highlands. Be-
tween 1946 and 2013, floods accounted for 48 % of the major
disasters in Malawi. With a large rural population mostly re-
lying on agriculture, these disasters have a large impact on
the national economy and food security of the population
(Government of Malawi, 2015).

The southern Chikwawa District is one of the poorest and
most flood-prone in the country. In addition to being ex-
posed to flooding frequently, the district is characterized by a
largely rural population and home to highly vulnerable com-
munities in terms of economic diversification, employment
opportunities and access to social services (Trogrlić et al.,
2017). The Shire River is the largest river in the country
and starts from lake Malawi flowing towards Chikwawa and
into the low-lying Mozambique plain, as shown in Fig. 1. In
the district of Chikwawa, our study area, the river meets a
large flood plain called the Elephant Marsh. This floodplain
is characterized by stagnant flows, with the marsh varying in
size depending on the flow of the river. When rainfall is high,
large areas may be underwater.

In 2015, Malawi underwent some of the worst flooding
ever recorded in the country, affecting 1 101 364 people, dis-
placing 230 000, and killing 106. In the aftermath, it be-
came clear that the housing sector accounted for most of
the total damage with almost 40 % followed by agriculture
with approximately 20 %. The worst affected districts were
in the Southern Region, being the districts of Chikwawa and
Nsanje, and the disaster sparked a discussion about a more

responsible policy towards this type of event. One of the
lessons learned from this event was that the lack of disag-
gregated (spatial) data and information management slowed
down the disaster response and could eventually slow down
recovery efforts as well (Government of Malawi, 2015).

Between 22 and 26 January 2019, the Chikwawa District
was again subjected to extensive flooding because of contin-
uous rainfall from Tropical Cyclone Desmond. There is no
specific empirical damage data available for our case study
area. However, the International Federation of Red Cross and
Red Crescent Societies (IFRC) issued an Emergency Plan of
Action (EPoA) after the floods. Based on preliminary assess-
ment carried out by staff members and volunteers from the
Village Civil Protection Committee (VCPC) and Malawi Red
Cross Society (MRCS), one of the most affected areas is the
Traditional Authority of Makhuwira with a total of 2434 col-
lapsed houses (IFRC, 2019). In Chikwawa, a total of 15 974
people were affected, 3154 houses damaged or destroyed,
and 5078 people reported to be displaced across at least seven
camps set up by communities and government. Most of the
affected houses were semi-permanent buildings, which are
also common in our study area (IFRC, 2019).

3 Materials

In order to determine the hazard, exposure and vulnerabil-
ity for both the pixel- and object-based approaches, a variety
of data sources have been used. This section describes these
data sources, including remote sensing and other geospatial
data (including UAV imagery), local survey, regional build-
ing statistics, and the datasets used for the construction of
(local) damage curves.

3.1 Remote sensing data

UAV imagery was collected in November 2018 by The
Netherlands Red Cross (NLRC) and the MRCS for mapping
and flood simulation purposes in the Lower Shire Basin. A
fixed-wing UAV (SmartPlanes Freya) with 0.3 m2 wing area,
weighing around 1.5 kg, and with a RICOH GR II camera
was used to obtain the UAV imagery. The drone usually flew
around 300 m altitude, having a flight time of around 60 min
per battery and with a sidelap and overlap of each 70 %.
The flights were carried out without ground control points
(GCPs). Van den Homberg et al. (2020) give a detailed de-
scription of the UAV model and data collection. Agisoft Pho-
toScan and Metashape software was used to stitch the images
of the optical imagery and extract a digital surface model
(DSM) from the stereophotogrammetry. The extent of the
flight coverage is shown in Fig. 1.

In addition to UAV imagery, other remote sensing data
were acquired from open-source databases, including the
Shuttle Radar Topography Mission (SRTM) digital elevation
model (DEM) collected by NASA and the synthetic aper-
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Figure 1. The geographical location of Malawi (left) and the District of Chikwawa (right). © Google Maps, 2021.

ture radar (SAR) Sentinel-1 imagery collected by Copernicus
(Farr and Kobrick, 2000). The High-Resolution Settlement
Layer (HRSL) provides an estimate of the settlement extent
and population density and was developed by the Connec-
tivity Lab at Facebook in combination with the Centre for
International Earth Science Information Network (CIESIN)
by using computer vision techniques to qualify optical satel-
lite data with a resolution of 0.5 m (CIESIN, 2016). The
OpenStreetMap (OSM) contains a features layer of manu-
ally delineated objects and was used for validation purposes
(© OpenStreetMap contributors, 2019). Table 1 summarizes
the various datasets.

3.2 Building data

To gain information about the building stock present in the
case study area, Teule et al. (2019) conducted a field sur-
vey in four villages in, or surrounding, the Traditional Au-
thority Makhuwira (including Jana, Nyambala and Nyangu).
The data were collected by randomly selecting buildings in
the vicinity of these interviews. In total, 50 buildings were
sampled and assumed to be representative buildings in es-
timating the different building characteristics present in the
area. The OSM data layer reports on a total of around 1350
buildings in the villages selected for our analysis. Figure 2
shows an example of one the sample buildings. The survey

collected characteristics of potential flood vulnerability pa-
rameters, including size, height, roof material, wall material
and inventory of the house. These parameters were selected
based on key features that characterize building types in the
region along with their spectral differences, making them
easier to detect from remote imagery.

In addition to the local field survey data, building stock
used in the pixel-based approach was extracted from the In-
tegrated Household Survey 2016–2017 (IHS4), conducted by
the Malawi National Statistical Office (NSO) (Malawi Statis-
tical Office, 2017). This report describes the distribution of
three main building types by aggregating data to a regional
level. A distinction is made based on their building material:

– A permanent building has a roof made of iron sheets,
tiles, concrete or asbestos, and walls made of burned
bricks, concrete or stones.

– A semi-permanent building is a mix of permanent and
traditional building materials and lacks the construction
materials of a permanent building for walls or the roof.
That is, it is built of non-permanent walls such as sun-
dried bricks or non-permanent roofing materials such
as thatch. Such a description would apply to a building
made of red bricks and cement mortar but roofed with
grass thatching.

Nat. Hazards Earth Syst. Sci., 21, 3199–3218, 2021 https://doi.org/10.5194/nhess-21-3199-2021



L. Wouters et al.: Improving flood damage assessments in data-scarce areas 3203

Table 1. Available datasets in this research. Abbreviations: digital elevation model (DEM), digital surface model (DSM), ground range
detected (GRD), Malawi Red Cross Society (MRCS), OpenStreetMap (OSM) and Shuttle Radar Topography Mission (SRTM) synthetic
aperture radar (SAR).

Datasets and Type Resolution Data repository Acquisition Used for
platforms (horizontal)

Remote sensing

Space shuttle DEM 30 m SRTM, Earth Explorer Unknown Flood hazard
Satellite SAR 23 m Sentinel-1 (GRD), Copernicus 24 Jan 2019 Flood hazard
UAV Optical 0.11 m MRCS Nov 2018 Exposure & vulnerability (object-based)
UAV DSM 0.25 m MRCS Nov 2018 Exposure & vulnerability (object-based)

Geospatial

HRSL Land cover 30 m CIESIN 2016 Exposure (pixel-based)
OSM Vector Object OpenStreetMap n/a OBIA validation

The term n/a stands for not applicable.

Figure 2. Image from one of the sample buildings taken in the
case study area taken by T. Teule (23 June 2019). A clear con-
trast between building material is visible between the two buildings:
thatched roofs and unburned brick walls (middle building) versus
iron sheeted roofs and burned brick walls (left building).

– A traditional building is made from traditional
housing construction materials such as mud walls,
grass/thatching for roofs and rough poles for roof
beams.

The ratio of the different dwellings in the district of Chik-
wawa is summarized in Table 2. From this information, a
trend can be observed towards a ratio with more formal build-
ings. The most recent statistics – being the building stock
information from 2016 to 2017 – is used in the pixel-based
flood damage assessment.

3.3 Damage curve data

Stage-dependent damage curves are created for different
building types by extracting material-specific vulnerability
functions from the CAPRA (probabilistic risk assessment)
platform. This platform contains a library with pre-defined
analytical vulnerability functions, including different con-
struction materials, calibrated with expert-supplied parame-
ters (CAPRA, 2012). These curves express relative damage
as a percentage with respect to water depth. Several exam-
ples in the library include concrete, wood, reed, masonry and
earth (unfired) materials.

In addition to the vulnerability curves, maximum building
damage values were estimated based on the different kinds of
materials and the costs of buildings found in southern Malawi
(Table 5). The values were validated by local authorities in
the case study area during interviews by Teule et al. (2019).

4 Methods

This section describes the two flood damage assess-
ment methods compared: first, the conventional pixel-based
method and second the proposed object-based method, after
which their distinctive components are discussed in more de-
tail.

4.1 Flood damage assessment

Figure 3 presents the workflow applied in this study to de-
rive the flood damage estimates from the January 2019 flood
event in the case study area. Following the general procedure
of a flood damage assessment, both approaches can be di-
vided into three separate components: hazard, exposure and
vulnerability (Merz et al., 2010; de Moel and Aerts, 2011;
Jongman et al., 2012); see Fig. 3. In this research, we de-
fine the hazard as the flood extent and depth of a flood event,

https://doi.org/10.5194/nhess-21-3199-2021 Nat. Hazards Earth Syst. Sci., 21, 3199–3218, 2021



3204 L. Wouters et al.: Improving flood damage assessments in data-scarce areas

Table 2. Ratios of building stock in the Chikwawa District of southern Malawi (Malawi Statistical Office, 2017).

Permanent (%) Semi-permanent (%) Traditional (%)

Building stock 2010–2012 25.5 15 59.5
Building stock 2016–2017 33.7 33.8 32.5

exposure as the exposed buildings to this flood, and vulnera-
bility as the susceptibility of these buildings to flooding.

For the pixel-based approach, the HRSL land-use map,
containing homogenous land-use pixels, is used to determine
the built-up area. Building stock information from Table 2
is used to create corresponding stage-damage curves for the
defined building types (Malawi Statistical Office, 2017).

For the object-based assessment, we combine informa-
tion from an OBIA of high-resolution UAV imagery with
the stage-damage curves created from the field observations.
Building footprints are detected and classified based on their
aerial features to identify local building types. Local stage-
damage curves are then assigned to these types by assessing
the vulnerability of buildings found in the field survey.

Both flood damage assessments are inherently different on
the classification of exposed elements and their flood sus-
ceptibility. In the terminology of the UNDRR (2019), this
translates into different input data for the exposure and vul-
nerability components.

The two different approaches share the same hazard com-
ponent, being the 2019 flood event. Based on Sentinel-1
satellite imagery, a flood extent is created, and its related wa-
ter depth is estimated. The economic damage is calculated by
combining the flood impact with the different sets of expo-
sure data and damage curves (Fig. 3). In order to determine
the relative influence of the different components on the re-
sulting risk, we evaluate the influence of building size, water
depth and damage curve on our damage assessment model
using a one-at-a-time sensitivity analysis, as applied in Ke et
al. (2012).

4.2 Hazard: flood area and water depth estimation

To represent the flood hazard, we derive water depths from
the January 2019 flood event using the workflow presented
in Fig. 4. This approach takes the following three main steps:
(1) extracting SAR data and processing them using SNAP
software (SNAP, 2019) to create a flood extent map, (2)
preparation of the data in ArcGIS, and (3) using the avail-
able SRTM DEM to estimate the water surface elevation and
extracting the flood water depth.

Extracting and processing SAR data was based on the
SNAP flood mapping workflow (McVittie, 2019). This in-
volved preprocessing of the SAR imagery through calibra-
tion to transform the pixels from the digital values recorded
by the satellite into backscatter coefficients, speckle filter-
ing using the “Lee filter” to remove thermal noise and geo-

metric correction using the terrain correction function. Water
and non-water are separated through setting a threshold by
analyzing the backscatter coefficient histogram and manu-
ally determining the peak characteristics of land and water
areas. Flooded areas could then be determined by setting a
threshold value of 0.0022 which was defined based on the
histogram plot of pixel values for reflectivity.

The flood raster map was further prepared in ArcGIS by
vectoring the resulting water pixels using the “raster to vec-
tor” tool and aggregating with the “aggregate polygons” tool
based on a neighborhood of 100 m. Single-pixel polygons
were removed to exclude noise from the flood map, and any
empty spaces in the polygon were filled using the “union”
and “dissolve” tools. These filled spaces can be the result of
beneath-vegetation flood areas that can be missed by the SAR
processing (Shen et al., 2019). Negative values are removed
in the next, final step if they are a result of actual topographic
factors, such as local hills.

The final step in this approach follows the research of Cian
et al. (2018) and Cohen et al. (2018), in which the flood
boundaries along the water surface are used to estimate the
elevation of the water surface. The boundaries of the derived
flood extent were turned into points with the “raster to point”
tool, after which the elevation values were extracted from the
DEM. The water surface was then computed using the “in-
verse distance weighting” (IDW) tool. Essentially, this means
that pixels inside of the flood extent get the elevation value
of the closest elevation points along the boundary. The water
depth can then be calculated by deducting the initial DEM
values from the assigned water surface values. Figure 4 visu-
alizes the workflow and the resulting output.

To validate the surface water interpolation method, the re-
sult is compared with a flood hazard map obtained from a
hydraulic 1D steady model that was run for a subsection of
the Shire River (Maparera River) in a study by Copier et
al. (2019). The segment covers an area of 2.1 km2 in which
the river has a total length of 2.2 km. The model was run
using Hydrologic Engineering Center’s River Analysis Sys-
tem (HEC-RAS) software (Hydrologic Engineering Center,
1998). Due to a lack of historical data, the discharge val-
ues used as input for the model are estimated to match the
case study area’s water flowing abilities without creating an
extreme overflow. The discharge value was set to 50 m3 s−1,
and the Manning coefficient was set to 0.05. For both the sur-
face water interpolation method and the hydraulic model run,
the UAV DSM is used as input.
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Figure 3. Workflow of the two approaches of flood damage estimation. The left panel shows the object-based approach, and the right panel
shows the pixel-based approach. Abbreviations: synthetic aperture radar (SAR), Shuttle Radar Topography Mission (SRTM) digital elevation
model (DEM), object-based image analysis (OBIA), High-Resolution Settlement Layer (HRSL) and OpenStreetMap (OSM). The inundation
(hazard) map is shown on a © Google Satellite image. The OBIA and land-use maps are created using UAV imagery from the Malawi Red
Cross Society.

Figure 4. The workflow representing the extraction of SAR satellite imagery and deriving its corresponding water depth. The flood polygon
is shown on a SRTM DEM image, and the water depth map is shown on a © Google Satellite image.

The root mean square error (RMSE) is used to evaluate
the output from both approaches (Cohen et al., 2018). By
doing so, it can be determined to what extent the output of
both approaches deviate in terms of water depth estimation.
In addition to the root mean, we also construct the receiver

operating characteristic (ROC) curve. The ROC curve is a
probability curve and reports the true positivity rate (TPR),
also called recall (R), as a function of the false positive rate
(FPR). The area under curve (AUC) represents the degree or
measure of separability, with 1 representing a model with a
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perfect predictability, 0 with complete unpredictability and
0.5 with random guesses. The HEC-RAS flood map is taken
as ground truth against the results of the surface water inter-
polation method, in which a prediction can be either a true
positive (TP), false positive (FP), true negative (TN) or false
negative (FN). The TPR and the FPR are calculated as fol-
lows:

TPR=
TP

TP+FN
, (1)

FPR=
FP

TN+FP
. (2)

4.3 Exposure

4.3.1 Pixel-based approach

For the pixel-based approach, the built-up area is estimated
by taking the built-up area of the pixel according to average
density percentages and building sizes. This density is deter-
mined by visual interpretation of the UAV imagery. The per-
centages found in the distribution of building types reported
by the IHS4 are used to calculate the damage corresponding
to 1 pixel unit.

4.3.2 Object-based approach

The OBIA consisted of the following steps (Fig. 6). First,
validation and training samples were collected from the vil-
lages in the case study area by manually delineating objects.
We manually delineated a total of 144 building to serve as
training and 556 as validation. This step was followed by seg-
menting the high-resolution imagery and classifying the vec-
torized objects. We selected the open-source geo-software
Orfeo ToolBox (OTB). This toolbox is a library for image
processing initiated by the CNES (French Space Agency)
that includes numerous algorithms created for the purpose
of segmentation and classification (Grizonnet et al., 2017).

Segmentation was performed using the mean shift clus-
tering algorithm utilized by OTB. The mean shift algorithm
exploited by Orfeo relates to the work of Michel et al. (2015),
in which the goal of image segmentation is to partition large
images into semantically meaningful regions. The following
parameters were set: (1) the spatial radius or the neighbor-
hood distance was set to 1.5 m, (2) the range is expressed in
radiometry units in the multispectral space to 5 m, and (3) the
minimum size of a segmented region was set to 5 m2 in rela-
tion to minimum building sizes. The support vector machine
(SVM) algorithm from the same Orfeo library served to clas-
sify the vectorized objects from the segmentation. The SVM
is a kernel-based machine learning algorithm that has been
effectively used to classify remotely sensed data (Mountrakis
et al., 2011). The classifier was trained on samples that rep-
resented the common features in the selected images and are
summarized in Table 3. An example of the output of this pro-
cess is shown in Fig. 5.

Figure 5. Steps of the OBIA: (a) original UAV imagery, (b) result
of mean shift segmentation and (c) classification using SVM classi-
fier. The image contains UAV imagery collected by the Malawi Red
Cross Society (MRCS), collected in November 2018. Made with
QGIS.

After the segmented objects were classified, a filtering pro-
cess was conducted in which objects were removed based
on their respective height and category. By keeping the two
categories that represent buildings with a height over 0.5 m,
buildings can be extracted, and potential misses are excluded
from the damage calculation. This height was chosen as a
value between the height of the ground and a one-story build-
ing. The mean height from the DSM was added to the objects
by creating centric points of each segment and extracting the
elevation values to these points from the UAV DSM map. To
derive the height of these objects, a baseline DEM was con-
structed and subtracted from the mean DSM value. For this,
the cells classified as “metal” and “thatch” were removed
from the DEM. Next, ground reference points were placed
using visual interpretation to make sure no bushes or trees
were selected. The elevation of these ground reference points
was correspondingly used to interpolate an elevation surface
using IDW, and the elevation of this interpolated surface was
used to determine the height of the metal and thatch cells by
determining the difference with the original DEM elevation.

To evaluate the performance of the OBIA model, a map
with 556 manually delineated and labeled reference build-
ings was compared to a map with predicted buildings from
the classification. For this purpose, a confusion matrix was
created (Gutierrez et al., 2020), in which TP is the number
of cases detected both manually and with the automatic ap-
proach. FP is the number of cases detected by the automatic
approach but not manually. TN is the number of cases de-
tected manually but not by the automatic approach. FN is the
number of undetected cases. The statistical parameters that
were used to test the classification performance are the accu-
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Figure 6. Conceptual model of the building classification using automatic extraction methods.

Table 3. Samples used as input for training the SVM classifier with mean value ranges of the spectral bands (nm).

Value Label Samples Mean B0 Mean B1 Mean B2

1 Vegetation 28 121–164 135–165 101–136
2 Metal 27 207–241 207–244 205–245
3 Thatch 31 225–241 201–228 184–213
4 Bare ground 34 171–220 155–197 145–197
5 Shadow 24 113–154 114–150 113–137

racy and F1-score. The overall accuracy (A) was calculated
given Eq. (1).

A=
TP+TN

TP+FP+TN+FN
(3)

To test the classification performance per class, the F1-score
was used. This statistic is the weighted mean of both preci-
sion (P ) and R, where 0 indicated the lowest possible score
and 1 a perfect score. The parameters are calculated with the
following equations:

P =
TP

TP+FP
, (4)

F1-score= 2 ·
P ·R

P +R
. (5)

To evaluate the building area, predicted buildings were cho-
sen that have partial or complete overlap with the reference
buildings. From this selection, the relative error (RE) was
calculated per building type. In this case, the absolute error
is normalized by dividing it by the magnitude of the value
of the reference buildings. The RE is calculated through the
following expression:

RE=

∑N
n=1

∣∣θ∧− θi∣∣∑N
i=1 |θi|

, (6)

where θ∧ is the predicted value, θi is the value of the refer-
ence buildings, and N is the sample size.

4.4 Vulnerability: damage curve estimation

Corresponding to the building types found in the exposure
component of each flood damage assessment, a set of dam-
age curves is created. The description of the different types
and their construction material is used to weigh material-
specific damage curves from the CAPRA library, according
to the method proposed by Rudari et al. (2016). We make use
of the expanded aggregation table as proposed by Rudari et
al. (2016), including the construction material considered for
every building type (Table 4). This table indicates for each
building type the building stock material for which CAPRA
damage curves are used.

For the pixel-based approach, three curves are created for
each of the building types (traditional, semi-permanent, per-
manent), making use of the description of wall building ma-
terials in the fourth Integrated Household Survey 2016–2017
(IHS4). Next, the distribution of these three building types
(Table 2) is used as weights to create a single curve that can
be applied to the urban pixels from the land-use map. For in-
stance, semi-permanent housing consists of unburned bricks,
for which the masonry and earth CAPRA curves should be
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Table 4. Aggregation table of the CAPRA damage curves based on building stock information.

CAPRA materials Building stock material Building types

Concrete Masonry Earth Wood Metal roof Thatch roof Permanent Semi-permanent Traditional

× Burned bricks × × ×

× × Unburned bricks × ×

× Concrete ×

× Mud × ×

× Wood × ×

used. In this case, these curves are averaged and used to rep-
resent a semi-permanent building.

For the object-based approach, the results from the field
survey are used to create damage curves for building types
determined by aerial observation and the OBIA (metal roof
and thatch roof). The materials of the roofs are correlated
with wall material, based on the field observations from
which we derive the wall-to-roof relationships. The local dis-
tribution found in wall material is used to weigh the curves
from the CAPRA library based on percentages. This means,
for example, that the distribution in wall material found for
buildings with a thatch roof – being burned bricks, unburned
bricks, mud and wood – are used to weigh the CAPRA
curves. These materials correspond to the masonry, masonry
and earth, and earth and wood CAPRA curves, respectively.

In both approaches, we follow Maiti (2007) and assume
that buildings constructed with a mud wall tend to collapse
at a water depth of 1 m. Before creating curves for each build-
ing type, this damage curve from the CAPRA library (earth
curve) is modified so that 1 m of inundation corresponds to a
100 % damage value.

4.5 Risk: damage estimation

For the pixel-based approach, the built-up area is estimated
by taking the built-up area of the pixel according to average
density percentages and building sizes. The average density
percentages and building sizes will be collected by visual in-
terpretation of the UAV imagery. The percentages found in
the distribution of building types reported by the IHS4 are
used to calculate the damage corresponding to 1 pixel unit.
The damage is calculated through the following expression:

Dp[EUR] =
3∑
i=1

damage
(
ip
)
·a
(
ip
)
·r
(
ip
)
·rc
(
ip
)
[EUR], (7)

where the variables are as follows:

– ip is the building type (i.e. traditional, semi-permanent,
permanent) as determined by the building stock descrip-
tion of the Malawi National Statistical Office (2017).

– damage(ip) is the damage per pixel in euros calculated
with the adjusted stage-damage curve and using as input
the water depth (m) in the considered pixel.

Table 5. Estimated maximum damage values per square meter
based on local knowledge of replacement costs (Teule et al., 2019).

Type EURm−2

Permanent 15.20
Semi-permanent 10.60
Traditional 4.40
Metal roof 13.00
Thatch roof 9.70

– a(ip) is the size of the building in area (m2).

– r(i) is the ratio of the type according to the national
survey in Table 2.

– rc(i) is the replacement cost per square meter based on
the type (i); see Table 5.

For the object-based approach, damage is calculated per ob-
ject by combining buildings automatically detected and clas-
sified through OBIA with the local stage-damage curves cre-
ated from the field survey. The damage can be calculated
through the following expression:

Do[EUR] =
2∑
i=1

damage(io) · a(io) · rc(io)[EUR], (8)

where the variables are as follows:

– io is the building type based on the roof type and wall-
to-roof relationships (i.e. metal roof and thatch roof).

– damage(io) is the damage per building in euros calcu-
lated with the local stage-damage curve and using as
input the flood water depth (m) for this building.

4.6 Sensitivity analysis

To quantify how the damage parameters can influence the
damage estimate, a one-at-a-time sensitivity analysis will be
conducted by increasing and decreasing the different damage
parameters with the mean of the respective relative errors.
The sensitivity value (SV) will be used to represent the sen-
sitivity and can be calculated by dividing the largest resulting
damage by the smallest resulting damage (Koks et al., 2015).
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5 Results

5.1 UAV imagery

Figure 7 shows the resulting UAV-based orthophoto, includ-
ing the DSM with shaded relief and the SRTM DEM with
shaded relief, from the flight area. The Shire River is cap-
tured at the western side of the acquired imagery. Complet-
ing the area took 140 flights, each lasting around 45 min. The
UAV-based DSM shows a relatively equal elevation through-
out most of the area. However, the absence of GCPs influ-
enced the global accuracy of the elevation. A deviation can
be observed when we compare the UAV-based DSM to the
SRTM DEM. This DEM shows a down-sloping pattern of
the elevation towards the south, in accordance with the flow
of the Shire River.

Although this difference hampers large-scale (hydraulic)
analysis using the UAV-based DSM, it is still valuable in as-
sessing the local height variation of objects on a microscale.
Figure 8 gives a detailed overview of the town of Chagambat-
uka, including the UAV-based DSM. Buildings can clearly be
distinguished based on their rectangular shape and elevation,
while trees are generally the tallest objects in the area.

5.2 Field observations

Based on the information collected through the building sur-
vey, buildings in the case study area are grouped into two
types based on their distinctive aerial features. From the 50
samples, no buildings were found that have a wall structuring
resembling wood, reed or concrete. In addition, no buildings
were found having tiles or any other material as the roof, nor
any having more than two levels.

The first type of building in the area is composed of burned
and, in a small number of cases, unburned bricks. This type
is less vulnerable to flooding compared to the other type due
to its material being less susceptibility to building failure. Its
main distinctive aerial feature is a metal sheet roof, but the
results of the OBIA and the field survey also indicate that
this type of building has a larger footprint than thatch-roofed
buildings. For the metal-roofed buildings, two wall materials
were found: burned red bricks (90 %) and unburned bricks
(10 %).

The second type is generally composed of less formal
building material, with its main distinctive feature being a
thatch roof. The results of the survey seem to indicate a rel-
atively equal distribution between the building materials, but
as unburned bricks and mud walls are more susceptible to
building failure, this type is considered more vulnerable to
flooding. For the thatch-roofed buildings, three wall materi-
als were found: burned red bricks (27 %), unburned bricks
(41 %) and mud/wattle (32 %).

5.3 Damage curves and maximum damage values

Figure 9 shows the two damage curves created for the object-
based approach based on types corresponding to the field sur-
vey (left) and three for the types in the building stock descrip-
tion of IHS4 national survey that are used in the pixel-based
approach (right). Metal-roofed buildings show a lower vul-
nerability than thatch-roofed at the same water depth due to
the structural integrity accompanied by more formal build-
ing material. Similar patterns can be observed for the damage
curves based on the description of building stock in the Chik-
wawa District. Similar to how the damage curves were de-
rived, maximum damage values have also been determined.
The damage values per square meter for all building types
can be found in Table 5.

5.4 OBIA quality assessment

The implementation of the OBIA model had a varying degree
of success according to the statistical tests. Table 6 shows
that classification is more reliable for classifiers that have a
clear spectral difference with surrounding elements, such as
shadow and metal roofs, whereas bare ground and thatched
roofs are less easy to distinguish. This spectral difference re-
sulted in a higher F1-score for buildings with a metal roof
(89 %) compared to those with a thatched roof (53 %). With
the F1-score being the harmonic mean of the precision and
recall, this metric captures both the false negatives and the
false positives of the classification process. The lower F1-
score for detected thatch roofs could be attributed to their
tendency to blend in with the environment because of their
relatively similar spectral properties. With the addition of
the height threshold for objects, the individual F1-scores for
buildings were improved to 90 % for metal-roofed buildings
and 72 % for thatch-roofed buildings. The increased F1-score
for thatch-roofed buildings indicates that having additional
and accurate information on the height of the objects has
a large effect on the individual classification accuracy. The
overall accuracy of the initial run shows a value of 77.45 %,
indicating the amount of correctly classified objects out of
the total amount of samples. This value also increases up
to 80 % with the addition of a height threshold for objects,
though this increase is also partly due to the exclusion of
poorly performing classes such as “bare ground”.

The building objects from the OBIA are a direct result
of the segmentation process, and the relative error seems to
reflect the same pattern as the classification process. This
means that buildings with a thatch roof tend to be harder
to detect because the model groups pixels together that rep-
resent different objects, such as bare ground and the thatch
roof. For both types, the relative error between observed and
predicted building areas can be observed in Fig. 10. For the
thatch-roofed buildings, 50 % of the predictions are found
with RE lower than 30 %. For the metal-roofed buildings,
this same percentage of predictions are found with a RE
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Figure 7. Example of the orthophoto (left) and DSM (middle) with shaded relief, produced with images from the UAV flight, and a Shuttle
Radar Topography Mission DEM (right) with shaded relief. Made in QGIS using UAV imagery collected by the Malawi Red Cross Society
(MRCS).

Figure 8. Section of the town of Chagambatuka in the northern part of the UAV campaign area, with orthophoto (left) and DSM with shaded
relief (right) produced with images from the UAV flight. Made in QGIS using UAV imagery collected by the Malawi Red Cross Society
(MRCS).
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Figure 9. Constructed damage curves for the two types derived from field and aerial observations for the object-based approach (a), and
three types derived from the description of building stock at district level for the pixel-based approach (b) (Malawi National Statistical
Office, 2017). The water depth is the flood water relative to the ground floor.

Table 6. Evaluation of the performance accuracy of the OBIA classification.

Label F1-score F1-score∗ Accuracy (%) Accuracy (%)∗

Vegetation 0.91 – 77.45 80.19
Metal 0.89 0.90
Thatch 0.53 0.72
Bare ground 0.49 –
Shadow 0.90 –

∗ Addition of height threshold by subtracting the extracted DSM and DEM values.

Figure 10. Building area and relative error for both types (metal and
thatch) in the case study area.

lower than 7.5 %. Generally, metal-roofed buildings tend to
be larger in size than thatch-roofed buildings, with a mean
building size of 39 and 21 m2, respectively. For both types,
the RE tends to decrease as building size increases. This
seems to be in line with the literature in which it is stated
that if objects get closer to the size of the available spatial
resolution, errors are more likely to occur (Blaschke, 2010).

5.5 Flood inundation

To check whether the surface interpolation method ad-
equately captures flood characteristics, we compare our
method with the results from a hydrodynamic model applied
at the Maparera River. Figure 11 shows the maximum water
depth obtained from both methods. The average water depth
from the flood event at the Maparera River was 1.17 m for
the surface water interpolation and 1.22 m for the hydraulic
model run using the UAV DSM (Copier et al., 2019). The
maximum estimated water depth for both approaches was
about 3 m (3.30 and 2.79 m, respectively). The RMSE was
calculated to be 0.73 m. The results show that for a flood
depth of approximately 3 m, the surface water interpolation
method deviated from the hydraulic model by < 0.75 m on
average. We found considerable differences between both
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models along the main channel. This is in line with research
from Cohen et al. (2018) given the inability of similar meth-
ods to calculate complex fluid dynamic effects. In addition,
the interpolation method shows relatively low water depth
at the upstream boundary compared to the hydraulic model.
Nevertheless, the interpolation model seems to correctly dis-
solve the higher-elevation area between the two main chan-
nels from the aggregated flood extent that was extracted from
Sentinel-1 imagery. The AUC measured 0.73 (see Fig. A1),
indicating an acceptable agreement between the HEC-RAS
reference map and the water depth map resulting from sur-
face water interpolation (Hosmer and Lemeshow, 2000).

Repeating the method for the total case study area with the
SRTM DEM produced a water depth map with an average
water depth of 1.26 m and a maximum water depth of 7 m
(see Fig. 12). Buildings in the inundated area were assigned
the water depth in the corresponding cell. Several areas with
a positive water depth can be observed in the resulting flood
map that deviate from the SAR inundation map. These areas
indicate the subtraction of incorrect water depth values from
the digital terrain model (DTM) or capture areas that were
not identified with SAR imagery, for example, due to high
vegetation.

5.6 Damage estimates

By overlaying the separate components of the flood damage
assessment, the estimated damage was calculated for both
approaches using Eqs. (7) and 8. Compared to the pixel-
based approach, the object-based approach provides a lower
estimation of the exposed built-up area of about two-thirds
(Table 6). Interestingly, comparing the number of buildings
in OSM, this comes very close to the amount extracted by the
OBIA, giving confidence in the object-based approach. This
amount of exposure influences the resulting damage con-
siderably. The flooded built-up area for the pixel-based ap-
proach and the object-based approach was estimated at 2541
and 3952 m2, respectively. This resulted in estimated flood
damage of approximately EUR 10 000 and EUR 16 000, re-
spectively (Table 6).

Although building densities and average buildings sizes
were extracted from the same UAV imagery, a difference can
be observed in the flooded built-up area between the two ap-
proaches. This is the result of the inability of land-use pixels
to account for spatial variability in the building objects inside
a certain area.

Similar research on flood events in urban and rural areas
in Ethiopia, Germany and Poland exemplifies that significant
uncertainties are present in flood damage assessments due to
information lacking on the number of flooded buildings, the
building types considered in the assessment and the distri-
bution of building use within the flooded area (Merz et al.,
2004; Englhardt et al., 2019; Nowak Da Costa et al., 2021).

5.7 Sensitivity analysis

By varying the building size and water depth parameters with
the mean of the respective relative errors, the sensitivity of
the damage parameters for both approaches was estimated.
As there is no information on the uncertainty of the dam-
age curve values from the CAPRA database, the influence of
this parameter is derived by using only the lowest and high-
est damage curves from the building types. For example, the
lower damage bound for the damage curve sensitivity value
in the object-based approach is computed by using only the
metal-roofed damage curve and the higher bound using the
thatch-roofed damage curve. Table 7 shows that the largest
variance in resulting damage is caused by this variance in the
damage curves, meaning that the damage curve selection has
the highest effect on the resulting damage estimates.

Similar results have been found by Saint-Geours et
al. (2015) in a cost-benefit analysis of a flood mitigation
project in which the uncertainty in the depth–damage curves
is the prominent factor for estimating damage to private
housing. Studies by de Moel et al. (2012) and Winter et
al. (2019) also note that the most influential parameter in the
uncertainty of flood damage estimates is the damage func-
tion. Moreover, it can be observed that the sensitivity value
of building size is lower in the object-based approach com-
pared to the pixel-based approach (1.21–1.43), which can be
attributed to less uncertainty in total building area that is
flooded. This indicates that, for the object-based approach,
the increased accuracy with which buildings can be identified
leads to a decrease in the uncertainty of damage estimates.
The water depth parameter reveals that, although uncertainty
in water depth results in varying damage estimates, sensitiv-
ity values for both approaches are comparable (1.46–1.56).
Therefore, considering the same flood impact in each flood
damage assessment does not affect damage estimates differ-
ently.

It is apparent from Table 7 that all parameters involved
in the flood damage estimation include an amount of uncer-
tainty, and this propagates in the total estimated damage. As
the flood map in both calculations remained equal, the differ-
ences can be attributed to the sensitivity of the damage pa-
rameters to the building types and damage curve parameters
or the exposure and vulnerability components.

6 Discussion

The preceding sections illustrate that by using OBIA, flood
damage can be estimated at the object level using UAV-
derived imagery to detect buildings and classify them based
on aerial features. This contributes to the literature in several
ways. Complementing a study by Englhardt et al. (2019),
which provides an impressive first glance at studies that
use object-based data to classify buildings into vulnerability
classes, our approach enables us to use this information to
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Figure 11. The estimated water depth from the HEC-RAS hydraulic model (left) and the derived water depth following the surface interpo-
lation method (right) at the Maparera River. Made in QGIS using UAV imagery collected by the Malawi Red Cross Society (MRCS).

Figure 12. The flood extent for the case study area extracted from SAR imagery (left) and the derived water depth map using surface water
interpolation based on the SRTM DEM (right). The inundation maps are shown on © Google Satellite images.

calculate damage at the individual building level. Therefore,
our method provides more certainty on the number of flooded
buildings, their size and location. A more recent study by
Malgwi et al. (2021) suggests that using data-driven ap-
proaches, such as multivariate damage models, could further
improve estimates in data-scare regions compared to more
expert-based approaches. However, this is not always feasi-

ble if the scarcity of empirical loss data hinders the imple-
mentation of multivariate models, as is the case in most de-
veloping countries. Our study indicates, however, that OBIA
combined with local data can accurately estimate flood dam-
age in an area where such data are absent, for example, due
to its remoteness.
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Table 7. Flooded buildings and built-up area according to (1) the object-based approach, (2) pixel-based approach and (3) the available OSM
map, as well as area and total damage according to (1) the object-based approach and (2) pixel-based approach.

Villages Number of flooded buildings Flooded built-up area (m2) Total damage (EUR)

Object Pixel OSM Object Pixel OSM Object Pixel

1 9 11 10 371 338 348 1286 1754
2 54 92 61 1424 2768 1321 6215 10 043
3 21 28 26 746 846 732 2639 3931

Total 84 132 97 2541 3952 2401 10 140 15 728

Table 8. The sensitivity values (SVs) of the different damage pa-
rameters for the pixel- and object-based approaches.

Pixel-based Object-based

Parameter SV

Building size 1.43 1.21
Water depth 1.46 1.56
Damage curve 1.71 1.90

Although this research has uncovered several important
factors in the estimation of flood damage based on build-
ing detection, the issue deserves further additional research.
First, the method was created for a specific case study area
with little variation in building types. Building extraction is
herein limited to the available building stock in the area, in
this case resulting in two types. For urban areas, classification
confusion might occur due to the heterogeneity of building
types and structural properties. This complication could yield
more uncertainties in assigning appropriate damage curves to
buildings, especially as large discrepancies in potential flood
damage exist between urban and rural areas in developing
countries (Englhardt et al., 2019). Another distinction should
be made between when studying areas with river floods or
flash floods, as capturing the latter with earth observation
data becomes a challenging task due to the low frequency
of satellite imagery acquisition (e.g. SAR acquisitions) rela-
tive to the sudden happening of flash floods (Mouratidis and
Sarti, 2013).

Secondly, the filtering of objects using the DTM deserves
further attention. Evidently, the addition of an object height
threshold by using the DTM does indeed lead to a signifi-
cant improvement in accuracy of the OBIA. In our study, the
baseline DEM was constructed by manually setting reference
points. The method was successful as brushes and trees that
resembled bare ground could be avoided, and the absence of
ground control points during the UAV mission did not ham-
per the analysis. However, this method does rely on manual
filtering, a process that is hard to scale and prone to human
error. Preferably, this method should be automatized. Several
novel methods to extract bare earth surface can be consid-

ered in the future, including open-source filtering methodolo-
gies such as the cloth simulation filter plugin developed by
CloudCompare. Zeybek and Şanlıoğlu (2019) discuss several
filtering algorithms that can reach excellent accuracies us-
ing high-resolution point cloud data collected by UAV. Con-
sidering this approach in future research could enhance ac-
curacy while simultaneously improving reproducibility and
scalability. Along with additional automatization, altering the
OBIA workflow by including the height threshold before im-
age segmentation could potentially improve classification re-
sults. Kamps et al. (2017) report that the classification ac-
curacy of their OBIA improved by 15 %–26 % following this
workflow but note that combining orthophotos with elevation
data could potentially lead to the propagation of errors due to
mismatches in datasets.

The third aspect refers to the additional field survey. The
acquired building samples and their wall-to-roof ratios pro-
vide insight into the relations between the local elements and
the remotely sensed characteristics. However, a larger num-
ber of samples would be necessary to provide a statistically
sound justification of the assumption about this relation. Ob-
taining field observations could become a difficult task if the
method is scaled up, but a promising line of research could
be the implementation of services like Mapillary or Google
Street View for this purpose. Combining the findings from
this kind of research with field surveys can, therefore, com-
plement the conventional methods by aggregating accurate
estimates on building sizes, density and characteristics. This
would decrease the amount of uncertainty incorporated in
potential scaled-up assessments. The HRSL provides an im-
pressive first glance at exposed settlements and can be used
as a base layer to project the distributions of building expo-
sure and vulnerability found in this study. This method re-
sembles the study of De Angeli et al. (2016), in which clus-
ters are created using representative buildings. In this case,
field observations from drones and services like Mapillary
can be combined to create representative villages or towns.

Finally, the other sources of uncertainty accompanied by
the damage estimation need to be further studied. Although
they do not directly relate to the results of the exposure es-
timation, the sensitivity analysis in this research confirms
that parameters such as floodwater characteristics, maximum
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damage values and the applied damage curves have a signif-
icant effect on the total flood damage. The RMSE of about
75 cm and AUC of 0.73 illustrate that deriving water depths
directly from a DEM can give results different from the hy-
draulic simulations. It should be noted that both methods
have their disadvantages. In the hydraulic simulation, for in-
stance, Copier et al. (2019) lacked specific discharge infor-
mation for the event, so an estimate had to be made there
that would resemble flood levels. The surface water interpo-
lation method, on the other hand, lacks the dynamics of the
hydraulic simulation but is more specific to the event con-
sidered in this study as it is based on the observed extent.
To validate the water depth estimation, the effects of using
a coarser-resolution SRTM DEM in surface water interpo-
lation should be tested. Preferably, validation data from hy-
draulic models are used that correspond to the flood event
that is extracted from satellite imagery. In this way, differ-
ences due to discharge uncertainties are limited. Another
way of validating flood events is through the collection of
community-based data. By interviewing residents, ground-
based observations can be collected in ungauged areas to
serve as input for detailed catchment modeling and validat-
ing output (Starkey et al., 2017). Also, the aggregation of
damage curves based on building material could yield uncer-
tainties in the resulting flood vulnerability. For a more ac-
curate appropriation of the damage susceptibility, individual
building types could be subjected to detailed survey studies
that include historic flood events and damage with the corre-
sponding building material.

7 Conclusions and outlook

The purpose of this research was to create a flood damage
model based on the automated recognition of buildings and
their characteristics through UAV image processing. By do-
ing so, improvements on the exposure and vulnerability com-
ponent of flood damage assessments were assessed and eval-
uated by comparing this new approach to a conventional one
based on pixel-based information from a land-use raster. The
two flood damage models were applied in a rural and flood-
prone area in southern Malawi, with a building stock consist-
ing of mostly semi-permanent buildings.

In terms of direct damage considering the replacement
costs of buildings in the study area, the flood damage based
on homogenous land-use pixels is about 50 % higher than
the object-based approach (EUR 15 000 versus EUR 10 000,
respectively). The calculation is found to be most sensitive
to the damage curve used, with a sensitivity value (highest
divided by lowest estimate) of 1.71 and 1.90, for the pixel-
based and object-based approaches, respectively. However,
uncertainty in building exposure still results in sensitivities
of 1.43 for a pixel-based approach and 1.21 for an object-
based approach. This illustrates that accurate information on

exposure is essential in accurately estimating potential dam-
age from flood events.

The effects of including high-resolution elevation infor-
mation in the OBIA were examined by including a height
threshold for classified objects. Individual F1-scores of the
object-based classification were improved from 0.89 to 0.90
for metal-roofed buildings and 0.53 to 0.72 for thatch-roofed
buildings. These results show that the integration of accurate
elevation data can improve standard classification schemes
based solely on spectral bands. The relative error of the area
of the detected buildings tends to be lower for larger build-
ings and buildings with a clear spectral difference from the
surrounding area. The water depth, derived by interpolating
the surface water boundaries of a remotely sensed flood ex-
tent, deviated on average by 0.73 m from a hydraulic model
for a maximum water depth of approximately 3 m. This vali-
dation was conducted for a subset of the case study river us-
ing a high-resolution DSM. For the same area, the obtained
AUC is 0.73.

Based on the results of this study we find that the primary
utility of high-resolution UAV imagery in flood damage as-
sessment is to spatially locate buildings in inundated areas
and retrieve their characteristics by creating types in combi-
nation with local observations. These characteristics can be
used to develop stage-damage curves that represent the lo-
cal building stock instead of using aggregated information
that implies homogeneous land cover for large regions. Fur-
thermore, the number of buildings and their respective area
and occupancy type can be derived to estimate flood dam-
age more precisely. This improvement in data availability has
the potential to aid humanitarian decision-makers in choos-
ing appropriate policies with regard to flood protection or de-
termining threshold levels for effective early-action measures
in the case of flooding.

Appendix A

Figure A1. The receiver operating characteristic (ROC) and area
under curve (AUC) using the HEC-RAS as reference map against
the water depth map derived from surface water interpolation.
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