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Abstract. Tsunamis rarely occur in a specific area, and
their occurrence is highly uncertain. Suddenly generated
from their sources in deep water, they occasionally undergo
tremendous amplification in shallow water to devastate low-
lying coastal areas. Despite the advancement of computa-
tional power and simulation algorithms, there is a need for
novel and rigorous approaches to efficiently predict coastal
amplification of tsunamis during different disaster manage-
ment phases, such as tsunami risk assessment and real-time
forecast. This study presents convolution kernels that can in-
stantly predict onshore waveforms of water surface eleva-
tion and flow velocity from observed/simulated wave data
away from the shore. Kernel convolution involves isolating
an incident-wave component from the offshore wave data
and transforming it into the onshore waveform. Moreover,
unlike previously derived ones, the present kernels are based
on shallow-water equations with a damping term and can ac-
count for tsunami attenuation on its path to the shore with a
damping parameter. Kernel convolution can be implemented
at a low computational cost compared to conventional nu-
merical models that discretise the spatial domain. The pre-
diction capability of the kernel method was demonstrated
through application to real-world tsunami cases.

1 Introduction

Tsunamis pose a major threat to low-lying coastal areas
worldwide. They are initiated by the rapid displacement of
seawater, which is often triggered by earthquakes and/or sub-
marine landslides. Given the initial water surface displace-
ment, we are currently able to simulate tsunami propagation
from the source to coastal areas and then assess tsunami haz-
ards in coastal communities with a practical level of accu-
racy. However, the occurrence of a tsunami is highly uncer-

tain; thus, we need to prepare for potential tsunami hazards
by considering many different source scenarios that are often
based on scarce historical data. This involves performing nu-
merous tsunami simulations that are often implemented by
a two-step approach, i.e. deep-water tsunami modelling and
coastal tsunami modelling. The first step predicts tsunami
propagation from the source to coastal shelves; the linear
shallow-water equations are solved on a relatively coarse
grid. Then, the second step simulates coastal tsunami evolu-
tion using non-linear shallow-water equations discretised on
a finer grid that can resolve coastal bathymetry. Although the
two steps can be combined by grid refinement algorithms, the
coastal tsunami simulation still requires high computational
costs; this may limit the range of uncertainty covered by the
scenarios. There is a demand for novel approaches to rapidly
predict coastal tsunami evolution despite growing computa-
tional power. Such methods will also contribute to the real-
time prediction of coastal tsunami impacts from a tsunami
waveform that is observed or predicted in deep water.

The coastal evolution of tsunamis has been analytically
studied by many researchers using shallow-water equations
because the vertical motion of seawater is small compared
to the horizontal motion during the propagation phase. The
main physics of wave transformation can be described by
linear shallow-water equations, while the non-linear effect is
responsible for the wave distortion in shallow water (Carrier
and Greenspan, 1958). When the wave height is large, rel-
ative to water depth, short-wavelength components exhibit
wave breaking owing to non-linear wave distortion, which
considerably dissipates the wave energy. However, most past
tsunamis in world oceans are known to have propagated as
non-breaking waves. Analytical solutions for non-breaking
wave evolution over a uniform slope have been derived for
incident transient waves in different forms, which allow us to
predict tsunami run-up height on the shore by prototype inci-
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dent waves (Synolakis, 1987; Tadepalli and Synolakis, 1994;
Pelinovsky and Mazova, 1992). This approach can be fur-
ther extended for non-uniform seabed profiles (Didenkulova
et al., 2009) and narrow bays (Zahibo et al., 2006; Rybkin
et al., 2014; Shimozono, 2016). The resulting run-up formu-
las have provided valuable insights into the coastal evolution
processes of tsunamis in different forms. However, actual
tsunami waveforms are diverse and differ from these proto-
type waves. Moreover, the highest impact is not necessarily
produced by a leading part of tsunamis, especially in cases of
far-field sources. Therefore, the parametric formulas for spe-
cific wave types do not work directly for real-world tsunami
problems.

A possible way to rapidly predict a real-world tsunami
transformation is to use kernel representation of long wave
propagation over a sloping coast. A coastal tsunami profile
on a uniform slope can be expressed in the frequency do-
main as a product of a Bessel transfer function and an inte-
gral transform of the incident-wave profile (Synolakis, 1991).
This, in turn, means that the tsunami waveform in the time
domain results from a convolution of the incident-wave pro-
file with a kernel function, which is the inverse transform of
the Bessel transfer function. Kernel convolution enables us to
predict a tsunami waveform given an incident-wave profile of
any integral form. A bottleneck for this approach was that the
Bessel transfer function could not be readily inverted into the
time-domain kernel function. Madsen and Schäffer (2010)
derived an approximate kernel for a wave profile on the shore
using asymptotic expressions of Bessel functions. More re-
cently, the author of this paper derived a general kernel for
a wave profile at an arbitrary location on the slope, which
yields an exact solution of shallow-water equations via the
convolution with the incident-wave time series (Shimozono,
2020). There have been few attempts to apply kernel repre-
sentation for the rapid prediction of tsunamis (Choi et al.,
2011; Chan and Liu, 2012) because it still has some limita-
tions for real-world applications. First, the real-world prob-
lem cannot be represented as the incident-wave boundary
value problem. The observed or simulated tsunamis in deep
water more or less contain reflected waves from the coast. In
addition, real-world tsunamis are attenuated by different fac-
tors as they propagate to the shore. The kernel representation
based on frictionless shallow-water equations does not ac-
count for the wave decay that becomes significant in shallow
water.

As an extension of the author’s earlier work (Shimo-
zono, 2020), this paper presents a new kernel representa-
tion that has higher applicability to real-world tsunami prob-
lems. Unlike the previous ones derived under the incident-
wave boundary condition, the presented kernel functions are
formulated with the observed-wave boundary condition that
may include a contribution of reflected waves from the coast.
Moreover, the kernel is derived from shallow-water equa-
tions with a damping term. Therefore, a damping factor is in-
corporated into the kernel, which can be used to represent the

tsunami decay on its path to the shore. The practical kernel
works when an onshore tsunami profile needs to be predicted
directly from observed or simulated wave data away from the
shore. The next section presents the derivation of kernel func-
tions for water surface elevation and flow velocity from the
shallow-water equations under the observed-wave boundary
condition. Subsequently, Sect. 3 presents an efficient numer-
ical method of implementing kernel convolution. Section 4
demonstrates the predictive capability of the kernel method
through its applications to 2011 Tohoku tsunami cases. Fi-
nally, Sect. 5 provides brief conclusions of this study.

2 Kernel functions

2.1 Kernel representation

Let us consider one-dimensional propagation of a tsunami
from the deep ocean to coastal water, which is initially at the
stationary state, as illustrated in Fig. 1. We define the x∗ axis
as the positive seaward horizontal coordinate with an origin
at the still-water shoreline. There is a wave observation point
at x∗ = l, where water surface displacements driven by the
incoming tsunami are continuously measured. The seabed
slope landward of the observation point is assumed to be uni-
form, while the seabed on its sea side may have an arbitrary
form as long as it smoothly connects to the landward uniform
slope. The measured wave profile contains both landward-
propagating waves from the source and seaward-propagating
waves reflected from the shore. Our problem is to determine a
coastal wave profile under the observed-wave boundary con-
dition. This is different from the previous formalism in which
coastal wave evolution is predicted under the incident-wave
boundary condition by assuming a horizontal bed seaward of
the boundary (Keller and Keller, 1964; Carrier, 1971; Syno-
lakis, 1991).

Here, we use linear shallow-water equations to formulate
the problem. Wave non-linearity becomes significant in shal-
low water, and the non-linear effect distorts the time and spa-
tial axes. However, it is well known that the wave amplitude
is not significantly affected by non-linearity unless the non-
linear wave distortion leads to wave breaking (Carrier and
Greenspan, 1958; Tuck and Hwang, 1972; Synolakis, 1991).
The non-linear shoreline motion can be readily derived from
the linear solution via the hodograph transform, and the run-
up height is unchanged from the linear case if the boundary
value assignment is linearised (e.g. Pelinovsky and Mazova,
1992). Furthermore, the occurrence of wave breaking, which
limits the applicable range of the present approach, can be
predicted as a breakdown point of the hodograph transform
under the same condition. While the linearised boundary
value assignment potentially affects the run-up height and the
wave breaking condition, non-linear modifications are mi-
nor as long as the ratio of wave amplitude to water depth is
small at the boundary (Antuono and Brocchini, 2007, 2008).
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Figure 1. Schematic illustration of the boundary value problem.

Therefore, the main process of practical interest can be de-
scribed by linear equations when we place the boundary in
deep water. Another important fact, which has often been ne-
glected in analytical models, is that a tsunami decays on its
path to the shore by different factors. Therefore, we incorpo-
rate a damping term into the momentum equation to account
for the tsunami decay. Accordingly, the damped propagation
of tsunamis over a uniform slope can be described by the
following equations:

∂η∗

∂t∗
+βu∗+βx∗

∂u∗

∂x∗
= 0, (1)

∂u∗

∂t∗
+ g

∂η∗

∂x∗
= d∗. (2)

Here, the asterisk superscript represents a dimensional vari-
able. Therefore, t∗ represents time, η∗(x∗, t∗) is the water
surface elevation above the still-water level, u∗(x∗, t∗) is the
positive seaward horizontal velocity, β is the seabed slope, d∗

is the damping term and g is the gravitational acceleration.
The quadratic law is often used to model tsunami damping

(d∗ ∝ |u∗|u∗), but this introduces non-linearity into the prob-
lem, which makes the analytical work infeasible. Instead, we
employ the linear damping term as follows:

d∗ =−α∗u∗, (3)

where α∗ (≥ 0) is the damping parameter, which has a di-
mension of the reciprocal of time. The linear damping term
introduces an exponential wave decay with the characteris-
tic time corresponding to α∗−1 into the non-dissipative so-
lution (Davies et al., 2020). In virtue of its simple formu-
lation, the linear model has been used to represent damped
propagation of tsunamis in deep water. Many researchers
have suggested the damping parameter of O(10−5) s−1 for
deep-water tsunami propagation through comparisons of
the model and observations (e.g. Fine et al., 2013; Ku-
likov et al., 2014). However, the damping parameter could
be much higher for nearshore tsunami dissipation. Mazova
et al. (1990) analytically derived a dissipative run-up for-
mula of monochromatic long waves over a uniform slope us-
ing the linear damping term. They suggested the α∗ value

of O(10−2) s−1 in a typical situation of calculating tsunami
run-up.

Tsunamis decay in shallow water by different factors, such
as skin and form drag over the seabed as well as local topog-
raphy and coastal structures, the scales of which are much
smaller than the tsunami wavelength. Here, we attempt to
represent the tsunami decay due to different factors collec-
tively by the linear damping term; thus, the parameter α∗

works as an empirical parameter rather than as a physical
parameter. This treatment makes the resulting kernel repre-
sentation a semi-empirical one. We will discuss the variabil-
ity in this parameter through real-world tsunami applications
in a later section.

The governing equations are non-dimensionalised by the
following dimensionless variables:

x∗ = xl, t∗ = t
√
l/gβ,η∗ = ηβl,u∗ = u

√
gβl,

α∗ = α
√
gβ/l. (4)

Here, the spatial scales and timescales are chosen to be the
horizontal slope length l and half of the wave travel time over
the entire slope

√
l/gβ, respectively. Namely, the horizon-

tal dimensionless coordinate takes the value of x = 0 at the
shoreline and x = 1 at the offshore boundary. The dimension-
less time of t = 2 equals the one-way travelling time from/to
the boundary to/from the shore. Of note is that the shallow-
water approximation requires l� L0/β, whereL0 is the rep-
resentative wavelength.

Substituting Eq. (4) into Eqs. (1) and (2) yields the dimen-
sionless forms of the governing equations:

∂η

∂t
+ u+ x

∂u

∂x
= 0, (5)

∂u

∂t
+
∂η

∂x
+αu= 0. (6)

Eliminating η from Eqs. (5) and (6) yields a single-variable
wave equation of u as

∂2u

∂t2
+α

∂u

∂t
− 2

∂u

∂x
− x

∂2u

∂x2 = 0. (7)
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We solve this equation for wave evolution over initially sta-
tionary water on a uniform slope given an offshore wave pro-
file of arbitrary form at x = 1. For this purpose, we apply
Laplace transform to Eq. (7). Then, we have

(s2
+αs)û− 2

∂û

∂x
− x

∂2û

∂x2 = 0, (8)

where û is the Laplace transform of u, which is given by

û(x,s)=

∞∫
0

u(x, t)e−st dt (9)

with a complex number frequency parameter s. Equation (8)
is the modified Bessel’s equation and has a bounded solution
at the shoreline (x = 0) as

û(x,s)=G(s)x−
1
2 I1

(
2
√
s (s+α)x

1
2

)
, (10)

where In is the modified Bessel function of the first kind and
the nth order and G(s) is an arbitrary function that will be
determined by the offshore boundary condition.

Accordingly, the water surface elevation in the Laplace do-
main, η̂(x,s), can be obtained from Eqs. (5) and (10) such
that

η̂(x,s) =−
1
s

(
û+ x

∂û

∂x

)
=−

√
s (s+α)

s
G(s)I0

(
2
√
s (s+α)x

1
2

)
. (11)

To determine G(s), we use the boundary condition,
η̂(1, s)= η̂0(s), where η̂0(s) is the Laplace transform of the
observed time series of water surface elevation at x = 1.
Then, we can express the solutions for water surface eleva-
tion and horizontal velocity as

η̂(x,s)= s9̂0(x,s)η̂0(s), (12)

û(x,s)=−s9̂1(x,s)η̂0(s), (13)

where 9̂0(x,s) and 9̂1(x,s) are the transfer functions for η̂
and û in the Laplace domain, respectively, which are given
as

9̂0(x,s)=
I0

(
2
√
s (s+α)x

1
2

)
sI0

(
2
√
s (s+α)

) ,
9̂1(x,s)=

x−
1
2

√
s (s+α)

I1

(
2
√
s (s+α)x

1
2

)
I0
(
2
√
s (s+α)

) . (14)

Here, η̂ and û are expressed as the product of each transfer
function and sη̂0 in the Laplace domain. The factor of s was
isolated in Eqs. (12) and (13) such that the transfer functions
are invertible to the time domain. Consequently, η and u in

the time domain are commonly expressed by the convolu-
tion of the rate of water surface displacement at the offshore
boundary with the inverse Laplace transforms of the transfer
functions as follows:

η(x, t)=90(x, t) ∗
dη0

dt
, (15)

u(x, t)=−91(x, t) ∗
dη0

dt
, (16)

where the asterisk denotes the convolution operation.
9n(x, t) results from the inverse Laplace transform of
9̂n(x,s), which is expressed using the Bromwich integral
such that

9n(x, t)=
1

2πi

γ+i∞∫
γ−i∞

9̂n(s)e
st ds. (17)

Here, γ is a positive real number greater than every singu-
larity of 9̂n(s). The common form of solutions in Eqs. (15)
and (16) suggests that the convolution kernels accommo-
date the general processes of wave transformation under the
observed-wave boundary condition. An exception arises at
the shoreline (x = 0), where 9̂1 is not well defined. The two
transfer functions in Eq. (14) can be related at the shore-
line as 9̂1(0, s)= s9̂0(0, s), which turns into their relation
in the time domain as 91(0, t)= ∂90(0, t)/∂t . With this re-
lation, the kinematic condition at the shoreline results from
Eqs. (15) and (16):

us =−
∂ξ

∂t
, (18)

where us(t)≡ u(0, t) represents the shoreline velocity and
ξ(t)≡ η(0, t) expresses the vertical shoreline displacement.
This suggests that the choice of the bounded solution at the
shoreline in Eq. (10) is equivalent to imposing the linearised
kinematic condition. It should be emphasised that the present
solutions are based on the moving boundary condition at
the shoreline. The shoreline velocity can be obtained from
Eqs. (15) and (18).

2.2 Kernel derivation

The next step is to derive the kernel functions by evaluat-
ing the Bromwich integrals in Eq. (17). The residue theorem
can be used to determine the inverse Laplace transform of the
transfer function. Both 9̂0(x,s) and 9̂1(x,s) have an infinite
number of poles at s = sk such that I0(2

√
sk(sk +α))= 0.

Additionally, 9̂0(x,s) has a pole at s = 0, while the singu-
larity of 9̂1(x,s) at s = 0 is removable. The complex zeros
of the modified Bessel function are distributed on the imagi-
nary axis; thus, they can be associated with positive real zeros
of the Bessel function of the first kind and zeroth order, ck ,
that satisfies J0(ck)= 0. All poles of the two functions can
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Figure 2. Positive zeros of the Bessel function of the first kind and
zeroth order; J0(ck)= 0.

be summarised as follows:

s0 = 0, sk =
−α+ i

√
c2
k −α

2

2
and

sk =
−α− i

√
c2
k −α

2

2
, (19)

where k is a natural number (k = 1,2,3. . .) and ck is the pos-
itive zeros of J0 in ascending order of magnitude, as graphed
in Fig. 2. Equation (19) suggests that the damping factor has
an upper limit such that α < c1 ≈ 2.405. When k is large, the
positive zeros of the Bessel function can be approximated as

ck ≈

(
k−

1
4

)
π. (20)

This approximation suggests that ck linearly increases with
k, as shown in Fig. 2.

Because both functions are holomorphic elsewhere, the
Bromwich integrals can be evaluated using the theory of
residue such that

90(x, t) = Res[9̂0(s0)e
s0t ]

+

∞∑
k=1

{
Res[9̂0(sk)e

sk t ] +Res[9̂0(s̄k)e
s̄k t ]

}
,

91(x, t) =

∞∑
k=1

{
Res[9̂1(sk)e

sk t ] +Res[9̂1(sk)e
sk t ]

}
, (21)

where Res[9̂(s)est ] is the residue of 9̂(s)est at the point s.
Substituting Eqs. (14) and (19) into Eq. (21) yields

90(x, t)= 1+ψ0(x, t), 91(x, t)= x
−

1
2ψ1(x, t) (22)

with

ψn(x, t)=−2e−
αt
2

∞∑
k=1

Jn

(
ckx

1
2

)
λkJ1 (ck)

sin
(
λk

2
t +

nπ

2
+ θk

)
,

λk =

√
c2
k −α

2, θk = atan2(λk,α) . (23)

Both kernels consist of infinite series of the combination of
the Bessel function of x

1
2 and the sinusoidal function of t . In

addition, the kernels contain the negative exponential func-
tion of time and decay with time at a higher rate for larger α.
For α = 0 without the damping effect, the kernels exhibit os-
cillatory behaviour in the infinite time length; thus, the kernel
convolution involves a full wave history from the initial time
at the offshore boundary. Introduction of the damping effect
confines the causal relation to the near past. Kernel convolu-
tion deals with the separation of incident and reflected waves
because it is formulated with the observed-wave profile con-
taining two-way components. Separation requires a longer
observed-wave history for a smaller damping factor.

Figures 3 and 4 show graphs of 90(x, t) and 91(x, t), re-
spectively, on the time axis for different values of the damp-
ing factor; namely, α = 0, α = 0.2 and α = 1.0. 90(x, t)

is shown at x = 0, x = 1/8 and x = 1/2, while 91(x, t)

is graphed at x = 1/8, x = 1/2 and x = 1. Of note is that
90(1, t)= 1 and 91(0, t) are not well defined. The ini-
tial forms of the two kernels agree with those derived
under the incident-wave boundary condition (Shimozono,
2020) because the initial part of observed-wave data repre-
sents a shoreward-propagating wave. They deviate from the
incident-wave kernels in the large time domain exhibiting
cyclic singularities. Cyclic singularities occur at the follow-
ing timing:

t±m = 2
{

1± (−1)mx
1
2

}
+ 4(m− 1), (24)

where m is the natural number. Both 90 and 91 diverge to
positive or negative infinity at t−m and form slope disconti-
nuities at t+m . Of note is that 2(1− x

1
2 ) corresponds to the

propagation time from the offshore boundary to the refer-
ence point, whereas 2(1+ x

1
2 ) represents the propagation

time between the two locations via reflection on the shore.
Hence, the two kernels have cyclic singularities representing
arrivals of past seaward- and shoreward-propagating waves
with a period of t = 4, which equals the wave round-trip time
over the entire slope. Equation (24) can be alternatively de-
scribed as a series of characteristic curves in the (x, t) plane,
x = {t − 2− 4(m− 1)}2/4, which represent forth and back
propagation of a wave signal on the slope. Kernel convolu-
tion generates a coastal waveform by processing the two-way
propagating waves at the offshore boundary. At the shoreline
(x = 0) where t+m = t

−
m , the divergence and slope discontinu-

ity merge with each other and the bimodal kernel structure
disappears from 90. A similar merging of singularities also
happens to 91 at the offshore boundary (x = 1). The infinite
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Figure 3. Function 90(x, t) at (a) x = 0, (b) x = 1/8 and (c) x = 1/2. Each panel shows graphs of the function for α = 0, α = 0.2 and
α = 1.0. Vertical dotted lines represent the timing of singularities, t±m .

Figure 4. Function 91(x, t) at (a) x = 1/8, (b) x = 1/2 and (c) x = 1. Each panel shows the graphs of the function for α = 0, α = 0.2 and
α = 1.0. Vertical dotted lines represent the timing of singularities, t±m .

Nat. Hazards Earth Syst. Sci., 21, 2093–2108, 2021 https://doi.org/10.5194/nhess-21-2093-2021



T. Shimozono: Tsunami propagation kernel 2099

series in Eq. (23) is convergent except at t−m , where it turns
into a harmonic series for large k; the convergence properties
of the infinite series are more rigorously discussed in Ap-
pendix A. Therefore, the infinite series can be numerically
calculated until the point of convergence except at the singu-
lar points.

Substituting Eq. (22) into Eqs. (15) and (16) yields

η(x, t)= η0(t − t0)+

t∫
t0

ψ0(x,τ )
dη0

dt

∣∣∣∣
t−τ

dτ, (25)

u(x, t)=−x−
1
2

t∫
t0

ψ1(x,τ )
dη0

dt

∣∣∣∣
t−τ

dτ, (26)

where t > t0 ≡ 2(1− x
1
2 ) and η = u= 0 otherwise. These

representations suggest that η(x, t)≈ η0(t−t0) and u(x, t)≈
0 hold when the incoming wave is much longer than the slope
length. This can be viewed as the seabed slope working like
a vertical wall against a relatively long wave. The convo-
lution describes wave deformation over the slope under the
observed-wave boundary condition. Despite cyclic singular-
ities, the kernel convolution is well defined, and the convolu-
tion can be numerically performed, which will be presented
in the next section.

3 Kernel convolution

Kernel representations derived in the previous sections allow
us to predict coastal waveforms from observed-wave data
away from the shore. The prediction can be made instantly
by kernel convolution of the offshore wave data. This is ad-
vantageous over conventional ways of numerically solving
the shallow-water equations, which involve both time and
spatial integration of the equations over a physical domain.
Particularly, an accurate simulation of shoreline response re-
quires high-resolution discretisation. Additionally, the nu-
merical model approaches require iterative calculations for
the separation of the incident and reflected waves. Despite
the efficiency benefits, the numerical convolution requires
special treatment for cyclic kernel singularities. Here, an ef-
ficient algorithm for the singular kernel convolution is pre-
sented and then validated in a simple case of monochromatic-
wave propagation.

3.1 Numerical method

The kernels have cyclic singularities at t+m and t−m . For the
convenience of presenting the convolution method, the sin-
gular time points are redefined as follows:

tjm = 2
{

1− (−1)jx
1
2

}
+ 4(m− 1), (27)

where j is 0 or 1 (t−m = t0m and t+m = t1m). To
avoid midpoint singularities, the integration in-

terval is divided into multiple time segments:
[t01, t11], [t11, t02], [t02, t12], . . ., [t0m, t1m], [t1m, t0m+1], . . .

Then, based on the kernel form, different variable changes
are applied in [t0m, t1m] and [t1m, t0m+1] based on the double
exponential integration formula by Takahasi and Mori
(1974) via

τ0m(p0)= 2
{

2m− 1+ x
1
2 tanh

(π
2

sinhp0

)}
for [t0m, t1m], (28)

τ1m(p1)= 2
{

2m+ (1− x
1
2 ) tanh

(π
2

sinhp1

)}
for [t1m, t0m+1]. (29)

These changes of variables will concentrate integration
points of time near the singular points using the double ex-
ponential function. Consequently, each segment is mapped
to an infinite interval of pj with vanishing endpoint singular-
ities. For shoreline motions (x = 0), the segments of j = 0
disappear because t0m = t1m. Because the integrand decays
with a double exponential rate, actual numerical integration
is performed within a finite interval of pj . Therefore, the con-
volutions in Eqs. (25) and (26) are rewritten as

η(x, t)= η0(t − t0)+

M∑
m=1

1∑
j=0

∞∫
−∞

ψ0(x,τjm(pj ))

dη0

dt

∣∣∣∣
t−τjm(pj )

dτjm
dpj

dpj , (30)

u(x, t)=−x−
1
2

M∑
m=1

1∑
j=0

∞∫
−∞

ψ1(x,τjm(pj ))

dη0

dt

∣∣∣∣
t−τjm(pj )

dτjm
dpj

dpj , (31)

where M is an integer ceiling of (t − t0)/4 when α = 0 and
can be a smaller number when α > 0 because the kernels
decay on the time axis. The convolution is numerically per-
formed by applying the segment-by-segment integration fol-
lowing the trapezoidal rule. The convolution is efficiently
implemented by the advance tabulation of ψndτjm/dpj . We
read the kernel table and then perform computation of the in-
finite integrals in several segments to predict a coastal wave-
form.

3.2 Validation

The convolution method is demonstrated and validated by
comparing numerical results with an analytical solution for
a simple problem. Here, we consider a simple problem in
which a monochromatic wave is observed away from the
shore that contains both incident and reflected waves. The
observed wave is now given as

η0(t)= sin(λt), (32)
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where λ is the dimensionless angular frequency. It is assumed
that the coastal wave is in an equilibrium state, and a partial
standing wave is formed owing to wave decay over the uni-
form slope.

To derive the equilibrium solution, we first take the
Laplace transform of Eq. (32) and substitute it into Eq. (12).
Then, we have

η̂(x,s)=
λI0(2

√
s(s+α)x

1
2 )

I0(2
√
s(s+α))(s+ iλ)(s− iλ)

. (33)

This can be inversely transformed into the time domain
by the residue theorem. However, the residues associated
with the zeros of the modified Bessel function, sk and sk
in Eq. (19), yield a transient solution because they accom-
modate the decaying exponential function of time with the
damping factor α. Therefore, we need to consider only the
residues of s =±iλ for the equilibrium solution in the case
of α > 0.

Consequently, the damped equilibrium solution for water
surface elevation, η̃(x, t), is given by

η̃(x, t)= a(x)sin {λt +φ(x)} , (34)

where the wave amplitude a(x) and the phase φ(x) are given
by

a(x)=

√
{AC(x)+BD(x)}2+{AD(x)−BC(x)}2

A2+B2 ,

φ(x)= atan2 {AD(x)−BC(x),AC(x)+BD(x)} (35)

with

A= Re
(
I0(2

√
iλ(iλ+α)

)
,

B = Im
(
I0(2

√
iλ(iλ+α)

)
,

C(x)= Re
(
I0(2

√
iλ(iλ+α)x

)
,

D(x)= Im
(
I0(2

√
iλ(iλ+α)x

)
.

The wave amplitude on the slope cannot be represented by
simple mathematical functions and exhibits drastic changes
with varying λ because the observation point moves between
the node and anti-node of the partial standing wave.

To validate the numerical convolution method, the wave
amplitude is computed for non-zero α values using Eq. (30).
Because the damping effect confines the causal relation in
a finite time, we set the total time length of the convolu-
tion such that the kernel value sufficiently decays (t = 12/α).
The numerical convolution was performed over a sufficiently
large interval (−3< pj < 3) for both j = 0 and 1 with a
common subinterval 1pj . To investigate the sensitivity of
the result to1pj , the numerical solutions were obtained with
three different subintervals, i.e. 1pj = 0.05, 0.1, and 0.25.

Figure 5 shows the comparison of wave amplitude from
numerical convolution and the exact solution at three differ-
ent locations (x = 0, 1/2 and 1/8). The two cases with dif-
ferent values of the damping parameter, α = 0.1 and α = 1.0,
are shown in the left and right columns, respectively. In
each figure, exact and numerical solutions of wave ampli-
tude are compared on the λ axis. The dimensionless angular
frequency can be expressed as λ= 2πl/L0 with the repre-
sentative wavelength L0; thus, λ= 2π represents the situa-
tion in which the wavelength is equal to the slope length. In
the case of α = 0.1, wave amplitude shows large fluctuations
on the λ axis owing to considerable reflection. The coastal
wave amplitude becomes very large when a partial node is
formed at x = 1 where wave amplitude is fixed to be unity.
The fluctuations are smeared out in the case of α = 1.0 owing
to the stronger damping effect. Numerical results agree well
with the exact values in this range of λ when 1pj < 0.1.
Numerical error appears from the high-frequency side when
1pj = 0.25. These results confirm that numerical convo-
lution produces an exact solution with a sufficiently small
subinterval relative to the tsunami wave period.

In the case of α = 0, the monochromatic wave creates a
complete node at x = 1 when λ= ck/2. Therefore, we have
no wave signal at x = 1 in the equilibrium state, and the
wave amplitude given by Eq. (35) goes to infinity because
the boundary value given by Eq. (32) is not appropriate. The
kernel method works even in such a case as long as the full
standing wave is formed from an initially stationary state. To
demonstrate this, we consider a transient incident wave given
by

ηi(t)= tanh
(
λt

10

)
sin(λt), (36)

where the tanh function was introduced for a smooth tran-
sition from the stationary water surface to a monochromatic
wave. As illustrated in Fig. 6a, the incident wave grows to
a monochromatic wave over several wave periods. When we
set λ= c1/2≈ 1.2024, a node will be formed at x = 1 under
the incident wave. Using the incident-wave kernel previously
proposed by the author (Shimozono, 2020), we can obtain the
water surface elevation at x = 1, η0, as shown in Fig. 6b. The
null elevation datum occurs after the initial transient phase
due to the formation of a full standing wave. Figure 6c com-
pares shoreline elevation profiles, ξ , computed from ηi us-
ing the incident-wave kernel and that computed from η0 us-
ing the present kernel. The two results show a perfect agree-
ment, and the wave amplitude converges to the analytical so-
lution of the monochromatic-wave run-up height by Keller
and Keller (1964): 2/

√
J0(c1)2+ J1(c1)2 ≈ 3.85. Even if the

null datum occurs at x = 1 as a result of the superposition
of incident and reflected waves, the kernel convolution can
predict a waveform at any location on the slope from the ini-
tial transient part of the wave history at x = 1. It is worth
emphasising that the present kernel works for such a prob-
lem because it is constructed for the initial-boundary value
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Figure 5. Wave amplitude a as a function of dimensionless angular frequency λ at different locations (x = 0, x = 1/8 and x = 1/2) for
damping coefficients (a) α = 0.1 and (b) α = 1.0. Each panel shows exact and numerical solutions with different integration subintervals
1pj = 0.05, 1pj = 0.25 and 1pj = 0.1.

Figure 6. Kernel validation for the formation of a full standing wave
(λ= ck/2): (a) incident wave, ηi(t); (b) observed wave at x = 1,
η0(t); and (c) shoreline elevation data computed from ηi(t) and
η0(t).

problem. Without the initial condition, we could not derive
an incident-wave signal from offshore wave data when a full
node is formed at the boundary.

4 Kernel applications

We can instantly predict a coastal waveform over the slope
from the offshore wave profile via the kernel convolution. To
demonstrate its capability in real-world tsunami problems,
the kernel method is applied to cases of the 2011 Tohoku
tsunami, for which instrumentally recorded wave data are
available at different locations along the affected coastline
(Kawai et al., 2013). Based on the availability of multiple
wave data in the same area, two cases were selected on the
northern side of the epicentre as shown in Fig. 7a. Case 1 is
located far north of the tsunami source, but tsunami run-up
on the coast still reached several metres above the mean sea
level. The offshore wave data are available relatively close to
the coast, and the coastal tide station also recorded the water
surface fluctuation due to the tsunami. In contrast, Case 2 is
located in one of the most devastated parts of the coastline,
where three offshore stations were aligned perpendicularly
to the coast. Located close to the tsunami source, the initial
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wave was dominant over successive waves, and the tsunami
run-up reached up to 20 m in this area (Shimozono et al.,
2012). Despite the lack of a coastal wave record, this case is
employed owing to the availability of multiple observations
in the cross-shore direction. The leading part of the tsunami
at each observed location is assumed to have been refracted
in the deep water and approached the coastline nearly per-
pendicularly. This assumption may not be valid for the most
offshore point of Case 2 (TM1), where water depth exceeds
1500 m and the depth contour is significantly curved. To ap-
ply the kernel method, the water depth is assumed to linearly
decrease over the distance between the observed location and
the shore in each case, even though the actual seabed slope
is not strictly uniform. The cross-shore bathymetry and loca-
tions of wave observation in each case are shown in Fig. 7b
and c.

4.1 Case 1 – Mutsu-Ogawara

Case 1 is located at the coast of Mutsu-Ogawara, where rela-
tively small waves of similar amplitude repeatedly attack the
coast in a period of approximately 30 min. The offshore wave
data were recorded by an ultrasonic wave gauge installed on
the seabed at a depth of 43.8 m, approximately 3.4 km off the
coast (P1 in Fig. 7b). In addition, an onshore wave record is
available from a tide station inside Mutsu-Ogawara Port (P2
in Fig. 7b). Because the offshore wave data contained high-
frequency fluctuations that may not be real waves propagat-
ing shoreward, the following analyses were performed with
the low-pass-filtered time series (< 0.003 Hz) as shown in
Fig. 8a. The numerical convolution was performed with the
filtered wave data with three different values of the damp-
ing parameter, α = 0.1, α = 0.5 and α = 1.0, on the assump-
tion of a uniform slope (β = 43.8/3400≈ 0.013). The nu-
merical integration in each segment was implemented for
−3< pj < 3 with 1pj = 0.05. The numerical error was
confirmed to be negligibly small.

Figure 8b and c compare the computed waveforms at the
shoreline, ξ∗, and the observed-wave data at P2 with the dif-
ferent values of damping parameters, respectively. The first
term in Eq. (25), η∗0(t − t0), is also plotted to highlight the
slope effect described by kernel convolution. The compari-
son of ξ∗ and η∗0 shows that relatively short wave components
are significantly amplified over the slope. The computed re-
sults with α = 0.1 overestimate the short waves on the shore.
The observed-wave data at P2 are in good agreement with
the computed result of α = 0.5, but the initial waveforms are
reproduced slightly better with α = 1.0. This result suggests
that the damping factor varies with wave amplitude, and the
non-linear formulation of the damping term may be required
to achieve higher accuracy. Nonetheless, despite the crude
assumptions, the kernel method works well to predict the
coastal waveform from the observed data a few kilometres
off the coast when the α value is appropriately chosen.

4.2 Case 2 – Kamaishi and Ryoishi

Case 2 is located on the coast ranging from Kamaishi to Ry-
oishi, areas which were highly devastated during the 2011
tsunami event. Two bottom pressure sensors (TM1 and TM2)
captured the initial waveform of the deep-water tsunami
propagating towards the coast (Maeda et al., 2011; ERI,
2011). As shown in Fig. 7, TM1 was located 76 km off the
coast at a depth of approximately 1600 m, while TM2 was
47 km off the coast at a depth of approximately 1000 m.
In addition, a GPS buoy (GPS802) deployed 15 km off the
coast recorded a full profile of the tsunami propagating at
a depth of approximately 200 m (Kawai et al., 2013). Be-
cause three observation points are aligned on a cross-shore
line, the dataset can be used to validate the kernel method
for the long-distance propagation of the real-world tsunami
with a large amplitude. Coastal wave gauges in shallow wa-
ter were destroyed by the tsunami; thus, there are no data for
onshore waveforms. Nevertheless, intensive post-event sur-
veys provide the range of coastal run-up heights in this area
(Shimozono et al., 2012). The ria coast exhibits an intricate
coastline, but the dimension of coastline variations is smaller
than the tsunami wavelength. Therefore, tsunami propaga-
tion is expected to be described with the one-dimensional
kernel approach to a large extent.

Figure 9a shows the observed waveform at TM1. The lead-
ing part of the tsunami in this region was characterised by a
short, impulsive wave of large amplitude riding on a rela-
tively long wave. We predict the waveforms at the locations
of TM2 and GPS803 via the kernel convolution of the wave
data at TM1, assuming the water depth to be linearly de-
creasing from TM1 to the shore (β = 0.02). Figure 9b and
c compare the computed waveform for α = 0.1, α = 0.5 and
α = 1.0 with the observed data at TM2 and GPS802, respec-
tively. The computed profile agrees with the observed one at
both TM1 and GPS802 when α = 0.5. However, the water
surface elevation is predicted to be higher after the peak at
both locations, and this discrepancy probably occurs because
the observed wave at TM1 is located far from the coast and
contains wave components that do not propagate shoreward.
The resulting run-up height on the shore is sensitive to the
choice of the damping parameter, as shown in Fig. 9d. The
measured run-up heights after the event significantly varied
owing to the intricate coastline; however, the maximum run-
up height was up to 20 m in the coastal areas. Therefore, the
α value of 0.5–1.0 should be employed for the purpose of
predicting the run-up of the tsunami in this area.

Next, we predict the waveform at the location of GPS803
using the wave data at TM2 graphed in Fig. 9e. The com-
puted results at GPS802 show better agreement with the ob-
servation than those predicted from TM1, as shown in Fig. 9f.
The results in Fig. 9c and f confirm that the observed wave
at TM1 did not fully propagate shoreward and suggest that
TM1 is too far from the shore for the kernel application. The
lower value of α realises better agreement at GPS802, but
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Figure 7. Map of the case study sites and wave observation stations for the 2011 Tohoku tsunami: (a) overview of the two case study sites
at the northeastern Pacific coast of Japan and (b) and (c) seabed profiles along the cross-shore transects for Case 1 and Case 2, respectively.
The markers indicate the locations of wave observation points.

Figure 8. Prediction of the shoreline motions in Case 1: (a) observed and low-pass-filtered wave data at P1 and (b–d) waveforms at the
shoreline computed with α = 0.1, α = 0.5 and α = 1.0, respectively, in comparison to the coastal wave record at P2.

the maximum run-up height is overestimated with the same
value (Fig. 9c). This poses the limitation of the linear for-
mulation of the damping effect that cannot account for rela-
tively high tsunami attenuation in shallow water owing to the
quadratic dependence on flow velocity. In particular, the lo-
cal topographic elements along the intricate coastline caused

additional damping effects in the coastal area. Therefore, the
empirical damping parameter should be optimised for the tar-
get location of the prediction. Figure 10 shows another pre-
diction of the wave profile at the shoreline from the wave data
at GPS802 that were available for a much longer period than
at TM2. The shoreline displacement shows a similar form
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Figure 9. Prediction of coastal waveforms in Case 2: (a) observed-wave data at TM1, (b) predicted waveforms based on TM1 and observed
wave at TM2, (c) predicted waveforms based on TM1 and observed wave at GPS802, (d) predicted shoreline motion based on TM1, (e)
observed-wave data at TM2, (f) predicted wave based on TM2 and observed wave at GPS802, and (g) predicted shoreline motion based on
TM2.

to the previous predictions, and the low damping parame-
ter of α = 0.1 produces successive high waves that are not
observed in this area. The onshore waveform of the leading
wave in the case of α = 0.5–1.0 agrees well with the pre-
vious model result based on the two-dimensional non-linear
shallow-water equations (Shimozono et al., 2012).

The kernel representation of coastal tsunami evolution
provides an efficient method for predicting onshore tsunami
waveforms based on a single wave observation away from
the shore. Coastal waveforms are almost simultaneously ob-
tained with the observed profile because the computation
time for the numerical integration is negligibly small com-
pared to the tsunami timescale. In this case, the lead times
for the real-time prediction of shoreline motions are 16 and
8 min when predicted from TM2 and GPS802, respectively.
The prediction accuracy is limited by the crude assumptions
underlying kernel representation that makes the fast predic-
tion possible: one-dimensional propagation over a uniform
slope with the linear damping effect. Nonetheless, the damp-
ing parameter can be optimised for the prediction of tsunamis

at a specific coastal location from an offshore observation
point; this can be done with the help of a numerical model.
The two cases suggest that coastal run-up is well predicted
when the damping parameter is set in the range of 0.5–1.0.

5 Conclusions

This study presents the tsunami propagation kernel that
compactly accommodates damped propagation processes
of tsunamis over the coastal slope. The kernel representa-
tion was derived under the observed-wave boundary condi-
tion unlike the previous kernels based on an incident-wave
boundary condition. Therefore, it can be directly applied to
predict a coastal waveform from observed-wave data that
contain both shoreward- and seaward-propagating compo-
nents. Furthermore, the damping factor was incorporated into
the kernel to collectively represent tsunami attenuation that
occurs in various ways. Both the water surface elevation and
horizontal flow velocity over the slope can be represented as
the kernel convolution of the rate of water surface displace-
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Figure 10. Prediction of shoreline motions in Case 2: (a) observed-wave data at GP802 and (b) predicted shoreline motion based on GPS802.

ment away from the shore. Kernel functions have cyclic sin-
gularities to separate the two-way propagating wave in the
offshore wave history. The introduction of the damping fac-
tor confines this causal relation to the near past. The kernel
convolution can be efficiently performed via the change of
variables using the double exponential function, and the nu-
merical convolution method worked satisfactorily if the inte-
gration subinterval was chosen to be sufficiently small rela-
tive to the tsunami wave period.

Kernel representation has potential applicability to real-
world problems because it can instantly predict the response
of coastal water to incoming wave trains in deep water. It can
be applied for the real-time prediction of coastal waveforms
from a single offshore observation by bottom-pressure-type
or buoy-type wavemeters that are widely deployed off the
coasts under an imminent threat of tsunamis. In addition,
it can be incorporated into deep-water tsunami simulations
to efficiently predict onshore waveforms without resolv-
ing coastal bathymetry. Prediction accuracy depends on the
choice of the damping parameter because the linear damping
term cannot fully represent actual tsunami decay that occurs
in diverse ways. Therefore, the damping parameter should
be treated as an empirical parameter and can be optimised at
each target site through pre-calibration based on numerical
simulations. Even though the number of cases is limited, the
damping parameter of 0.5–1.0 works for different cases to
reasonably reproduce onshore waveforms. Additional stud-
ies will be needed to confirm the applicability of the semi-
empirical kernel and to improve kernel formulation for better
representation of tsunami decay in shallow water.
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Appendix A: Kernel convergence properties

This appendix presents the convergence properties of the in-
finite series in Eq. (23). Firstly, we define the sequence of the
series as

fnk(x, t)=
Jn

(
ckx

1
2

)
λkJ1 (ck)

sin
(
λk

2
t +

nπ

2
+ θk

)
. (A1)

Then, the infinite series can be rewritten as

ψn(x, t)=−2e−
αt
2

∞∑
k=0

fnk(x, t). (A2)

We look into the behaviour of the sequence for large k.
When k is large, we can use the approximation of ck in
Eq. (20) and the following approximations as well:

λk ≈ ck ≈

(
k−

1
4

)
π, θk ≈

π

2
. (A3)

Furthermore, the Bessel functions can be approximated
based on their asymptotic expansion for a large augment:

Jn(z)≈

√
2
πz

cos
(
z−

nπ

2
−
π

4

)
, (A4)

which is valid only for large z. Since the augment of the
Bessel function in the numerator of Eq. (A1) contains x

1
2 ,

we discuss the property of the sequence separately in two
cases: (a) x = 0 and (b) x > 0.

A1 Case a, x = 0

Here we discuss the behaviour of only f0k(0, t) because
f1k(0, t) is not well defined. Since Jn(0)= 1, we can approx-
imate Eq. (A1) for large k as

f0k(0, t)≈
(−1)k−1√

2k− 1
2

cos
{

1
2

(
k−

1
4

)
πt

}
. (A5)

The sequence decays with increasing k while oscillating due
to the combination of the alternating sign and cosine function
of k. Therefore, the infinite series of the sequence is gen-
erally convergent. However, the oscillations disappear when
t = t±m = 4m− 2 such that

f0k(0, t±m )≈
−1√

2k− 1
2

cos
{π

4
−
mπ

2

}
. (A6)

This sequence forms a general harmonic series, and thus, the
kernel slowly diverges to positive or negative infinity depend-
ing on the m value at t = t±m as shown in Fig. 3a.

A2 Case b, x > 0

When x > 0, the sequence can be approximated for large k
as

fnk(x, t)≈
(−1)k

πx
1
4

(
k− 1

4

) cos
{
π

(
k−

1
4

)
x

1
2 −

nπ

2
−
π

4

}

· cos
{
π

2

(
k−

1
4

)
t +

nπ

2

}
. (A7)

This sequence also exhibits both oscillation and decay with
increasing k, and thus, the infinite series is convergent except
at singular points where the oscillations cease. Substituting
t = t±m into (A7) and separating it into two parts, we have

fnk(x, t
±
m )≈

1

2πx
1
4

(
k− 1

4

)
· cos

[
π

(
k−

1
4

)
x

1
2
{
1± (−1)m

}
−
mπ

2

]
+

(−1)n

2πx
1
4

(
k− 1

4

)
· sin

[
π

(
k−

1
4

)
x

1
2
{
1∓ (−1)m

}
+
mπ

2

]
. (A8)

The original sequence is now expressed as a sum of the two
sequences. When t = t+m , one of the sequences vanishes and
the other one forms a convergent series. Therefore, the infi-
nite series is convergent at t = t+m . On the other hand, one se-
quence forms a convergent series and the other one generates
a harmonic series when t = t−m . This confirms that the infinite
series in Eq. (A2) slowly diverges to positive and negative in-
finity alternatively at t−m as shown in Figs. 3b and c and 4.
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