
Nat. Hazards Earth Syst. Sci., 21, 239–260, 2021
https://doi.org/10.5194/nhess-21-239-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Trivariate copula to design coastal structures
Olivier Orcel, Philippe Sergent, and François Ropert
Cerema, Margny-Lès-Compiègne, 60280, France

Correspondence: Philippe Sergent (philippe.sergent@cerema.fr), Olivier Orcel (olivier.orcel@cerema.fr)

Received: 13 March 2020 – Discussion started: 19 March 2020
Revised: 13 November 2020 – Accepted: 18 November 2020 – Published: 25 January 2021

Abstract. Some coastal structures must be redesigned in the
future due to rising sea levels caused by climate change.
The design of structures subjected to the actions of waves
requires an accurate estimate of the long return period of
such parameters as wave height, wave period, storm surge
and more specifically their joint exceedance probabilities.
The simplified Defra method that is currently used in partic-
ular for European coastal structures makes it possible to di-
rectly connect the joint exceedance probabilities to the prod-
uct of the univariate probabilities by means of a single factor.
These schematic correlations do not, however, represent all
the complexity of the reality because of the use of this single
factor. That may lead to damaging errors in coastal structure
design. The aim of this paper is therefore to remedy the lack
of robustness of these current approaches. To this end, we
use copula theory with a copula function that aggregates joint
distribution functions to their univariate margins. We select a
bivariate copula that is adapted to our application by the like-
lihood method. In order to integrate extreme events, we also
resort to the notion of tail dependence. The optimal copula
parameter is estimated through the analysis of the tail depen-
dence coefficient, the likelihood method and the mean error.
The most robust copulas for our practical case with applica-
tions in Saint-Malo and Le Havre (in northern France) are the
Clayton copula and the survival Gumbel copula. The origi-
nality of this paper is the creation of a new and robust trivari-
ate copula with an analysis of the sensitivity to the method of
construction and to the choice of the copula. Firstly, we se-
lect the best fitting of the bivariate copula with its parameter
for the two most correlated univariate margins. Secondly, we
build a trivariate function. For this purpose, we aggregate the
bivariate function with the remaining univariate margin with
its parameter. We show that this trivariate function satisfies
the mathematical properties of the copula. We finally repre-
sent joint trivariate exceedance probabilities for a return pe-

riod of 10, 100 and 1000 years. We finally conclude that the
choice of the bivariate copula is more important for the accu-
racy of the trivariate copula than its own construction.

1 Introduction

The design of coastal structures requires the multiplicity of
variables and their degree of correlation to be taken into ac-
count. We must therefore address the lack of robustness in the
modelling procedure of the dependencies between the differ-
ent variables characterizing the sea state (Sergent et al., 2014;
Hawkes, 2005) such as wave height H , wave period T and
storm surge S. The design of coastal structures is based in
particular on the return periods of wave overtopping or of ar-
mour damage (Ciria et al., 2007). Since the applications on
wave overtopping and armour damage depend on the param-
eters of the coastal structure, we do not deal with the return
periods of these quantities. The aim of this paper is how-
ever to improve the methods of estimating them in order to
avoid costly and inappropriate decisions (Li et al., 2008). To
this end, we provide accurate estimates of the correlations
between the variables H , T and S and obtain reliable return
period estimates. Currently, in reference manuals such as the
Rock Manual (Ciria et al., 2007), it is recommended that a
factor be applied to the product of univariate survival func-
tions in order to determine the joint period. This method is
named the simplified Defra method.

Copulas are mathematical tools for modelling the depen-
dence structure of several random variables. The theory of
copulas was developed by the mathematician Abe Sklar
(1959). The copula is a written form of the joint distribution
function that provides all the information on the dependency
structure. The recent interest in copulas started in financial
risk management and insurance. Its use in environmental sci-
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ence especially concerns hydrology with the works for exam-
ple of De Michele and Salvadori (2003), Favre et al. (2004),
Grimaldi and Serinaldi (2006), Genest and Favre (2007),
Zhang and Singh (2007), Aghakouchak et al. (2010), Lee
et al. (2013), and Chang et al. (2016).

In coastal engineering, in order to estimate the probability
of failure of coastal or offshore structures caused in particular
by the critical appearance of the combinations of parameters
during a storm, Salvadori et al. (2007) use a copula in order
to link the intensity of storm surge to its duration. Using the
copula theory, Hawkes (2005) obtains, for example, the set
of pairs of variables wave height H and surge S for a given
return period. The bivariate return period can be generalized
to the multivariate case (Charpentier, 2014).

In this paper we propose the use of copulas to take into
account the dependence between three variables: H , T and
S. We want to show the relative importance of the choice of
the copula family and of the copula construction. Tiloy et al.
(2020) illustrated the importance of having a range of bi-
variate models when attempting to capture interrelations be-
tween pairs of hazards. In this paper we compare at the same
time the choice of the copula family and the choice of the
copula construction. Copulas aggregate easily two random
variables. The construction of a trivariate copula requires
specific attention as stated by Nelsen (2006). The purpose
of this article is the creation of a new trivariate copula and
the evaluation of its robustness. In the literature the Chakak
and Koehler (1995) method is commonly used, in particu-
lar by Joe (1997) and Salvadori et al. (2007). This method is
based on bivariate conditional distributions and requires the
use of three bivariate copulas. The method has a compatibil-
ity problem. There is indeed no guarantee that the method
gives the same result when the order of variables is changed.
Corbella and Strech (2013) study the trivariate copula based
on storm magnitude, storm duration and wave height. They
show that the fully nested method of creating hierarchical
copulas provides the best results for their case study com-
pared to Chakak and Koehler (1995) and conditional mixture.
The latter method is similar to Chakak and Koehler (1995).
The three-dimensional distribution is obtained from the con-
ditional distributions through an integration.

Aas and Berg (2009) propose copula construction with
conditional sets: the pair copula construction (PCC).
Gouldby et al. (2014) also propose a methodology for de-
riving extreme nearshore sea conditions for structural design
with waves, winds and sea levels as offshore variables also
using conditional distributions. This model is referred to as
a conditional extreme model in Tiloy et al. (2020). PCC pro-
vides a powerful tool to construct flexible multivariate distri-
butions which can be used to model complex dependencies.
This method often performs better than other methods of
construction of a trivariate copula. Jane et al. (2020) show for
example with multivariate statistics between rainfall, ocean-
side water level and groundwater level that PCC better cap-
tures the dependence than any of the five tested standard

higher-dimensional copulas. Despite its performance, we did
not use PCC for two reasons. Our objective is firstly the
construction of a trivariate copula that can be easily used
by coastal engineers. PCC requires complicated calculation
of full conditional probabilities and the construction of vine
trees. Secondly, the bivariate copulas that are selected as the
most promising in our application are Archimedean copulas.
If they satisfy some properties, these Archimedean copulas
enable simpler methods of construction of multivariate cop-
ulas.

Opting for a balance between accuracy and complexity,
we propose to use a fully nested hierarchical trivariate cop-
ula and to test the sensitivity of the results to the method of
construction and to the choice of the copula. Showing that
Archimedean copulas give the best results for bivariate cop-
ulas, we keep them for trivariate copulas. We can then adopt
a fully nested hierarchical copula.

The paper is divided into three parts. In a first part, we
define the theory by presenting, partly in the Appendix, the
marginal distribution, the recommended method of the Rock
Manual, the copula, the bivariate copula, the tail dependence,
the survival copula, the trivariate copula and contours of
equal joint exceedance probability for different return peri-
ods. We obtain a bivariate copula and the copula parameter
by the method of maximum likelihood and the method of the
error. We show that the trivariate function that is obtained
satisfies the mathematical properties of a copula. In a second
part, we present contours of equal joint exceedance proba-
bility for applications at the ports of Le Havre and Saint-
Malo (northern France) with bivariate copulas corresponding
to different return periods. We select the Clayton copula and
survival Gumbel copula as the most robust survival copulas
for our coastal engineering-based applications. Finally, in a
third part, we apply trivariate copulas in Le Havre.

2 Theoretical approach

The notations and the main notions of a copula for a bivari-
ate distribution function are recalled in Appendix A. In order
to determine the return period of events that lead to wave
overtopping or armour damages, we choose to use survival
functions. As mentioned by Serinaldi (2015), this option is
not unique and will lead to a specific return period that is de-
noted by TAND. For two random variables, TAND is directly
related to the bivariate survival function FXY (x,y) that is
also noted P(X > x,Y > y) in Appendix A.

We present here the sets of data on the sites, the selection
of the best bivariate copula and the construction of trivariate
copulas.

2.1 Sets of data

The approach is applied in two ports in northern France,
Saint-Malo and Le Havre, which are presented in Fig. 1.
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Figure 1. The Saint-Malo and Le Havre sites.

To characterize oceanic forcing, we introduce three ran-
dom variables: wave height H , wave period T and storm
surge S. The wave height is the significant wave height that
is noted H in order to simplify the notation. By convention,
the random variables are written in capital letters, and the
realizations of these random variables are written in lower-
case (h, t , s). The wave data are derived from the Anemoc
numerical database, which reconstructs sea conditions over a
period of nearly 25 years by hindcast. Sea levels come from
the tide gauges of various ports. The storm surges are de-
duced from these observations by removing from the water
level the value of the astronomical tide obtained using the
Shom Predit software. This software also allows the density
of high tides to be obtained.

As the study focuses on the integration of tidal range in
a macrotidal environment in the calculation of the probabil-
ity of joint occurrence of waves and water levels, the used
data are those of waves and surges taken at high tide. The
sample is made of 706 events per year using the same defini-
tion as in the Rock Manual. In coastal engineering, it is cus-
tomary to calculate the probability of occurrence of extreme
tidal sea levels by making the product of convolution of high
tide densities with the survival function of storm surges. As
706 annual tides occur, the annual probability of exceeding
a given level is chosen in reference to this figure of 1/706.
In addition, because coastal structures are located at shallow
depths, the conditions that require the structures in terms of
their stability or wave overtopping correspond to waves oc-
curring with high water levels. That is why the privileged
situations are high tides. The analysed samples are there-
fore pairs of storm surge associated with wave height at high
tide. However, for safety, the wave height that is chosen is
the maximum value over the 3 h time interval on either side
of high tide. Kergadallan (2015) recommends selecting the
maximumH value within a time window centred on the time
of high water. Using the same data as him, this recommenda-

tion is followed. Statistical samples therefore contain tuples
of wave and storm surge values at high tides at the rate of
706 annual pairs. Separated by about 12 h, the values may not
fully meet the independent and identically distributed (i.i.d)
assumption. However, this aspect is not considered here as it
is often accepted in practice (see for example Hawkes, 2005).

Another approximation is the assumption of the pres-
ence of a unique wave population. This assumption is also
not completely valid when we consider the wave direction
of extreme events. The topic has already been discussed
by Hawkes et al. (2002), Mazas (2019), and Mazas and
Hamm (2017), among others. The treatment of wave direc-
tion can also be considered to be a fourth random variable of
the oceanic forcing but has not been included in this work.

For low and moderate values the cumulative distribution
functions (CDFs) FH , FT and FS are the empirical functions.
For the strongest and extreme values, these cumulative dis-
tribution functions result from an adjustment of the exponen-
tial law. Survival functions, whether for storm surge or wave
height, are therefore adjusted by piece by exponential-type
analytical functions as close as possible to empirical frequen-
cies, whereas extrapolations for extreme values use exponen-
tial laws.

2.2 Selection of the best bivariate copula by two
methods

2.2.1 The error method

We illustrate the method for the random variables wave
height H and storm surge S. This method consists of deter-
mining the mean error e between the calculated joint cumula-
tive distribution function Fcal(h,s,θ) with the copula C, its
parameter θ and the observed joint cumulative distribution
function Fmes(h,s):

e =
1
n

∑
i=1,n

∣∣∣∣ln Fcal(hi, si,θ)

Fmes(hi, si)

∣∣∣∣ , (1)

with n the number of pairs of values (hi, si).
For each copula, we first determine the parameter θ that

minimizes the error e. We then select the copula with the
lowest minimum mean error.

2.2.2 The maximum-likelihood method

Let us call X the sample of measures (x1, x2, . . . , xn) with
bivariate xi = (hi, si), i = 1, ..., n. The likelihood function L
is defined by Eq. (2):

L(X,θ)=

n∏
i=1
fcal(hi, si,θ), (2)

where fcal is the probability density function of the bivariate
cumulative distribution function Fcal. θ is the parameter of
the copula.
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The maximum-likelihood method consists of finding the
parameter θ , which maximizes the probability of obtaining
the sample (Tassi, 2004). Since likelihood is a product of
density we take its log-likelihood in order to facilitate cal-
culations. We can thus work with the sum and derive it with
respect to θ as shown below:

∂

∂θ
lnL(X,θ)=

∂

∂θ

n∑
i=1

Lnfcal(hi, si,θ). (3)

The best copula is the copula with the largest likelihood.

2.3 Construction of a trivariate copula

For more than two variables, C is not generally a copula (im-
possibility theorem of Genest, 1995). According to Nelsen
(2006), it is difficult to construct n-order copulas from n− 1
copulas. We present two methods for the construction of
trivariate copulas. In the first method, a trivariate copula gen-
eralizes the bivariate copula with three random variables and
one parameter. In the second method, a trivariate copula as-
sociates two bivariate copulas with their two respective pa-
rameters.

2.3.1 Definition of a copula in dimension d > 2

A copula in dimension d is a distribution function on [0,1]d

whose marginal laws are uniform on [0,1].
A copula is a function C: [0,1]d→ [0,1], which satisfies

the following three conditions:

i. C (u1, . . ., ui−1,0,ui+1 , . . .,ud)= 0 ∀ui ∈ [0,1] ;
ii. C (1, . . .,1,ui,1, . . .,1)= ui ∀ui ∈ [0,1] ;
iii. C is d-growing.

(4)

A function h: [0,1]d→ R is called d-growing if for any
hyper-rectangle [a,b] of Rd , Vh([a,b])≥ 0, where

Vh([a,b])=1
b
ah(t)=1

bd
ad
1
bd−1
ad−1 . . . . . .1

b2
a2
1b1
a1
h(t) (5)

For each t , 1
bi
aih(t)= h(t1, . . ., ti−1,bi, ti+1, . . .., tn)−

h(t1, . . ., ti−1,ai, ti+1, . . .., tn).

2.3.2 Trivariate copula with one parameter: a
multi-level Archimedean trivariate

Since we are looking for the correlation between three
variables, the first idea is to generalize the bivariate cop-
ula C(u1, u2) to obtain C(u1, u2, u3). We must check
that C(u1, u2, u3) is a copula, which is difficult. However
Archimedean copulas like Gumbel and Clayton can be ex-
tended to an order greater than 2 using the property of
Archimedean copulas (see Appendix A).

For a Clayton copula of order n, this gives

C(u1, . . .,un)=

[
u
−

1
θ

1 + u
−

1
θ

2 + . . .+ u
−

1
θ

n − (n− 1)
]−2

. (6)

For Clayton copula of order 3, it gives

C(u1,u2,u3)=

[
u
−

1
θ

1 + u
−

1
θ

2 + u
−

1
θ

3 − 2
]−2

. (7)

For Gumbel copula of order n, it gives

C(u1, . . .,un)= exp
(
−
[
(−Lnu1)

θ
+ (−Lnu2)

θ

+. . .+ (−Lnun)θ
] 1
θ

)

= exp

−[∑
i

(−Lnui)θ
] 1
θ

 . (8)

For Gumbel copula of order 3, it gives

C(u1,u2,u3)=exp
(
−
[
(−Lnu1)

θ
+ (−Lnu2)

θ

+(−Lnu3)
θ
] 1
θ

)
. (9)

By taking a single copula parameter for the three variables,
we do not differentiate the pairwise correlations of the vari-
ables even though some variables may be more correlated
than others.

2.3.3 Trivariate copula with two parameters: a fully
nested hierarchical copula

To better take into account the correlations of variables two
by two, one option is to build trivariate functions from bivari-
ate copulas as a fully nested hierarchical copula as follows:

C(u1,u2,u3)= C1(C2(u1,u2),u3). (10)

Corbella and Stretch (2013) tests a fully nested hierarchi-
cal copula, but he uses a unique bivariate copula and does not
distinguish the two bivariate copulas C1 and C2. C1 is a bi-
variate copula with θ1 as copula parameter. C2 is a bivariate
copula with θ2 as copula parameter. We must check that this
function (Eq. 10) is a copula and satisfies the properties of
Eq. (4). We first aggregate the two most correlated variables
with the copula C2 and its copula parameter. We then add
the third random variable with the copula C1 and its copula
parameter. We show later that this order provides the most
robust copula.

2.3.4 Validity of copula properties for Sect. 2.3.3

We do not know any general methods to build high-order
copulas from low-order copulas (Durrleman, 2010). Gener-
ally C(u1,u2,u3)= C1(C2(u1,u2),u3) is not a copula. To
prove that C(u1,u2,u3) is a copula, we must check that
C(u1,u2,u3) satisfies the three properties of Eq. (4) with
d = 3, which is difficult. However Charpentier (2014) points
out that C is a copula if it satisfies (i) or (ii).
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i. C1 and C2 are both Clayton or Gumbel copulas with
parameters θ1 for C1 and θ2 for C2 and are positive and
growing.

ii. C1 and C2 are both Archimedean copulas of respective
generator φ1, φ2 with φ2oφ−1

1 being the inverse of a
Laplace transform.

For Gumbel and Clayton copulas C1 and C2 that are
Archimedean copulas, we check the condition (ii) that there
is a function f for which the inverse Laplace transform T −1

L

satisfies

T −1
L [f ] = φ2oφ−1

1 , (11)

with φ1, φ2 generators of the copulas C1 and C2. TL[f ](s)=∫
+∞

0 e−stf (t)dt is the Laplace transform of f .
For C1 and C2 Clayton copulas we have as the generator

of C2 and as the inverse generator of C1

φ2(t)=
t−θ2 − 1
θ2

;φ−1
1 (t)= (1+ θ1t)−

1
θ1 . (12)

This gives

φ2oφ−1
1 (t)=

[
(1+ θ1t)

θ2
θ1 − 1

]
θ2

. (13)

We can find that

TL

[
φ2oφ−1

1

]
(s)=

[
e
s
θ1 0

(
θ2
θ1
+ 1, s

θ1

)
− 1

]
sθ2

, (14)

with 0(a,x) the incomplete Gamma function set for a com-
plex with real part (a)> 0

0(a,x)=

+∞∫
x

ta−1e−tdt. (15)

We conclude that there is a function f such that φ2oφ−1
1 =

T −1
L [f ] with

f =

[
e
s
θ1 0

(
θ2
θ1
+ 1, s

θ1

)
− 1

]
sθ2

. (16)

For C1 and C2 Gumbel copulas we have as the generator
of C2 and as the inverse generator of C1

φ2(t)= (− ln t)θ2;φ−1
1 (t)= e−t

1
θ1
. (17)

This gives

φ2oφ−1
1 (t)=

[
− ln

(
e−t

1
θ1

)]θ2

= t
θ2
θ1 . (18)

We can find that

TL

[
φ2oφ−1

1

]
(s)= TL

(
t
θ2
θ1

)
= 0

(
θ2

θ1

)
s
−
θ2+θ1
θ1 , (19)

with 0 Gamma function defined by

0(a)=

+∞∫
0

ya−1e−ydy. (20)

We conclude that there is a function f such that φ2oφ−1
1 =

T −1
L [f ], with

f = 0

(
θ2

θ1

)
s
−
θ2+θ1
θ1 . (21)

2.4 Determination of the contour of equal joint
exceedance probability

The determination of the contour of equal joint exceedance
probability P(H > h,T > t,S > s) consists of obtaining all
the variables (H , T , S) associated with different return pe-
riods: T10 (10-year event), T100 (100-year event) and T1000
(1000-year event).

2.4.1 Bivariate probability without tide

We deal with a set of pairs of values (h,s) that satisfy

C
[
FH ,F s

]
= f10,f100 or f1000. (22)

C is the selected bivariate survival copula. FH ,F s are sur-
vival functions associated with the variables. The values f10,
f100 and f1000 are the frequencies corresponding to the 10-
year, 100-year and 1000-year periods, i.e 1/7060, 1/70600
and 1/706000.

2.4.2 Bivariate probability with tide

The bivariate probability with tide requires the development
of the copula connecting wave height and storm surge. We
can then define the joint survival function of the wave height
and the storm surge. The chosen calculation method favours
high tide. The sea levels considered are therefore the sums of
the astronomical high tide (generated by the attraction of the
moon and the sun without weather disturbance) and the storm
surges raised at the time of these astronomical high tides.
This method is of course valid only for macrotidal seas. The
probability that the sea level at high tide N exceeds a given
value n is expressed as follows:

P(n)= P [N > n] =

Mmax∫
Mmin

fM(z)F S(n− z)dz, (23)

with z the height of the high tide between the minimum and
maximum values Mmin and Mmax, respectively, at high tide;
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fM(z)dz the probability that the high tide is between z and
z+ dz; and F S(s) the probability of observing a storm surge
S larger than s, thus F S(s)= P(S > s). Equation (23) is es-
tablished by Simon (1994).

The bivariate survival function for wave height H and sea
level N is therefore written as follows:

FHN (h,n)=

Mmax∫
Mmin

fM(z)FHS(h,n− z)dz. (24)

Introducing the survival copula C, the final equation is

FHN (H,N)=

Mmax∫
Mmin

fM(z)C(FH (h),F S(n− z))dz. (25)

The set of pairs (h,n) corresponding to the different return
periods the 10-year, 100-year and 1000-year periods satisfies

Mmax∫
Mmin

fM (z)C(FH (h),F S(n− z))dz= f10,f100 or f1000. (26)

It is thus possible to represent the contour of equal joint
exceedance probability associated with the variables wave
height and sea level.

2.4.3 Trivariate probability without tide

Here we have chosen the method of construction of a trivari-
ate copula with two parameters known as fully nested hierar-
chical copula. We have

FHT(h, t)= C1
(
FH (h)F T (t)

)
, (27)

FHTS(h, t, s)= C2
(
FHT(h, t),F S(s)

)
, (28)

with C1 and C2 the selected bivariate survival copula. From
Eqs. (27) and (28) we therefore obtain the equation that fol-
lows

FHTS(h, t, s)= C2
(
C1
(
FH (h),F T (t)

)
,F S(s)

)
. (29)

The triplets of values (h, t, s) corresponding to the differ-
ent return periods T10 (10-year event), T100 (100-year event)
and T1000 (1000-year event) satisfy

C2
(
C1
(
FH (h),F T (t)

)
,F S(s)

)
= f10,f100 or f1000. (30)

It is thus possible to represent the contours of equal joint
exceedance probability associated with the variables wave
height, wave period and sea level.

2.4.4 Trivariate joint exceedance probability with tide

The trivariate survival function for wave height H , wave pe-
riod T and sea level N is written as follows:

FHTN(h, t, n)=

Mmax∫
Mmin

fM(z)FHTS(h, t, n− z)dz. (31)

This can be written by introducing the selected survival
copula C2:

FHTN(h, t, n)=

Mmax∫
Mmin

fM (z)C2(FH, T(h, t)F S(n− z))dz. (32)

Introducing the survival copula C1 connecting FH and
F T , the final equation is

FHTN(h, t,n)=

Mmax∫
Mmin

fM(z)C2
(
C1
(
FH (h),F T (t)

)
,

F S(n− z)
)

dz. (33)

The triplets of values (h, t,n) corresponding to the differ-
ent return periods T10 (10-year event), T100 (100-year event)
and T1000 (1000-year event) satisfy

Mmax∫
Mmin

fM(z)C2
(
C1
(
FH (h),F T (t)

)
,F S(n− z)

)
dz

= f10,f100 or f1000. (34)

It is thus possible to represent the contours of equal joint
exceedance probability associated with the variables wave
height, wave period and sea level with tide.

2.5 Tail dependence of the sample

It is necessary to treat the extreme events that are character-
ized by a very low occurrence. The difficulty of taking them
into account is of a statistical nature: the scarcity of obser-
vations. In order to take the extreme events into account, we
introduce the concept of tail dependence. For a bivariate cop-
ula, the tail dependence measures the probability of simulta-
neous extreme realizations (Clauss, 2008). It is a highly rel-
evant tool for the study of extreme values. We distinguish
lower- and upper-tail dependences. They are characterized by
their lower- and upper-tail dependence coefficients that are
deduced from the following conditional probabilities, whose
value is given by Eqs. (35) and (36) that are given by Clauss
(2008) for cumulative distribution functions U1 and U2:

P(U1 ≤ u1 |U2 ≤ u2)=
P(U1 ≤ u1,U2 ≤ u2)

P (U2 ≤ u2)

=
C(u1,u2)

u2
(35)

P(U1 > u1 |U2 > u2)=
P(U1 > u1,U2 > u2)

P (U2 > u2)

=
1+C(u1,u2)− u1− u2

1− u2
. (36)
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Table 1. Tail dependence coefficients.

Copula λL λU

AMH 0 0

Clayton 2−
1
θ 0

Frank 0 0

Galambos 0 2−
1
θ

Gauss 0 0

Gumbel 0 2− 2
1
θ

Survival Gumbel 2− 2
1
θ 0

Joe 0 2− 2
1
θ

Plackett 0 0

Student 2tυ+1

(
−
√
υ + 1

√
1−θ
1+θ

)
2tυ+1

(
−
√
υ + 1

√
1−θ
1+θ

)

Since we fix the lower-tail dependence coefficient λL and
upper-tail dependence coefficient λU by equations

λL = limu→0P(U1 ≤ u|U2 ≤ u), (37)
λU = limu→1P(U1 > u|U2 > u), (38)

we deduce the definitions of tail dependence coefficients.
Definition: The lower-tail dependence coefficient is defined
by

λL = limu→0
C(u,u)

u
. (39)

The copula C has a lower-tail dependence if λL exists with
λL ∈]0,1].

If λL = 0 then the copula does not have a lower-tail depen-
dence.
Definition: The upper-tail dependence coefficient is defined
by

λU = limu→1
1+C(u,u)− 2u

1− u
. (40)

The copula C has an upper-tail dependence if λU exists
with λU ∈]0,1].

If λU = 0 then the copula does not have an upper-tail de-
pendence.

In the following section, we use survival copula C and sur-
vival function u. The lower-tail dependence corresponds then
to high wave heights and water levels.

The tail dependences of the different copulas are deter-
mined in Nelsen (2006) and Roncalli (2002) from their
tail dependence coefficients. They are expressed in Table 1.
The Ali–Mikhail–Haq copula and Gaussian copula are noted
AMH and Gauss, respectively, in what follows.

We find that some copulas do not have lower- and upper-
tail dependence coefficients. They are inappropriate in case
of extreme dependence. Some copulas have a lower-tail de-
pendence; others have an upper-tail dependence. The tail de-
pendence of the sample is firstly checked. For this we graphi-
cally represent the evolution of C(u,u)

u
and determine its limit

Figure 2. Set of wave data in Le Havre (1979–2002).

when u tends to 0. Since u is used, we note the tail de-
pendence coefficients λL and λU. We can therefore decide
whether the sample does or does not have a lower- or upper-
tail dependence. In choosing the copula, it is essential to sat-
isfy the class of tail dependence of the sample. If the sample
does not have a tail dependence, then the use of the Gaussian
copula or another copula with the same class or tail depen-
dence is recommended. If the sample has a lower-tail depen-
dence, the use of a copula with a lower-tail dependence or
the survival copula with an upper-tail dependence is recom-
mended. If the sample has an upper-tail dependence, the use
of a copula with an upper-tail dependence or the survival cop-
ula with a lower-tail dependence is recommended. We can
also deduce the parameter of the copula from the tail depen-
dence coefficient given by the sample. The method that is
proposed here for assessing the sample dependence refers to
lower-tail dependence. Other methods exist such as the chi-
plot proposed by Fisher and Switzer (1985, 2001) and used
in coastal analyses by Mazas and Hamm (2017) for instance.
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3 Results for bivariate copulas

We select the most appropriate copulas at both the Le Havre
and Saint-Malo (northern France) sites using two methods.
We analyse the class of tail dependence of the two samples.
We represent the contour of equal joint exceedance probabil-
ity with the selected copulas for three return periods in order
to assess the relevance of the copulas.

3.1 Statistical law for adjusting wave height, wave
period and storm surge

The representation of the contours requires knowledge of the
statistical laws of adjustment of the different parameters. We
therefore present these laws. For the two sites of Saint-Malo
and Le Havre, we have used data files that provide the val-
ues for wave height, wave period and storm surge at high
tide over a time period of about 20 years. The file for the
Le Havre site includes, for example, around 15 000 values.
The wave data are extracted from the Anemoc numerical
database. Sea levels at high tide are extracted from tide gauge
measurements. The astronomical tide is obtained from the
Shom Predit software.

Adjustments of the statistical laws are made according to
the peaks-over-threshold (POT) method on the basis of the
exponential law.

The copula parameters are calibrated from samples where
wave height values less than 1 m are excluded (see Fig. 2),
thus reducing the sample size to about 3000 values. The cop-
ulas are fitted to all pairs or triplets of observations where
the wave height exceeds 1 m. This threshold of 1 m that is
used for filtering wave height excludes the swells and leaves
only a very homogeneous population of pure wind waves.
This treatment removes long wave periods and increases the
dependence between wave height and wave period.

3.2 Current pratice: Defra method

The use of the simplified Defra method in Ciria et al. (2007)
is common among European coastal engineers for the study
of wave overtopping or armour damages in coastal structures.
It refers to the complete Defra method presented for exam-
ple by Hawkes (2005) that is based on the Gauss copula. The
complete Defra method is close to the method that is used in
this paper. The main difference is the choice of the Gauss
copula that does not present tail dependence. The simpli-
fied Defra method refers to univariate survival functions FH
and F S rather than cumulative distribution functions of wave
height and storm surge as coastal engineers usually work
with exceedance probability rather than with non-exceedance
probability. In this simplified method, the bivariate survival
function is related to univariate survival functions by the ex-
pression

FHS = FDFHF S . (41)

Figure 3. Comparison of calculated (with Defra method) and ob-
served joint frequency for Le Havre.

In France, the order of magnitude for the dependence fac-
tor FD coefficient is about 20. Kergadallan (2013) recom-
mends however a minimum value of 25 for safety reasons.
This factor corresponds to a weak dependence. For a very
strong dependence, FD is between 500 and 1000.

The bivariate survival functions FHS of Table 4.15 of Rock
Manual (Ciria et al., 2007) are determined with Eq. (41). Fig-
ure 3 shows the differences between observed bivariate sur-
vival functions and calculated bivariate survival functions us-
ing the simplified Defra method. The points of calculations in
blue lie far from the first bisector in black in the figure. This
shows that the use of the Defra simplified method is inappro-
priate. This is due mostly to the use of the simplified Defra
method of Eq. (41), but the complete Defra method with the
Gauss copula would not also perfectly represent the extreme
events because the Gauss copula has no tail dependence, as
we see later.

In order to improve the results, we now introduce the cop-
ula theory.

3.3 Analysis of the tail dependence

The sample is analysed in order to determine its tail depen-
dence. Indeed, the result will condition the choice of the cop-
ula depending on whether the sample has the same class of
tail dependence as the copula or not. In Eqs. (22), (26), (30)
and (34), the survival copula C is used with survival func-
tions. In the following section, we use survival copula C and
survival function u. Upper-tail dependence and lower-tail de-
pendence will be inverted. We are interested in the extreme
events with high wave heights and water levels. For survival
copula C, we determine below its limit for survival func-
tion u tending to 0. The lower-tail dependence corresponds
to these high wave heights and water levels.

For the Saint-Malo sample, C(u,u)
u

tends to around 0.2
when u tends to 0.
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Figure 4. C(u,u)
u

for (a) Saint-Malo and (b) Le Havre samples.

For the Le Havre sample, C(u,u)
u

tends to around 0.4 when
u tends to 0.

Using the survival function u, these two samples have a
lower-tail dependence, which justifies the use of the Clay-
ton copula. We determine the Clayton copula parameter from
the lower-tail dependence coefficient of the sample. With the
Clayton copula, we can determine the value of its copula pa-
rameter in Saint-Malo and Le Havre with the equation

θ =−
ln2

lnλL
. (42)

This copula parameter is 0.43 and 0.76, respectively.
Note: as the Gumbel copula has an upper-tail dependence

it is not recommended. In contrast, its survival copula with
a lower-tail dependence is appropriate. This analysis of the
sample makes it possible to understand why the survival
Gumbel copula gives a minimum error close to the minimum
error of the Clayton copula. We can therefore expect survival
Gumbel copula results to be close to the results obtained by
the Clayton copula.

3.4 Selection of the best bivariate copula for Le Havre
and Saint-Malo samples

3.4.1 The log-likelihood method

For the set of survival copulas we determine their maximum
likelihood with their parameter. We will select the survival
copula with the largest likelihood among those which pos-
sess the same class of tail dependence as the sample with
the largest likelihood. In bold in Table 2 are presented the
survival copulas with a lower-tail dependence: Clayton, sur-
vival Gumbel and Student. AMH is added in bold when the
copula parameter is close to 1. We come back later to this
special property of the AMH copula. The Gauss copula has
a relatively large likelihood. However, it does not have a tail

dependence and therefore cannot correctly represent the tail
dependence.

For the Saint-Malo sample, we choose the Clayton copula,
which has the same class of tail dependence as the sample,
with a log-likelihood of 291 in Table 2. For the Le Havre
sample, we also choose the Clayton copula, which has the
same class of tail dependence as the sample, with a log-
likelihood of 387.

The Clayton copula parameters obtained by the tail depen-
dence coefficients come close to those obtained by the log-
likelihood method for the Le Havre sample (3040 values) and
the Saint-Malo sample (5888 values).

For Saint-Malo, we obtain as 0.38 the parameter of the
Clayton copula using the method of maximum likelihood and
0.43 with the tail dependence coefficient.

For Le Havre, we obtain 0.74 as the parameter of the Clay-
ton copula using the method of maximum likelihood and 0.76
with the tail dependence coefficient.

Even if this comparison is satisfactory, the method can
be sensitive to the data and the way to determine the limit.
Caillault and Guegan (2005) propose for example two meth-
ods which allow the copula characterizing the bivariate dis-
tribution function of a pair of markets to be estimated. One
method privileges the extreme behaviour of the bivariate dis-
tribution function of the pair, and the second one is based on
the estimates of the copulas’ parameter using a pseudo log-
likelihood method. They conclude that the two approaches
give different estimates of the tail dependence.

The value of the log-likelihood of the survival Gumbel
copula is approximately as large as the log-likelihood of the
Clayton copula. In addition, the survival Gumbel copula has
the same class of tail dependence as the Clayton. It is there-
fore potentially as suitable as the Clayton copula.
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Table 2. Copula parameter and maximum likelihood for the different survival copulas in Saint-Malo and Le Havre.

Copula Copula
parameter θ

Copula
parameter θ

Maximum
likelihood

Maximum
likelihood

Sites Saint-Malo Le Havre Saint-Malo Le Havre

Ali–Mikhail–Haq 0.71 0.96 196 375
Clayton 0.38 0.74 291 387
Franck 1.25 2.67 124 271
Galambos 0.31 0.54 41 175
Gauss 0.22 0.42 149 297
Gumbel 1.09 1.29 52 185
Survival Gumbel 1.18 1.39 243 372
Joe 1.03 1.21 4 76
Plackett 1.88 3.58 127 277
Student 0.22 0.42 157 303

Figure 5. Evolution of the error according to the Clayton, Gumbel and survival Gumbel copula parameter in (a) Saint-Malo and (b) Le
Havre.

3.4.2 The error method for the Clayton, Gumbel and
survival Gumbel copula

In order to select the most relevant copula, we represent
the mean error e between the calculated survival function
Fcal(h,s,θ)with the copulaC and its parameter and the mea-
sured Fmes(h,s).

Figure 5 for the ports of Saint-Malo and Le Havre shows
that the error that is obtained with the survival Gumbel cop-
ula is very close to that obtained with the Clayton copula.
The curve of the error obtained by the survival Gumbel cop-
ula however has a very acute minimum. Obtaining the pa-
rameter of this copula will therefore be very sensitive to the
value of its minimum error. It will therefore be necessary to
determine it very precisely.

Note: Gumbel and Clayton copula parameter supports are
different and are [1,+∞[ and ]0,+∞[, respectively.

We note that Emin is the minimum of the mean error e and
error rate+ exp(Emin)− 1. Table 3 below shows the results
obtained for Saint-Malo and Le Havre.

Table 3 is used to verify that the Clayton copula is the most
robust copula. It appears that the survival Gumbel copula is
also an appropriate option.

We have therefore shown by two methods that the Clayton
copula is the most relevant for the Saint-Malo and Le Havre
sites.

The parameters of the copula obtained by the error method
are close to those obtained by the method of maximum like-
lihood for the Clayton copula.

3.5 Comparison of observed and calculated joint
frequencies

In order to assess the robustness of the copulas, we show in
Fig. 6 the observed and calculated joint frequencies for the Le
Havre sample (3 040 pairs of values). The copula represents
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Table 3. Emin, error rate and copula parameter for the different survival copulas in the ports of Le Havre and Saint-Malo: Clayton, Gumbel
and survival Gumbel.

Copula Emin Emin Error rate Error rate Parameter Parameter

Sites Saint-Malo Le Havre Saint-Malo Le Havre Saint-Malo Le Havre

Gumbel 0.45 0.37 57 % 44 % 1.03 1.10
Survival Gumbel 0.18 0.12 20 % 13 % 1.02 1.07
Clayton 0.05 0.03 5 % 3 % 0.40 0.76

Figure 6. Comparison of the observed joint survival and the calcu-
lated joint survival function for Le Havre with (a) the Defra method,
(b) Clayton (0.42), (c) Gumbel (1.29), (d) Survival Gumbel (1.01),
(e) AMH (0.96) and (f) Defra–Clayton–Gumbel.

reality more closely when the points approach the bisector
y = x. The simplified Defra method currently in use does
not give a good representation of the reality of the joint fre-
quencies for wave height and storm surge. The Clayton cop-
ula provides a good representation. In contrast, the Gumbel
copula gives a bad representation. The explanation is in the
analysis of the sample carried out in Sect. 3.3: we show that
the sample had a lower-tail dependence, whereas the Gumbel
copula has an upper-tail dependence. In contrast, the survival
Gumbel copula provides a good representation of the real-
ity of joint frequencies for wave height and storm surge. The

explanation lies in introducing the survival copula. The tail
dependence of the survival Gumbel copula is opposite to the
tail dependence of the Gumbel copula. The survival Gumbel
copula therefore has the right class of tail dependence. The
results obtained by the AMH copula are surprisingly correct.
Kumar (2010) shows that the AMH copula does not have
tail dependence except if the copula parameter is equal to 1.
In our case, the copula parameter is close to 1. The copula
therefore seems to behave like a copula with a lower-tail de-
pendence. We show here the utility of the Clayton copula in
comparison with the Gumbel copula and the Defra method
that is currently in use.

The results highlight the importance of the class of tail
dependence of the sample in copula selection. If the sample
has a tail dependence it is necessary to select a copula with
the same tail dependence. The Clayton copula that has the
same class of tail dependence as the sample gives a calcu-
lated joint frequency close to the observed joint frequency.
Conversely the Gumbel copula does not correctly represent
the observed joint frequency: it moves away from the bisector
for the extreme points. This is because the sample has a tail
dependence opposite to that of the Gumbel copula. In order
to restore the proper tail dependence, we resort to the survival
copula. The latter comes close to the bisector but is slightly
less robust than the Clayton copula. It should be noted that
calibration is performed on the entire sample. By truncating
the sample for joint frequency values below 0.01, we would
have obtained a much larger parameter for the Gumbel cop-
ula with results that are closer to measurements.

3.6 Contours of equal joint exceedance probability
with the bivariate copula

3.6.1 Contours without tide for the Clayton, Gumbel
and survival Gumbel copulas and the Defra
method

Figure 7 shows the joint exceedance probability (H,S) for
the Le Havre (3040 values) samples, respectively, with Clay-
ton, Gumbel and survival Gumbel copulas and the Defra
method.

Figure 7a–c present the comparison of Clayton with, re-
spectively, Defra, Gumbel and survival Gumbel. Contours
of equal joint exceedance probabilities obtained by Clayton
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Figure 7. Contours of equal joint exceedance probability with Clayton (0.74), Defra (20), Gumbel (1.29) and survival Gumbel (1.39) for
return periods of 10, 100 and 1000 years for Le Havre.

Figure 8. Joint exceedance probability obtained with (a) the Clay-
ton copula (0.38) for Saint-Malo (b) with the Clayton copula (0.74)
for Le Havre with tide for return periods of 10, 100 and 1000 years.

are very far from those obtained by Gumbel and the Defra
method. In contrast, the joint exceedance curves obtained us-
ing the survival Gumbel copula are very similar to those ob-
tained with Clayton. Results are therefore very sensitive to
the choice of copula. A poor choice may lead to undersizing
and may have economic consequences.

3.6.2 Contours with tide for the Clayton copula

Figure 8 shows the contours of equal joint exceedance prob-
ability, respectively, for the port of Saint-Malo (5000 tidal
values) and the Le Havre sample (22 000 tidal values) with
the Clayton copula.

With tide the effect of storm surge on the sea level is small.
The tidal range, which has an amplitude much larger than the
storm surge, especially for the port of Saint-Malo, mitigates
the variations due to the storm surge. In particular, for the
port of Saint-Malo, it can be seen that sea level is less sen-
sitive to variations in the return periods than storm surge (cf.
Fig. 8).

3.7 Conclusion on selecting the best bivariate copula

We selected the Clayton copula for the ports of Le Havre
and Saint-Malo using three methods. In order to validate the
Clayton copula, we analysed samples from 19 sites of the
French coast along the Atlantic and English Channel with the
maximum-likelihood method. We always obtained the great-
est maximum likelihood with the Clayton copula or the AMH
copula (see Appendix C). The sample always has lower-tail
dependence (see Appendix B). Even though at some sites the
AMH copula provides a larger likelihood than the Clayton
copula, it should not be chosen because it has a particular
kind of behaviour. It has a lower-tail dependence if the cop-
ula parameter is 1 (or close to 1 in practice). If the parameter
is not 1, the AMH copula does not have tail dependence, and
its interests disappear. Since the robustness depends on the
copula parameter and on the site, it cannot be recommended
for general use. We can therefore conclude that the Clayton
copula is the most appropriate copula for our application. For
this purpose, Table 4 gives the parameters of the different
sites.

We show in Fig. 9 that there is a coastal area with a max-
imal dependence from Concarneau to Port-Bloc (in grey in
the figure). This area is the most exposed to wind that comes
mainly from the west direction along the French Atlantic
coast.

4 Results for trivariate copulas

4.1 Methodology

We have tested hierarchical construction using a fully nested
hierarchical Archimedean copula. In this type of construc-
tion, we build a bivariate copula between two variables; then
we create a trivariate copula with the previous copula and the
third variable using another bivariate copula. Unlike Corbella
and Stretch (2013), who uses the same copula parameter for
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Table 4. Clayton parameters for the different sites.

Sites Parameter

Dunkerque 0.67
Calais 0.56
Boulogne-sur-mer 0.77
Dieppe 0.80
Le Havre 0.95
Cherbourg 0.49
Saint-Malo 0.48
Roscoff 0.41
Le Conquet 0.54
Brest 0.55
Concarneau 0.93
Port-Tudy 0.92
Saint-Nazaire 1.05
Saint-Gildas 0.90
La Rochelle 1.00
Port-Bloc 0.95
Bayonne 0.43
Socoa 0.43

Figure 9. The coast with the maximal dependence from Concarneau
to Port-Bloc.

the two bivariate copulas, we introduce two different copula
parameters.

4.2 Construction of the best trivariate copula for the
port of Le Havre

With the fully nested hierarchical copula method, we first de-
termine the most appropriate bivariate copula for the three
variables: (T ,S), (H,T ) and then (H,S). We construct the bi-
variate distribution function using the selected copula for the
two most correlated variables. We determine the most rele-
vant copula between the function obtained with the two most
correlated variables and the third variable.

4.2.1 Bivariate copula for the three random variables

To determine the best bivariate copula we assess the maxi-
mum likelihood between (FH , F S), (F T , F S) and (FH , F T )
with the different copulas in Table 5.

For all three combinations, the Clayton copula and
survival Gumbel copula still have the largest maximum-
likelihood value. In addition, we find that for the combina-
tion (H,T ) the log-likelihood is significantly higher. This re-
sult is related to the fact that the parameters (H,T ) are the
most correlated parameters all the more since we deal with a
very homogeneous population of pure wind waves, as noted
in Sect. 3.1.

We can write

FH,T =
[(
FH

)−2.37
+
(
F T
)−2.37

− 1
]− 1

2.37
. (43)

4.2.2 Determination of the best trivariate copula

We determine the maximum likelihood between FH,T and F s
with the different copulas in Table 6.

We obtain the largest log-likelihood for the Clayton cop-
ula, with a parameter of 0.56, which gives

FH,T,s =
[(
FH,T

)−0.56
+
(
F s
)−0.56

− 1
]− 1

0.56
. (44)

In conclusion, we have thus aggregated the most correlated
H and T parameters with the best-performing Clayton cop-
ula. We also used the Clayton copula to aggregate FH,T and
F s . The aggregation requires two different parameters.

4.3 Contours of equal joint exceedance probability
with a trivariate copula

We represent in Fig. 10 trivariate joint exceedance probabil-
ity for return periods of 10, 100 and 1000 years. The trivariate
copula used is therefore constructed from a Clayton copula
parameter 2.37 connecting H and T and a copula parameter
0.56 connecting FHT and FS .

In order to better visualize the incidence of return pe-
riods on trivariate joint exceedance probability, cross sec-
tions along (H,T ), (H,S) and (T ,S) are shown for T = T1,
H =H1 and S = S1 in Fig. 10a–c, respectively.

In Fig. 10a–c, a constant wave period, a constant wave
height and a constant storm surge, respectively, are fixed cor-
responding to an annual return period. We show the joint
exceedance probability of wave height and storm surge, of
storm surge and wave period, and of wave height and wave
period, respectively, for three return periods of 10, 100 and
1000 years. In the three figures we recognize the usual pat-
tern and the characteristics of a strong correlation for (H,T ).
In Fig. 10c we recognize indeed the classic pattern of con-
tours for very dependent variables. Wave height and wave
period are the most correlated variables. This result is not
surprising all the more since we deal with pure wind waves
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Table 5. Log-likelihood and copula parameter for the different bivariate copulas between the parameters H and S, T and S, and H and T .

Copula Parameter Parameter Parameter Maximum
likelihood

Maximum
likelihood

Maximum
likelihood

(H,S) (T ,S) (H,T ) (H,S) (T ,S) (H,T )

Gumbel 1.29 1.18 1.99 185 82 1059
Survival Gumbel 1.39 1.25 2.37 372 205 1584
Clayton 0.73 0.50 2.37 387 221 1565
Gauss 0.42 0.31 0.77 296 149 1369
Franck 0.67 1.83 7.27 271 139 1333
Student 0.42 0.30 0.77 303 159 1404
Plackett 3.58 2.49 15.64 277 138 1349
Joe 1.26 1.14 2.06 76 26 651
Galambos 0.83 0.61 1.25 175 75 1038

Table 6. Log-likelihood and copula parameter for different bivariate
copulas between FH,T and F s .

Copula Parameter Maximum likelihood

Gumbel 1.25 120
Survival Gumbel 1.29 263
Clayton 0.56 289
Gauss 0.36 195
Franck 2.08 156
Student 0.35 215
Plackett 2.84 165
Joe 1.72 35
Galambos 0.50 111

Figure 10. Contours of equal joint exceedance probability with a
trivariate copula.

after we have removed the swell. In Fig. 10d, a relationship
between H and T is obtained with a trivariate copula with

Table 7. Error rate of the different trivariate copulas for the port of
Le Havre.

Copula Clayton Gumbel

C2(C1
(
FH ,F s

)
F T ) 6.9 %

C2(C1
(
F T ,F s

)
FH ) 4.7 %

C2(C1
(
FH ,F T

)
F s) 3.8 % 22.2 %

C
(
FH ,F T ,F S

)
8.8 % 169.0 %

(H ,S) satisfying a joint exceedance probability of 1000 years
and with T , which maximizes the trivariate joint probability
density function. This relationship enables us to obtain the
wave period from the wave height and the storm surge.

4.4 Error rate and goodness of fit for trivariate copulas

In order to show the utility of the constructed trivariate cop-
ula, we determine the error rate of the different copulas in the
Le Havre area using the formula of the error given by Eq. (1)
and the definition of the error rate given by exp(e)− 1 (see
Table 7).

The results obtained by the trivariate copula constructed
by two bivariate copulas and two parameters are the best of
the four fitted trivariate copulas. However, by aggregating the
most correlated variables first, the robustness improves, as
stated by Charpentier (2014).

As expected, with one parameter the Archimedean copula
is less robust than the fully nested hierarchical copula with
two parameters.

It can also be seen that by associating the most correlated
variables (H,T ), the Clayton copula gives better results than
the Gumbel copula. For a single parameter the trivariate cop-
ula constructed with the Clayton copula is significantly more
accurate than the Gumbel copula.

Finally, Table 7 shows that the choice of the copula is
much more important than the choice of the trivariate method
of construction. This result validates our choice of a simple
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Table 8. Goodness of fit of the trivariate copulas for the port of Le
Havre.

CHI-2 KS

C2
(
C1
(
FH ,F T

)
F S
)
,21 = 2.37,22 = 0.56 4.91 0.039

C
(
C
(
FH ,F T

)
,F s

)
,2= 0.56 5.97 0.098

C
(
FH ,F T ,F S

)
,2= 0.56 5.97 0.098

method of construction that can even lead to the most robust
results according to Corbella and Stretch (2013).

Table 8 presents the goodness of fit of the trivariate copulas
for the port of Le Havre through the chi-squared test (CHI-
2) and the Kolmogorv–Smirnov test (KS). The best results
are obtained with two parameters. As expected, the fit of the
single-parameter Archimedean copula and of the fully nested
hierarchical copula is exactly the same copula as shown in
Table 8. The results highlight the contribution of trivariate
copulas constructed as a fully nested hierarchical copula with
the help of two Clayton bivariate copulas and two parameters
by first aggregating the two most correlated parameters.

5 Conclusions

Wave structure designers must accurately estimate return pe-
riods of parameters such as storm surge, wave height and
wave period and, more specifically, their joint probabilities
of exceedance. In engineering projects, this joint probabil-
ity of exceedance is often related to the product of univariate
probabilities by means of a simple factor. This method can
cause damaging design errors. After highlighting the limi-
tation of the current simplified Defra method, the theory of
copula is introduced. Copulas make it possible to couple the
marginal laws in order to obtain a multivariate law.

Analysis of the tail dependence of the sample is used to
make an initial selection of the copulas. This is because if the
sample has lower-tail dependence (upper-tail dependence, re-
spectively), the copula with the same class of tail dependence
or an inverse tail dependence is chosen by taking the survival
copula. The correlation between the storm surge and wave
height is modelled using the Clayton copula and the survival
Gumbel copula.

In order to take into account the three variables (wave
height, wave period and storm surge), we show that a fully
nested hierarchical trivariate copula with two parameters is
the best construction technique. This function satisfies the
mathematical properties of the copulas. The error rate of
3.8 % is lower than the trivariate copula obtained by gen-
eralizing the Clayton copula with a single parameter (error
rate of 8.8 %). We confirm that the best results are obtained
by first aggregating the most correlated variables, which here
are wave height and wave period. Nevertheless, the choice of
method of aggregation is much less important than the choice
of the copula.
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Appendix A: Outlines of copula theory

A1 Bivariate cumulative distribution function

We denote by FX the cumulative distribution function (CDF)
of a random variable defined by

FX(x)= P(X ≤ x)=

x∫
−∞

fX(y)dy, (A1)

where P is the probability.
We also introduce the survival function (SF) denoted by

FX and defined by

FX(x)= P(X > x)=

∞∫
x

fX(y)dy = 1−FX(x). (A2)

The survival function is related to the probability density
function fX by

fX(x)=−
dFX(x)

dx
. (A3)

Our objective is to obtain the bivariate cumulative distribu-
tion function FXY (x,y)= P(X ≤ x,Y ≤ y) or the bivariate
survival function FXY (x,y)= P(X > x,Y > y). For more
information, the reader may refer to Dodge (1999), Revuz
(1997), Ouvrard (1998) and Manoukian (1986).

We must model the correlation between, for example,
wave heights H and storm surges S by proposing a relation
defining the joint cumulative distribution function from the
univariate cumulative distribution functions. We thus seek to
obtain a function C which links the bivariate cumulative dis-
tribution frequency FXY (x,y) to the univariate cumulative
distribution frequencies FX(x) and FY (y) by integrating a
correlation parameter as follows:

FXY (x,y)= C
[
FX(x),FY (y)

]
. (A4)

A2 Current practice in coastal engineering

The simplified Defra method that is presented for example in
Ciria et al. (2007) makes it possible to directly connect the
joint probability density function fXY to the product of the
univariate probability density functions fX and fY through a
dependence factor, denoted FD, as follows:

fXY = FDfXfY . (A5)

The dependence factor FD depends on the correlation co-
efficient ρ obtained from the Gaussian copula (see definition
in Sect. A.3.2). The variables X and Y for the bivariate anal-
ysis are generally wave height H and storm surge S. The de-
pendence factor is region-specific and results from the anal-
ysis of the local correlation between wave heights and storm
surges.

The correspondence table between the correlation coeffi-
cient ρ and the dependence factor FD is given by Kergadallan
(2013). This table recommends, for example, for the North
Sea, English Channel and Atlantic coast the use of a mini-
mum dependence factor FD of 25 that is a weak dependence.

A3 Copulas

The copula is a statistical tool to characterize the dependence
between several random variables where linear correlations
are generally not able to represent them accurately (Charp-
entier, 2014). According to the latter, copulas have become
an important tool for modelling a multivariate law that “cou-
ples” univariate cumulative distribution functions, hence the
Latin name “copula” chosen by Sklar (1959).

If C is the copula associated with a random variable vector
(X,Y ), then the copula C couples the univariate cumulative
distribution functions FX(x) and FY (y) using Eq. (A4).

Survival functions can also be coupled in the sense that
there exists a survival copula C such that

FXY (x,y)= C
[
FX(x),F Y (y)

]
. (A6)

The survival copula C is defined from the copula C as fol-
lows:

C
(
FX(x),F Y (y)

)
= −FX(x)−FY (y)+ 1

+C (FX(x),FY (y)) . (A7)

In the following description, the univariate cumulative dis-
tribution functions FX(x) and FY (y) are noted u1 and u2, re-
spectively. A copula is a function C : [0,1]2→ [0,1] which
satisfies the following three conditions:

i. C(u1,0)= C(0,u2)= 0 ∀u1,u2 ∈ [0,1];
ii. C(u1,1)= u1 and C(1,u2)= u2 ∀u1,u2 ∈ [0,1];
iii. C(v1,v2)+C(u1,u2)−C(u1,v2)

−C(v1,u2)≥ 0 ∀0≤ ui ≤ vi ≤ 1.
(A8)

In the continuation of the paragraph on the description of
the copula, the functions of distribution FX(x) and FY (y) are
noted u1 and u2

Sklar (1959) states that there exists a copula C such that
for each x and y FXY (x,y)= C[FX(x),FY (y)]. If the func-
tions FX and FY are continuous, then C is unique. Four com-
monly applied copula families are the Archimedean, Elliptic,
Marshall–Olkin and Archimax.

A3.1 Archimedean copulas

Archimedean copulas are defined as follows: φ is a decreas-
ing function convex on [0,1] → [0,+∞[, as φ(1)= 0 and
φ(0)=∞. We call a strict Archimedean copula of generator
φ the copula defined as follows:

C(u1,u2)= φ
−1 [φ(u1)+φ(u2)]u1u2 ∈ [0,1]. (A9)
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Table A1. Archimedean copulas.

Name Copula Generator Inverse generator

Clayton (θ > 0) [u−θ1 + u
−θ
2 − 1]−1/θ t−θ − 1

θ
(1+ θ t)−1/θ

Frank (θ 6= 0) −
1
θ

ln

(
1+

(e−θu− 1)(e−θv − 1)
e−θ − 1

)
− ln

(
e−θt − 1
e−θ − 1

)
ln
[
1+ e−t (e−θ − 1)

]
θ

Gumbel (θ ≥ 1) e−
(
uθ1+u

θ
2
) 1
θ

(− ln(t))θ e−t
1/θ

Independence u1u2 − ln(t) e−t

Joe (θ ≥ 1) 1−
[
(1− u1)

θ
+ (1− u2)

θ
− (1− u1)

θ (1− u2)
θ

1
θ

]
− ln(1− (1− t)θ ) 1− (1− e−t )1/θ

Ali–Mikhail–Haq (−1≤ θ ≤ 1)
u1u2

[1− θ(1− u1)(1− u2)]
ln
(

1− θ(1− t)
t

)
1− θ
et − θ

Archimedean copulas have interesting properties, in par-
ticular the possibility of aggregating more than two variables
as follows:

C(u1,u2, . . .,un)= φ
−1 [φ(u1)+φ(u2)

+. . .+φ(un)] ,u1u2, . . .,un ∈ [0,1].
(A10)

Archimedean copulas are given in Table A1.

A3.2 Elliptic copulas

Elliptic copulas are Gaussian and Student’s copulas.
The Gaussian copula is written as follows:

C(u1,u2)=
1

2π
√

1− θ2

φ−1(u1)∫
−∞

φ−1(u2)∫
−∞

1
2π(1− θ2)0.5

exp
(
x2
− 2θxy+ y2

2(1− θ2)

)
dxdy,θ ∈ [−1,+1],

(A11)

where φ is a distribution function of Xi , with
X = (X1, X2, . . ., Xn) a Gaussian random vector
(X ∼Nν(0,

∑
)), where

∑
is a covariance matrix.

Student’s copula is written as follows:

C(u1,u2)=

t−1
v (u1)∫
−∞

t−1
v (u2)∫
−∞

1
2π(1− θ2)0.5

·

[
1+

s2
− 2θst + t2

2(1− θ2)

]−(υ+2)
2

dsdt,θ ∈ [−1,+1],

(A12)

with tν a distribution function of the univariate Student dis-
tribution law with ν degrees of freedom.

They are symmetrical copulas. They are widely used in fi-
nance. They are implicit and therefore do not have an explicit
analytical form.

A3.3 Marshall–Olkin copula

Marshall–Olkin copula is written as follows:

C(u1,u2)=min(u1
au2, u1u2

b), (a,b) ∈ [0,1]. (A13)

A3.4 Archimax copulas

Archimax copulas include a large number of copulas, includ-
ing Archimedean copulas.

A bivariate function is an Archimax copula if and only if
it is of the form

Cφ,A(u1,u2)= φ
−1 [(φ(u1)+φ(u2))A

·

(
φ(u1)

φ(u1)+φ(u2)

)]
,∀u1, u2 ∈ [0,1]2.

(A14)

A: [0,1] → [0.5,1] such as max(t,1− t)≤ A(t)≤ 1 for
each t 0≤ t ≤ 1.
φ: ]0,1[→ [0,+∞[ is a convex, decreasing function that

satisfies φ(1)= 0.
We adopt the following notation: φ(0)=

limu→0φ(t) et φ
−1(s)= 0, for s ≥ φ(0).

For more information, refer to reference books such as Joe
(1997) and Nelsen (2006). The reader may also refer to Clay-
ton (1978).
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Appendix B: Tail dependence of the site

Figure B1. Tail dependence of 18 French sites.
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Figure B1. Continued.
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Appendix C: Likelihood for 18 French sites

Table C1. Likelihood for 18 French sites.

Sites Gumbel Clayton Gauss Franck Student Plackett Joe AMH Glambos

Dunkerque 111 387 244 214 264 226 38 368 125
Calais 90 242 177 172 179 172 23 233 85
Boulogne 174 393 287 273 300 279 64 387 164
Dieppe 166 383 274 257 286 261 61 379 157
Le Havre 352 901 594 551 632 572 117 897 329
Cherbourg 140 383 267 224 277 229 44 317 135
Saint-Malo 33 134 79 65 83 67 5 102 32
Roscoff 92 273 178 159 188 164 26 229 81
Le Conquet 160 389 28 265 293 268 54 365 150
Brest 178 439 322 295 327 299 59 417 168
Concarneau 66 115 97 96 98 94 31 117 64
Port-Tudy 391 899 653 627 665 635 139 909 369
Saint-Nazaire 438 1001 728 713 745 710 159 1009 522
Saint-Gildas 282 726 492 471 509 479 87 737 265
La Rochelle 107 303 197 186 199 184 30 303 100
Bayonne 75 275 153 111 179 116 19 162 67
Soccoa 62 230 122 105 155 110 15 163 51
Port-Bloc 31 69 47 50 52 53 12 69 28.8
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