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Abstract. We present evidence that the global juxtaposi-
tion of major assets relevant to the economy with the space
and time expression of extreme floods or droughts leads to
a much higher aggregate risk than would be expected by
chance. Using a century-long, globally gridded time series
that indexes net water availability, every year we compute
local occurrences of an extreme “dry” or “wet” condition for
a specified duration and return period. A global exposure in-
dex is then derived for major mining commodities by weight-
ing extreme event occurrence by local production exposed.
We note significant spatial and temporal clustering of expo-
sure at the global level leading to the potential for fat-tailed
risk associated with investment portfolios and supply chains.
This may not be a surprise to climate scientists familiar with
the space-time patterns of interannual to decadal climate os-
cillations that can affect remote regions through teleconnec-
tions. However, the traditional approach of climate risk anal-
ysis only considers local or point extreme value analysis and
hence does not account for temporal and spatial clustering of
exposure for global portfolios. As multinational enterprises
and supply chains assess and disclose physical climate risks,
they need to consider the much higher chance that they may
have multiple assets that may be exposed to extreme wet
and/or dry climate extremes in the same year.

1 Introduction

A changing climate brings concerns as to whether there
will be increasing business and societal disruptions, as well
as conflicts associated with increasing water scarcity or

flooding. Even if there were no significant impact of cli-
mate change, the growing world population and urbanization
lead to increasing resource demands and imbalances whose
changing exposure to climate risk needs to be understood.
Yet, there are very few analyses (Bonnafous et al., 2017a, b)
of the aggregate global annual exposure to hydroclimatic ex-
tremes over the last century for specific industries, activities,
or population. Given the nonstationary nature of climate ex-
treme occurrence and the intersection between the spatial
structure of climate events and the concentration of human
activity, there is potential for high risk. This climate risk re-
mains even if structural or financial instruments (e.g., insur-
ance) were used to mitigate it at each location, as is the norm.
Typically, these instruments are designed based on the prior
local climate record. Sometimes local information on local
climate cycles (see for instance Khalial et al., 2007) or non-
stationarity in event modeling (e.g., Lima et al., 2015; Hanel
et al., 2009) is used. The implication at the portfolio level
could be a fat-tailed, systemic risk for global enterprises.

From the perspective of a global investor or of a develop-
ment or humanitarian aid agency, an assessment of the poten-
tial occurrence of many extreme hydroclimatic events across
the planet in a given year is needed to assess potential sup-
ply chain risks, production shortfalls, conflict or needs for
humanitarian relief. The World Bank noted that its develop-
ment efforts can be compromised by climate extremes and
climate change (World Bank, 2014). The 2011 floods in Thai-
land, the 2010 floods in Queensland and Pakistan, the 2014–
2016 drought in São Paolo, and the 2016–2018 drought in
Cape Town drew attention to their supply chain risk impli-
cations, as well as the potential for the disruption of tourism
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and global business. An area where the impacts of climate
risk on global production has been highlighted is agricul-
ture (USDA, 2010; Piao et al., 2010). Drought led to re-
strictions on exports of rice from key producing countries
in 2008, leading to a doubling of the global price (Slay-
ton, 2009; Bradsher, 2008). In this paper, we focus on an-
other area of the economy, mining, but also show some re-
sults for urban areas and four major crops as a reference in
the Supplement. We consider global socioeconomic exposure
to the nominal once in 10-year local hydroclimate extreme
for the annual production of four major mining commodities
(using 2014 and 2013 production data) (SNL, 2016) at the
major mining locations that represent a significant part (be-
tween 53 % and 78 %) of global production. Both dry and
wet events are considered for mining given the potential ad-
ditional expense on water sourcing in a drought and mine de-
watering in wet years. The intention is to illustrate the nature
of global exposure using a few globally relevant commodi-
ties.

2 Data and methods

The evolution through time of wet and dry extremes has pri-
marily been studied through indices derived directly from
precipitation (P ) time series and through relationships be-
tween P , evapotranspiration (E), potential evapotranspira-
tion (Ep), soil moisture (SM), runoff (R) and drought in-
dices such as the Palmer Drought Severity Index (PDSI)
and the Standardized Precipitation–Evapotranspiration In-
dex (SPEI). The SPEI (Beguería et al., 2010, 2014) is a
scalar index reported monthly. It is built after fitting a dis-
tribution on the cumulative P–Ep over a window of interest
(e.g., 12 months). The dataset used is based on Climate Re-
search Unit (CRU) (Harris et al., 2014) data for both precip-
itation and potential evapotranspiration and is accessible at
http://spei.csic.es/database.html (last access: 7 March 2021).
CRU is a gridded dataset with 0.5◦

× 0.5◦ spatial resolu-
tion of monthly temperature and precipitation built using
the interpolation of station network data, which are acces-
sible at https://crudata.uea.ac.uk/cru/data/hrg/ (last access:
7 March 2021). The SPEI is thus a measure of the net wa-
ter supply, as estimated using local precipitation and poten-
tial evapotranspiration, over specified durations. We chose
to use the SPEI for our analysis since a global reconstruc-
tion of this index covering 1901–2014 that has been well
verified was available at a grid resolution of 0.5◦. Since
we are interested in an annual exposure, we used the 12-
month duration values of the SPEI. We limit our analyses
to the land area bounded by 60◦ S to 60◦ N and retain grid
blocks that have no more than 10 % missing data. To de-
fine a dry (wet) event, we first record, for each year, at each
site, the quantile of SPEI time series for the return-level of
interest; e.g., for a 10-year return level, on the dry side,
the threshold is defined as quantile (SPEImin

yr , 0.1), while

on the wet side it will be quantile (SPEImax
yr , 0.9). Months

for which the SPEI is below (above) these thresholds are
marked as belonging to a dry (wet) event. It should be noted
that CRU may not provide adequate spatial coverage far
back in time, especially in the Southern Hemisphere. This
may affect the SPEI. For our first analysis, we consider the
global land area exposed. Each event is then weighted by
the area of the grid-block it corresponds to divided by the
total land area. Further, using CRU data, we consider ex-
tremes in P and Ep: for both of these variables, we aggregate
monthly values over 12-month windows and define wet and
dry events at a given location as above (inversing thresholds
for Ep). In the Supplement (Fig. S18), we also compare the
results with those based on data from the NOAA’s 20th Cen-
tury Reanalysis (20CR) project (Compo et al., 2011), acces-
sible here: https://www.esrl.noaa.gov/psd/data/gridded/data.
20thC_ReanV2c.html (last access: 7 March 2021) (the vari-
able names are “prate” for precipitation and “pevpr” for po-
tential evapotranspiration) . We use the P and Ep data of
20CR to compute a version of the SPEI. In each case, we
study the proportion of the area of the world affected by dry
or wet, dry, wet and dry, and wet events in a given year.

Production data are collected from SNL (2016) to find the
location of bauxite, copper, gold and iron ore mines in 2014.
Each climate event is then weighted with the 2014 share of
production of each mine.

Wavelet and multitaper spectral analyses were performed
to assess cycles in the exposure time series and their covari-
ation patterns with climate indices. Using the package bi-
wavelet (Gouhier et al., 2016), we investigate the spectra and
the coherence across series. Spectra are also assessed using
multitaper analysis (Rahim et al., 2017).

3 Results

The key findings from our analyses are illustrated in Figs. 1
and 2. We use the 1901–2014 data of the SPEI12 index, thus
a measure of net water availability based on the cumulative
difference between precipitation and potential evapotranspi-
ration for a 12-month duration at each location, which is
computed for each month in the record and then mapped to
a probability distribution, yielding monthly time series. We
consider the 90th (10th) percentile of the yearly maximum
(minimum) of the SPEI time series at each location as a “dry”
(“wet”) threshold, corresponding to a 10-year return period
event. The exceedance of this threshold at a given location
in each year of the climate record is then weighted by the
production (assumed here to be constant) at that location and
spatially aggregated to provide an estimate of annual expo-
sure.

In the worst year, nearly 40 % of the global land area ex-
perienced a 10-year dry or wet event. Sectoral impacts are
heavily clustered when assets are concentrated in a few lo-
cations. This is for instance the case for phosphates, for
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Figure 1. Empirical (red) and independent and identically distributed process-simulated (gray) density estimation of the yearly share of
global production exposed to a wet or dry 10-year event according to the 12-month SPEI for four different portfolios.

Figure 2. Time series of weighted global annual share of production
exposed for different commodities with 11-year local regression-
smoothed trends. Wet and dry events are considered.

which the worst year translated into a nearly 84 % exposure
of global production, and for lithium and lead. Nearly 50 %
of global copper production is exposed to a dry or wet event
in the worst year of available data. For each of the portfo-
lios considered, the worst exposure in the record has a neg-
ligible probability of occurrence if one were to consider the
local 10-year return period events occurring independently
and randomly over the earth. We assessed these probabilities

Table 1. Share of global commodity portfolios exposed to wet and
dry events. Mi is the maximum share of production exposed ob-
served over 114 years, and pexc(Mi) refers to the probability that
this level of exposure or higher could occur across the different min-
ing sites if the climate risks were not spatially correlated.

Commodity i Share of Mi pexc(Mi)

world
production

in the
database

Bauxite 0.63 0.65 0.1865
Copper 0.78 0.50 0
Gold 0.61 0.42 0
Iron ore 0.53 0.69 0

using 100 000 simulations of the 114-year record assuming
the same asset values at each mining site, as well as random
sampling of hit or no hit independently at each location us-
ing the local marginal probabilities for the events. This illus-
trates that the spatial concentration of risk across the earth
is dramatic for the tail events, highlighting the potential for
multiple hits at the global scale a few years per century, much
more frequently than may be expected by chance considering
locations independent from each other. If, for a given com-
modity i, we call Xi the production exposed in a given year
and Mi the maximum share of production exposed observed
over 114 years, we have Table 1.
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Figure 3. Proportion of global area affected annually by exceedance of the 10-year return level of the 12-month SPEI index for wet or dry (a),
wet and dry (b), wet (c), and dry area (d) events with 95th confidence interval in shaded gray.

Density estimation (Fig. 1) also highlights the potential
for fat tails, while smoothed time series of exposure with
a smoothing window of 11 years (Fig. 2) make evident the
existence of cycles.

Consistent with many analyses of longer duration hydro-
logic extremes (Greve et al., 2014; Sheffield and Wood, 2008;
Sippel et al., 2017; Trenberth et al., 2014), the time series of
global annual exposure for mining reveals a cyclical rather
than monotonically increasing or decreasing trend (as may
be expected from anthropogenic climate change). In several
of the cases, using wavelet and spectral analyses we find ev-
idence for connections to the El Niño–Southern Oscillation
and to climate indices known to exhibit decadal variability
(Figs. S9–S13).

Given these observations, we explored the global land area
exposed. The temporal trend of the global land area exposed
to the crossing of the dry and wet thresholds of the 12-month
SPEI index is shown in Fig. 3. An increase in the area af-
fected by events of all types occurred through the 1970s.
This was followed by a decrease in the total affected area.
Note that the threshold used to determine whether an extreme
event occurred at a location or not is determined as the appro-
priate quantile at that location using the corresponding data
source. Hence, generic biases in observations in the net wa-
ter availability at any location are not an issue in determining
whether or not an extreme event occurred.

The recent decrease in wet events is largely observed in
the tropics and subtropics for the CRU data (Fig. S7). The
1982–1983 El Niño event corresponds to the highest number
of extremes (Figs. 3 and 5). The 5 years that show up with

the most events are (in decreasing order) 1983, 1984, 1973,
1974 and 1976. Except for 1984, these correspond to some of
the strongest December–January–February (DJF) El Niño–
Southern Oscillation (ENSO) conditions (El Niño for 1983
and 1973 and La Niña for 1974 and 1976) (NOAA ESRL,
2016). Wavelet analyses of the derived hit series (per-
formed with biwavelet; Gouhier et al., 2016) show signif-
icant interannual and decadal variations and are coherent
with the NINO3.4 index at interannual (4 years) and decadal
(16 years) frequencies after 1970 (Fig. 4). Coherence is char-
acterized by warmer colors, with significant regions circled
in black. A multitaper spectral analysis (Rahim et al., 2017;
Slepian, 1978; Thomson, 1982) also shows coherence for cy-
cles of 4 years, consistent with the ENSO and North Atlantic
Oscillation (NAO) phenomena (Fig. S14, where common os-
cillatory behaviors from multitaper analysis are marked by
spikes with the x axes corresponding to cycles per year; thus
a 0.2 value corresponds to a 5-year cycle) and with the Pacific
Decadal Oscillation (PDO) index at scales of about 8 years.

The spatial teleconnections of hydrologic extremes to the
El Niño–Southern Oscillation and other organized modes
of interannual to decadal climate variability are well stud-
ied, and their impacts on agriculture and disasters are docu-
mented (Rojas et al., 2014). However, other than studies on
the production of specific crops, an analysis of the impact of
these climate modes on the aggregate global impact has not
been previously done, especially considering a specific risk
threshold.
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Figure 4. Wavelet coherence between the global share of area exposed and the Nino3.4 DJF anomaly. The arrow directions indicate the phase
(0◦ is concurrent, 180◦ is perfectly out of phase) of the relationship between exposure and NINO3.4 for frequency bands and times when
the coherence is statistically significant, as marked by the black encircled areas. The gray shaded zone indicates areas with edge effects that
preclude a robust identification of significance given the combination of the sample size and the period of the oscillation.

Figure 5. Map of the number of months in exceedance of a 10-year return level threshold for a wet or dry event in 1983. Here each month
that exceeded either the wet or dry 10-year return level threshold counts as a “hit”.
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4 Conclusion

In prior work (Bonnafous et al., 2017a, b) we illustrated im-
pacts of hydrologic extremes with different return periods on
mining company portfolios and the associated potential value
at risk. For global companies and supply chains, the role of
hydroclimatic risk clustering in space and time is not well
studied, especially since the exposure could result from a
combination of effects on real assets, transportation, energy,
water and health infrastructure, production, and increase in
local conflict under drought. A first step would be to develop
influence diagrams that reflect the pathways of climate ex-
posure for an investment portfolio or supply chain and then
integrate social and economic factors to assess possible ag-
gregate exposure. Critical path analyses on these exposure
networks can then be performed to identify exposure path-
ways that contribute most significantly to the aggregate risk
and to then develop risk mitigation strategies for those path-
ways. Such a framework would take into account compound
events and simply “add” the space-time clustering of risk to
a framework akin to the one advocated in Zscheischler et
al. (2018). Examples of industry asset portfolios that could
benefit from such analysis include (but are not limited to)
renewable energy production facilities (e.g., dams for floods
and droughts, windmills for extreme wind or low-wind peri-
ods) and transport infrastructure such as ports. Agriculture is
a particular case, as much work has been done on it, and it
would need to be properly integrated in the framework, for
instance regarding the regional spatial extent and timing of
droughts.

A question that arises once people understand the global
portfolio-level risk due to the space-time correlation of expo-
sure is how can someone who is exposed to such risk man-
age it? Examples of groups that could be exposed include
(a) the World Food Program that provides food aid to regions
that need it post-drought or post-flood for losses; (b) energy
companies that are concerned with a disruption in the cop-
per or lithium supply chain and associated shortages and
price increases; and (c) multinational insurance companies
faced with business interruption claims or correlated draws
for payments. Parametric insurance and related financial in-
struments could provide an effective approach for risk miti-
gation in such cases. Examples of such products indexed to
ENSO indices are available at scales ranging from farmer
and micro-insurance to national banks to the World Food
Program (Khalil et al., 2007; Carriquiry and Osgood, 2012;
Hellmuth et al., 2009). Consider that a product were avail-
able where one could purchase a unit of insurance against
a climate index (e.g., ENSO) exceeding a specified thresh-
old, and the historical data for the index were publicly avail-
able. Then, a global or regional portfolio manager concerned
with aggregate risk exposure could explore how often an ex-
ceedance of that threshold also led to an exceedance of the
risk threshold for each element on their own exposure path-
way and assess how well that index would influence their

aggregate risk exposure. Where multiple climate indices are
available for parametric insurance, the manager could opti-
mize their allocation to a combination of those indices to mir-
ror their risk exposure. Tradeoffs via reduction in exposure
by considering alternate suppliers or by structural measures
(e.g., storage or inventory) could also be considered.

Arguably, the SPEI provides a version of net precipita-
tion and is advocated as a drought index. Indeed, for runoff,
considerably more complex dynamics matter, but accurately
modeling flooding risk at the asset scale globally is still con-
founded by considerable uncertainty.

Our intention here is to highlight the space-time cluster-
ing of the wet and dry risks for different sectors and not to
model these effects at the asset scale. For this purpose, we
considered the tail events of the long record of the SPEI to
be useful. We did not consider the application of the state-of-
the-art probabilistic drought and flood model at high spatial
resolution globally to be necessary to make the same point.
The uncertainty associated with the climatic and soil data and
the lack of calibration and/or verification data from the appli-
cation of such models may not justify the additional effort if
the point to be made was one of the nature of space and time
variation of climate and its implication for risk.

On the one hand, the quality of historical climate datasets
degrades especially as one goes back before 1950. On the
other hand, climate reanalysis products, as well as the In-
tergovernmental Panel on Climate Change (IPCC) climate
model integrations for the 20th century, are known to show
significant biases for hydroclimatic variables (Bozkurt et al.,
2017; Ficklin et al., 2016; Liu et al., 2014). However, we ex-
pect the conclusion as to the space and time clustering that
translates into a fat-tailed risk for global enterprises is robust.

On the other hand, one might advocate that the datasets
used here may not fully represent extremes, especially on
the wet side, as complex dynamics such as runoff condi-
tions and hydrological routing are involved at the local level.
However, accurately modeling flooding risk at the asset scale
globally is still confounded by considerable uncertainty as-
sociated with the climatic and soil data and the lack of cali-
bration and/or verification data from the application of state-
of-the-art hydrological models. Plugging such a model into
our approach is obviously feasible and could be part of a
larger effort including exploring the risk-level space. Our
goal was here to highlight that currently the space-time cor-
relation structure of climate risk at the global scale due to
quasi-periodic planetary-scale climate regimes is largely un-
addressed by risk managers and to establish the need to do
so, retrospectively and prospectively. Analyses of the biases
and uncertainty attendant to future climate projections in this
context are needed and will depend on the model and the
space-time resolution of the analysis.

Code and data availability. Datasets are available at the links pro-
vided and upon request. Codes are available upon request.
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