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Landslides are different from other natural hazards. Un-
like volcanoes, they do not threaten human civilization (Pa-
pale and Marzocchi, 2019). Unlike tsunamis, they do not af-
fect simultaneously several thousands of kilometres of coast-
line — although a submarine landslide in Norway caused a
tsunami to hit Scotland (Dawson et al., 1988). Unlike floods
and earthquakes, they do not cause hundreds of thousands
of casualties in a single event — although a landslide killed
thousands in Peru (Evans et al., 2009) and debris flows tens
of thousands in Colombia (Wieczorek et al., 2001). But the
human toll of landslides is high (Froude and Petley, 2018),
and their economic and societal consequences are largely un-
determined. Compared to other hazards, landslides are sub-
tle, often go unnoticed, and their consequences are underes-
timated.

As with other hazards, the design and implementation of
effective risk reduction strategies depend on the ability to
predict (forecast, project, anticipate) landslides. I have ar-
gued that “our ability to predict landslides and their con-
sequences measures our ability to understand the underly-
ing [...] processes that control or condition landslides, as
well as their spatial and temporal occurrence” (Guzzetti,
2021). This assumes that landslide prediction is possible,
something that has not been demonstrated (or disproved),
theoretically. Yet, there is nothing in the literature that pre-
vents landslide prediction, provided that one clarifies the
meaning of “prediction” (Guzzetti, 2021), that the prediction
is scientifically based (Guzzetti, 2015), and that we under-
stand the limits of the prediction (Wolpert, 2001). Efforts are
needed to determine the limits of landslide predictions, for
all landslide types (Hungr et al., 2014) and at all geographic
and temporal scales (Fig. 1).

Here, I outline what I consider to be the main problems
that need to be addressed in order to advance our ability to
predict landslide hazards and risk. The field is vast, and I
limit my perspective to populations of landslides — that is,
the hazards and risk posed by many landslides caused by
one triggering event or by multiple events in a short period.
In this context, predicting landslide hazard means anticipat-
ing where, when, how frequently, how many, and how large
populations of landslides are expected (Guzzetti et al., 2005;
Lombardo et al., 2020; Guzzetti, 2021). Predicting landslide
risk is about anticipating the consequences of landslide pop-
ulations to different vulnerable elements (Alexander, 2005;
Glade et al., 2005; Galli and Guzzetti, 2007; Salvati et al.,
2018).

Landslides tend to occur where they have previously oc-
curred (Temme et al., 2020). Therefore, one way to assess
where they are expected is to map past and new landslides.
The technology is mature for regional and even global land-
slide detection and mapping services based on the automatic
or semi-automatic processing of aerial and satellite imagery:
optical, SAR and lidar data (Guzzetti et al., 2012; Mondini
et al., 2021). An alternative — and complementary — way
is through susceptibility modelling, an approach for which
there is no shortage of data-driven methods but rather of
suitable environmental and landslide data (Reichenbach et
al., 2018). The increasing availability of satellite imagery,
some of which repeated over time and free of charge (As-
chbacher, 2017), opens up unprecedented opportunities to
prepare event and multi-temporal inventory maps covering
very large areas, which are essential to build space—time pre-
diction models (Lombardo et al., 2020), to investigate the
legacy of old landslides on new ones (Samia et al., 2017;
Temme et al., 2020), to obtain accurate thematic data for sus-
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Figure 1. Space (lower x axis)-time (y axes) chart showing main geomorphological and geo-mechanical landslide domains, and typical
length scale of main meteorological and geophysical triggers and drivers of populations of landslides. Coloured polygons show approximate
sub-domains for typical landslide hazards and risk mapping and modelling efforts. Modified after Guzzetti (2021).

ceptibility modelling (Reichenbach et al., 2018), and to val-
idate geographical landslide early warning systems (Piciullo
et al., 2018; Guzzetti et al., 2020). However, the literature
reveals a systematic lack of standards for constructing, val-
idating, and ranking the quality of landslide maps and pre-
diction models (Guzzetti et al., 2012; Mondini et al., 2021;
Reichenbach et al., 2018). This reduces the credibility of the
maps and models — a gap that urgently needs to be bridged
(Guzzetti, 2021).

Predicting when or how frequently landslides will occur
can be done for short and for long periods. For short periods
— from hours to weeks — the prediction is obtained through
process-based models, rainfall thresholds, or their combina-
tion. Process-based models rely upon the understanding of
the physical laws controlling the slope instability conditions
of a landscape forced by a transient trigger, e.g. a rainfall,
snow melt, seismic, or volcanic event (Bogaard and Greco,
2016, 2018). The major limitation of physically based mod-
els is the scarcity of relevant data, which are hard to obtain
for very large areas. New approaches to obtain relevant, spa-
tially distributed data are needed, as well as novel models
able to extrapolate what is learned in sample areas to vast ter-
ritories (Bellugi et al., 2011; Alvioli and Baum, 2016; Alvioli
et al., 2018; Mirus et al., 2020).

Thresholds are empirical or statistical models that link
physical quantities (e.g. cumulative rainfall, rainfall dura-
tion) to the occurrence — or lack of occurrence — of known
landslides. Reviews of the literature (Guzzetti et al., 2008;
Segoni et al., 2018) have highlighted conceptual problems
with the definition and use of rainfall thresholds for opera-
tional landslide forecasting and early warning systems (Pici-
ullo et al., 2018; Guzzetti et al., 2020), including the lack of
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standards for defining the thresholds and their associated un-
certainty (Melillo et al., 2018), and for the validation of the
threshold models (Piciullo et al., 2017, 2018; Guzzetti et al.,
2020). The community needs shared criteria and algorithms
coded into open-source software for the objective definition
of rainfall events, of the rainfall conditions that can result in
landslides, of rainfall thresholds (Melillo et al., 2015, 2018),
and for the validation of the threshold models (Piciullo et al.,
2017). This will not only provide reliable and comparable
thresholds, allowing for regional and global studies (Guzzetti
et al., 2008; Segoni et al., 2018), but also increase the cred-
ibility of early warning systems based on rainfall threshold
models (Guzzetti et al., 2020).

The projection of landslide frequency for long periods —
decades to millennia — is much more difficult and uncer-
tain, as it depends on climatic and environmental charac-
teristics that are poorly known and difficult to measure and
model (Crozier, 2010; Gariano and Guzzetti, 2016), as well
as on the inherent incompleteness of the historical landslide
records (Rossi et al., 2010). The literature on the analysis of
historical landslide records remains scarce, but the number
of studies projecting the future occurrence of landslides is in-
creasing (Gariano et al., 2017; Peres and Cancelliere, 2018;
Schlogl and Matulla, 2018; Patton et al., 2019; Schlogel et
al., 2020; Gariano and Guzzetti, 2021). In this field, stud-
ies will be relevant if they compare analyses and validation
methods in different areas. This requires the exchange of data
and information.

Predicting how many and how large landslides are ex-
pected means anticipating the size (e.g. area, volume, length,
width, depth) and number of landslides in an area — with size
and number correlated in a population of landslides. This in-
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formation is obtained by constructing and modelling proba-
bility distributions of landslide sizes obtained typically from
landslide event inventory maps (Stark and Hovius, 2011;
Malamud et al., 2004). The literature on the topic is limited,
with differences in the way the distributions are modelled.
This hampers comparisons from different areas. Although
models have been proposed to explain the probability size
distributions (Katz and Aharanov, 2006; Stark and Guzzetti,
2009; Klar et al., 2011; Bellugi et al., 2021), further efforts
are needed to explain the observed distributions of landslide
sizes and to evaluate their variability and uncertainty.

By combining probabilistic information on where, when
or how frequently, and how many or how large landslides
are, one can evaluate landslide hazards for different land-
slide types. However, the existing models are crude, they
work under assumptions that are difficult to prove (Guzzetti
et al., 2005), and the possibility to export them in different
areas is limited or untested. Novel efforts are needed to pre-
pare reliable landslide hazard models (Lombardo et al., 2020;
Guzzetti, 2021).

Assessing landslide hazard is important, but for social ap-
plications what is needed is the estimation of the landslide
consequences, which means assessing the vulnerability to
landslides of various elements at risk (Alexander, 2005; Galli
and Guzzetti, 2007) and evaluating landslide risk (Cruden
and Fell, 1997; Glade et al., 2005; Porter and Morgenstern,
2013), including risk to the population (Petley, 2012; Froude
and Petley, 2018; Salvati et al., 2018; Rossi et al., 2019).
Here, the main limitation is the difficulty in obtaining data
on landslide vulnerability and reliable records of landslide
events and their consequences (Petley, 2012; Froude and Pet-
ley, 2018; Salvati et al., 2018). Where the information is
available, comprehensive landslide risk models can be con-
structed and validated (Rossi et al., 2019). It is important that
efforts are made to collect reliable records of landslides and
their consequences and that the records are shared to test dif-
ferent risk models.

Of the various factors governing landslide hazard, the most
uncertain and the one requiring more urgent efforts is the
time prediction (when, how frequently), followed by the pre-
diction of the size and number of expected failures. For both,
multi-temporal inventories and landslide catalogues are es-
sential to build innovative predictive models. To construct
the records, systematic efforts are needed for landslide de-
tection and mapping (Mondini et al., 2021). For suscepti-
bility (where), the challenge is to prepare reliable regional,
continental, or global assessments (Stanley and Kirschbaum,
2017; Broeckx et al., 2018; Wilde et al., 2018; Mirus et al.,
2020). Critical are also novel modelling frameworks combin-
ing the hazard factors (Lombardo et al., 2020). But the goal
is to reduce risk (Glade et al., 2005). For that, vulnerabil-
ity studies (Galli and Guzzetti, 2007), improved early warn-
ing capabilities (Piciullo et al., 2018; Guzzetti et al., 2020),
quantification of the benefits of prevention, and better risk
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communication strategies are crucial (Guzzetti, 2018). Much
work is needed on these largely unexplored subjects.

Ultimately, I note that in medicine — a field of science
conceptually close to the field of landslide hazard assess-
ment and risk mitigation (Guzzetti, 2015) — the paradigm of
“convergence research” is emerging (Sharp and Hockfield,
2017), where “convergence comes as a result of the sharing
of methods and ideas. .. It is the integration of insights and
approaches from historically distinct scientific and techno-
logical disciplines” (Sharp et al., 2016). The community of
landslide scientists should embrace the paradigm of “con-
verge research”, exploiting the vast number of data, mea-
surements, and observations that are available and will be
collected, expanding the making and use of predictions, as-
sessing the economic and social costs of landslides, design-
ing sustainable mitigation and adaptation strategies, and ad-
dressing the ethical issues posed by natural hazards, includ-
ing landslides (Bohle, 2019). I am convinced that this will
contribute to advancing knowledge and building a safer soci-
ety (Guzzetti, 2018).
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