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Abstract. Drought is understood as both a lack of water (i.e.,
a deficit compared to demand) and a temporal anomaly in
one or more components of the hydrological cycle. Most
drought indices, however, only consider the anomaly aspect,
i.e., how unusual the condition is. In this paper, we present
two drought hazard indices that reflect both the deficit and
anomaly aspects. The soil moisture deficit anomaly index,
SMDAI, is based on the drought severity index, DSI (Cam-
malleri et al., 2016), but is computed in a more straightfor-
ward way that does not require the definition of a mapping
function. We propose a new indicator of drought hazard for
water supply from rivers, the streamflow deficit anomaly in-
dex, QDAI, which takes into account the surface water de-
mand of humans and freshwater biota. Both indices are com-
puted and analyzed at the global scale, with a spatial res-
olution of roughly 50 km, for the period 1981–2010, using
monthly time series of variables computed by the global wa-
ter resources and the model WaterGAP 2.2d. We found that
the SMDAI and QDAI values are broadly similar to values of
purely anomaly-based indices. However, the deficit anomaly
indices provide more differentiated spatial and temporal pat-
terns that help to distinguish the degree and nature of the ac-
tual drought hazard to vegetation health or the water supply.
QDAI can be made relevant for stakeholders with different
perceptions about the importance of ecosystem protection,
by adapting the approach for computing the amount of water
that is required to remain in the river for the well-being of the
river ecosystem. Both deficit anomaly indices are well suited
for inclusion in local or global drought risk studies.

1 Introduction

According to the Australian Bureau of Meteorology,
“drought is a prolonged, abnormally dry period when the
amount of available water is insufficient to meet our normal
use” (BoM, 2018). This definition describes drought as both
an anomaly (“less water than normal”) and a deficit (“less
water than required”), reflecting general non-expert notions
of drought. However, most experts define drought only as
an anomaly, for example, as “a lack of water compared to
normal conditions which can occur in different components
of the hydrological cycle” (Van Loon et al., 2016, p. 3633).
Assuming that humans and other biota are accustomed to
seasonal variations in water availability in the form of pre-
cipitation, soil moisture, streamflow or groundwater storage,
droughts are mostly defined by the deviation of a water quan-
tity at a specific point in time (e.g., precipitation in May
2005) from its long-term mean or median (e.g., of all May
precipitation values during the reference period 1981–2010).
It is further assumed for most drought hazard indicators that
humans and other biota are used to interannual variability.
Therefore, drought is not defined by a percentage deviation
but rather by using percentiles (e.g., precipitation in May
2005 is less than the 10th percentile of all May precipita-
tion values during the reference period) or by standardized
drought indicators where the anomaly is divided by the stan-
dard deviation. Anomaly-based drought indicators that in-
dicate less water than normal include the standardized pre-
cipitation index (SPI) (Mckee et al., 1993), the standard-
ized precipitation evapotranspiration index (SPEI) (Vicente-
Serrano et al., 2010; Bergez et al., 2013), the China Z index
(CZI) (Wu et al., 2001) and, for streamflow drought, the stan-
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dardized streamflow index (SSFI) (Modarres, 2007) and the
percentile-based low-flow index by Cammalleri et al. (2017).

Some researchers have quantified drought by only con-
sidering the deficit aspect of drought, i.e., by computing the
difference between an optimal water quantity and the actual
quantity (“less water than required”). Deficit-based indica-
tors have only been derived for assessing drought risk for
vegetation, as optimal water quantities can be defined by ei-
ther the field capacity of the soil (Sridhar et al., 2008) or po-
tential evapotranspiration. For the latter, the deficit is com-
puted either as the difference between potential evapotran-
spiration and precipitation (Hogg et al., 2013) or between
potential and actual evapotranspiration. A drawback of these
deficit-based drought hazard indicators is that they indicate
strong drought in arid and (semi)arid regions, even though
the vegetation in these regions is adapted to generally lower
soil moisture (Cammalleri et al., 2016). Deficit-based indi-
cators cannot be meaningfully derived for the variable pre-
cipitation only as the definition of an optimal precipitation
amount depends on the user of the precipitation water. It is,
however, conceptually meaningful to determine deficits for
human water supply based on the variable streamflow, defin-
ing the deficit as the difference between the demand for water
from the river and the actual streamflow. To the best of our
knowledge, streamflow drought has not, as yet, been charac-
terized by a deficit-based drought indicator.

Two notable attempts in identifying and bringing together
both the anomaly and deficit aspects are the Palmer drought
severity index (PDSI) (Palmer, 1965) and the drought sever-
ity index (DSI) (Cammalleri et al., 2016). PDSI is a stan-
dardized index developed to quantify the cumulative deficit
of moisture supply in the form of precipitation compared
to demand in the form of potential evapotranspiration. Its
strengths and weakness have been well investigated by Dai
et al. (2004) and is extensively used in the USA to indi-
cate meteorological droughts (Heim, 2002). DSI indicates
soil moisture drought by combining the soil moisture deficit
(compared to the situation in which plant evapotranspira-
tion is not constrained by soil moisture availability) and the
anomaly of the deficit, thus indicating rare events in which
plants suffer from water stress. An anomaly-based soil mois-
ture drought may, however, be unsuitable for indicating a
drought hazard for vegetation as, in areas with high soil mois-
ture in most years, the low interannual variability and, thus,
the standard deviation would indicate a strong drought haz-
ard in years with unusually low soil moisture values that are,
nevertheless, still close to the optimal values and do not cause
any water stress for the plants (Cammalleri et al., 2016).

Similar to the demand for soil water by plants, humans
have a demand for water from rivers in situations where
they rely on river water for their water supply. About three-
quarters of global water withdrawals for irrigation, cooling
of thermal power plants, manufacturing and domestic use, to-
talling about 3700 km3 yr−1 in the first decade of this century,
are sourced from surface water (Döll et al., 2014). Globally,

irrigation is the largest water demand sector, accounting for
more than 60 % of total surface water withdrawals (Müller
Schmied et al., 2021; Döll et al., 2014). To date, however,
streamflow drought indicators only describe the anomaly of
streamflow but do not indicate whether there is enough water
in the river to meet water demand. Thus, to assess the risk
of drought for human water supply from rivers, an indica-
tor that combines the anomaly of streamflow conditions with
a deficit, with respect to water demand, is desirable. In this
way, the locations and times where the human water supply
is at risk can be identified.

Differently from anomaly-based streamflow drought in-
dicators, a combined analysis of streamflow anomaly and
deficit requires time series information of both streamflow
and water demand. This information is available from global
water resources and uses models such as WaterGAP with a
spatial resolution of 0.5◦ (55 km by 55 km at the Equator) and
a monthly temporal resolution (Alcamo et al., 2003; Müller
Schmied et al., 2021). Up to the present time, macro-scale
drought risk assessments have included the demand for water
as vulnerability indicators by using a country’s average ratio
of water withdrawal to water availability (e.g., Meza et al.,
2020).

In this study, we introduce and relate two drought hazard
indicators that combine both the deficit and anomaly aspects:
one for soil moisture drought and the other for streamflow
drought. In the soil moisture deficit anomaly index (SMDAI),
the deficit is calculated as the difference between the soil
moisture at field capacity (which allows optimal and non-
water-limited plant growth) and the actual soil moisture. The
SMDAI slightly modifies and simplifies the DSI introduced
by Cammalleri et al. (2016). Another difference from Cam-
malleri et al. (2016) is that the SMDAI is computed glob-
ally, using the output of WaterGAP, rather than just for Eu-
rope. The streamflow deficit anomaly index QDAI is, to our
knowledge, the first ever streamflow drought indicator that
combines both the anomaly and deficit aspects of streamflow
drought. In the case of QDAI, the deficit is computed by com-
paring actual streamflow to the combined human and envi-
ronmental surface water demand per grid cell. QDAI focuses
on determining the drought hazard for the water supply for
humans, including domestic, industrial, and irrigation water
demand. QDAI is constructed similarly to SMDAI and com-
puted globally using WaterGAP. Whether QDAI should be
called a drought hazard indicator, or a combined drought haz-
ard and vulnerability indicator, is up for discussion. However,
for global-scale drought risk assessments, gridded QDAI val-
ues can be meaningfully combined with country-scale vul-
nerability indicators of, for example, coping capacity.

In Sect. 2, we describe (a) how water demand, streamflow,
surface water use and soil moisture are computed by Water-
GAP 2.2d (Müller Schmied et al., 2021) and (b) the meth-
ods for calculating SMDAI and QDAI. In Sect. 3, spatial and
temporal patterns of SMDAI and QDAI are presented. In
Sect. 4, we analyze the components of SMDAI and QDAI,
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compare SMDAI to DSI, compare QDAI to a standardized
streamflow indicator (SSFI), and discuss the limitations of
the study. Finally, we draw conclusions in Sect. 5.

2 Methods and data

2.1 Global-scale simulation of soil moisture, soil water
capacity, streamflow and human water abstraction

In this study, we use the outputs of the latest version
of the global hydrological and water use model Water-
GAP 2.2d (Müller Schmied et al., 2021). WaterGAP consists
of three major components: the water use models, the linked
groundwater–surface water use (GWSWUSE) model and the
global hydrological model (WGHM). The water use mod-
els compute water use in the five sectors: household, man-
ufacturing, cooling of thermal power plants, livestock and
irrigation. Household and manufacturing water use is com-
puted based on national statistics (Flörke et al., 2013). The
amount of water required for cooling of thermal power plants
is calculated based on the location, type and size of power
plants and the annual time series of thermal electricity pro-
duction (Flörke et al., 2013). Irrigation water use is com-
puted based on information on the irrigated area and climate
for each grid cell. The irrigation model first computes cell-
specific cropping patterns and growing periods and then ir-
rigation consumptive water use, distinguishing only rice and
non-rice crops (Döll and Siebert, 2002). The irrigated areas
change over time (Siebert et al., 2015). The globally small
amount of livestock water use is the only temporally con-
stant water use and is determined from the number of live-
stock and livestock-specific water use values (Alcamo et al.,
2003). Water use for households, manufacturing and cooling
of thermal power plants is constant throughout the year but
changes from year to year.

The water use models themselves do not take into account
the source of the sectoral water abstractions. This is done by
GWSWUSE, which computes monthly time series of 0.5◦

grid-cell values of human water abstractions from (1) sur-
face water bodies (river, lakes and man-made reservoirs) and
(2) groundwater, for each of the five sectors, as well as the
respective net abstractions from both sources (Döll et al.,
2012). A comparison of simulated annual sectoral water ab-
stractions per country to independent values from the AQUA-
STAT database of FAO showed a rather high similarity be-
tween the two datasets (Müller Schmied et al., 2021).

Taking into account the net abstractions, i.e., the difference
between water abstractions and return flows, WGHM simu-
lates, with a daily time step, the most relevant hydrological
processes occurring on the continents and computes water
flows such as actual evapotranspiration, runoff, groundwa-
ter recharge and streamflow, as well as the amount of wa-
ter stored in diverse compartments such as the soil and the
groundwater for all land areas, excluding Antarctica (Müller

Schmied et al., 2014; Döll et al., 2003; Alcamo et al., 2003).
The soil is represented as one water storage compartment that
is characterized by (1) soil water capacity (Smax), which is
computed as the product of land cover, specific rooting depth
and soil water capacity in the upper meter, and (2) soil tex-
ture, which affects groundwater recharge (Müller Schmied
et al., 2014). The temporal development of soil moisture (S)
is computed from the balance of inflows (precipitation and
snowmelt minus interception by the canopy) and outflows
(actual evapotranspiration and total runoff from the land). To-
tal runoff from the land fraction of the grid cell is then par-
titioned into the fast surface and subsurface runoff and the
diffuse groundwater recharge. Both components are subject
to so-called fractional routing to the various other storages
within the 0.5◦ grid cell, which include the groundwater as
well as lakes, wetlands, man-made reservoirs and rivers (Döll
et al., 2014). Streamflow (Qant) in each grid cell depends on
the runoff generated within the cell, inflow from upstream
grid cells as well as human water abstractions and takes into
account the impact of man-made reservoirs.

WGHM is calibrated to match long-term annual observed
streamflows at the outlets of 1319 drainage basins that cover
∼ 54 % of the global drainage area, following the calibration
principles provided by Müller Schmied et al. (2014), Hunger
and Döll (2008), and Döll et al. (2003). In validation stud-
ies against time series of observed streamflows, WaterGAP
has been repeatedly shown to be among the best-performing
global hydrological models (Zaherpour et al., 2019, 2018;
Veldkamp et al., 2018). Nevertheless, there can be significant
mismatches between the observed and simulated seasonality
and interannual variability.“It is found that WaterGAP can
simulate the low flow percentile (Q95) very well, but it can
also overestimate the return period of low streamflow” (Za-
herpour et al., 2018).

This study uses 30 years (1981–2010) of monthly
time series of WaterGAP gridded (0.5◦× 0.5◦) outputs for
67 420 land grid cells covering all land areas of the globe ex-
cept Greenland and Antarctica. These include (1) soil mois-
ture (S) [mm]; (2) streamflow (Qant) [km3 per month]; (3)
streamflow under naturalized conditions (Qnat) [km3 per
month], assuming there are no human water abstractions or
man-made reservoirs; and (4) total surface water abstractions
[km3 per month]. In addition, the consistent dataset of soil
water capacity (Smax) [mm] is utilized.

2.2 Computation of deficit and anomaly components of
the soil moisture deficit anomaly index SMDAI

2.2.1 Deficit

Soil moisture deficit (dsoil) refers to the lack of water in the
root zone for plants compared to optimal growing conditions
assumed to occur at soil water capacity (demand for water).
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dsoil is calculated as

dsoil =
Smax− S

Smax
, (1)

where Smax [mm] is the amount of water stored in the soil
between field capacity and wilting point within the plant’s
root zone, and S [mm] is the actual amount of soil water (soil
moisture). dsoil ranges from 0 (no deficit/stress) to 1 (extreme
deficit/stress).

This definition of soil moisture deficit is different from the
one used in Cammalleri et al. (2016, their Eq. 1) because their
definition cannot be applied when using the global hydrolog-
ical model WaterGAP to compute soil moisture. The deficit
computation according to Cammalleri et al. (2016) requires
data on soil moisture content at the wilting point and at field
capacity, which is not available in WaterGAP. With our ap-
proach, which is consistent with the way of computing actual
evapotranspiration from potential evapotranspiration in Wa-
terGAP, d values at low soil moisture saturation are lower
than those of Cammalleri et al. (2016), while they are much
higher at high soil moisture as Cammalleri et al. (2016) as-
sume that deficits only occur if soil moisture is less than 50 %
of field capacity. Consequently, we identify very few months
and grid cells with a deficit of zero, likely less than we would
if we would have implemented the deficit definition of Cam-
malleri et al. (2016).

2.2.2 Anomaly

Assuming that vegetation is used to seasonal variations in
soil moisture, the anomaly of monthly soil moisture is de-
termined separately for each calendar month. In the case of
standardized drought indicators such as the SPI, a so-called
z score is computed separately for each calendar month (here
using, for example, 30 monthly soil moisture deficits in the
30 January months during the period 1981–2010), by stan-
dardizing the variable using the calendar month mean and
standard deviation after translating the cumulative distribu-
tion function that optimally fits the distribution of monthly
values to a normal distribution (McKee et al., 1993). Thus,
computation of the z score assumes that the vegetation is
adapted to both seasonal and interannual variability. Follow-
ing Cammalleri et al. (2016), in this study, we express the
anomaly aspect of drought not by the z score but by deriving
a so-called drought probability index (p) that can be com-
bined with the deficit indicator to a deficit anomaly drought
hazard index.

Computation of p also starts with identifying the prob-
ability of exceedance of a certain soil moisture deficit F .
Sheffield et al. (2004) found that time series of soil moisture
per calendar month are best represented by the beta distribu-
tion function. The cumulative density function F of the beta
distribution function can be expressed as

F (dsoil;a,b)=
B (dsoil;a,b)

B(a,b)
, (2)

where a,b ≥ 0 are the shape parameters, B(a,b) is the beta
function and B(dsoil;a,b) is the incomplete beta function.
In this form, the b supports the range of dsoil ∈ [0, 1]. In this
study, we could confirm the assumption made by Cammalleri
et al. (2016) that the beta distribution function satisfactorily
represents the distribution of dsoil, which is the same as that
of the soil moisture itself. The beta cumulative distribution
function was fitted to dsoil values for each calendar month
and grid cell (i.e., for each grid cell, 12 beta functions are
fitted corresponding to the 12 calendar months).

Following Cammalleri et al. (2016), the next step was to
derive from F a drought probability index (psoil) that trans-
lates the probability that a certain soil water deficit status is
drier than usual into the range [0, 1]. As suggested by Agnew
(2000), a z score of−0.84, which corresponds to a return pe-
riod of 5 years and a F(dsoil) of 0.8, was assumed to be the
threshold for drought (Table 1), for which psoil = 0. Then,
the drought probability index is calculated as

psoil =
F (dsoil)− 0.8

1− 0.8
, (3)

where F(dsoil) is the beta cumulative distribution function
fitted to dsoil. If the beta cumulative distribution function is
fitted to S, then (1−F(S)) should be used instead of F(dsoil).

Cammalleri et al. (2016) calculated psoil using the mode
instead of median as the reference for the normal status of
dsoil. The computation of psoil from F(dsoil) was carried out
in two steps. First, for dsoil values that are greater than or
equal to the mode, a new standardized cumulative distribu-
tion function F × (dsoil) is computed (Eq. 3 in Cammalleri
et al., 2016). Subsequently, mapping F × (dsoil) values rang-
ing from 0.6 to 1 onto the psoil range of [0, 1], an exponential
function (Eq. 4 in Cammalleri et al., 2016) was employed.
This exponential function was developed to fit subjectively
defined pairs of F × (dsoil) and psoil (Table 1 in Cammal-
leri et al., 2016). In this study, we have simplified the more
complex approach of Cammalleri et al. (2016) by relying di-
rectly on F(dsoil) for mapping F(dsoil) onto psoil according
to Eq. (3). In our opinion, there is no added value in defin-
ing an arbitrary exponential mapping function for deriving an
indicator for the probability of a drought occurrence (psoil).
Further, like most other drought researchers, we prefer the
median to the mode, as among 30 deficit values, which are
rational numbers, there is no true mode, i.e., no value that
occurs most often. The relation between the anomaly com-
ponent of SMDAI (i.e., psoil) and the non-exceedance prob-
ability of the soil moisture deficit (F (dsoil)) and the pertain-
ing return periods, z scores and class names, according to
Agnew (2000), as well as the anomaly component of DSI
(p_DSI) are presented in Table 1. A comparison of psoil to
p_DSI values as a function of (F(dsoil)) as presented in Ta-
ble 1 is shown in Fig. S1 in the Supplement, and the slight
differences between psoil and p_DSI, as well as DSI and SM-
DAI, computed with WaterGAP output for August 2003 at
the global scale are presented in Fig. S2 in the Supplement.
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Table 1. Relationship of the anomaly component p of SMDAI and QDAI to the non-exceedance probability of the soil moisture deficit
(F (dsoil)) or of streamflow (F(Q)), the pertaining return periods, z scores and class names according to Agnew (2000) as well as the
p values by Cammalleri et al. (2016) to compute DSI. The class name refers to the drought conditions with z-score values that are larger
than those listed in the z-score column. The equiprobability transformation technique, first suggested by Abramowitz and Stegun (1965)
and utilized in Kumar et al. (2009) for calculation of the standardized precipitation index (SPI), is used to back-calculate F values from the
z-score values.

F(dsoil)/F (Q) Return period z score Drought class name p_DSI psoil/pQ
(years)

0.8 5 −0.84 Normal 0 0
0.843 6.4 −1.00 Mild 0.04 0.21
0.87 7.7 −1.12 Moderate 0.10 0.35
0.9 10 −1.28 Moderate 0.26 0.50
0.933 15 −1.50 Moderate 0.54 0.68
0.95 20 −1.64 Severe 0.72 0.75
0.97 33.3 −1.88 Severe 0.89 0.85
0.9775 40 −2.00 Severe 0.93 0.88
0.99 99 −2.33 Extreme 0.99 0.95
0.995 200 −2.57 Extreme 0.997 0.97
0.998 500 −2.88 Extreme 0.999 0.99
1 – ∼−4.00 Extreme ∼ 1 ∼ 1

For very few grid cells, SMDAI is much larger than DSI, and
there are some areas where DSI is slightly larger than SM-
DAI. For the period 1981–2010, SMDAI is, averaged over
all grid cells, 0.05 larger than DSI with according to Eq. (1).

2.3 Computation of deficit and anomaly components of
the streamflow deficit anomaly index QDAI

2.3.1 Deficit

Similar to the soil moisture deficit, the streamflow deficit
(dQ) is calculated as the demand for water minus the sup-
ply divided by demand. It refers to the amount of streamflow
that is lacking to satisfy the surface water demand of both
humans and the river ecosystem. dQ is computed as

dQ =
(WUsw+EFR)−Qant

WUsw+EFR
, (4)

where WUsw [km3 per month] is water abstraction from sur-
face water bodies, derived as the sum of water abstractions
for irrigation, livestock, cooling of thermal power plants,
manufacturing and household use. Qant [km3 per month] is
the streamflow, and EFR [km3 per month] is the environ-
mental flow requirement, i.e., the surface water demand of
the river ecosystem. Following Richter et al. (2012), EFR
is calculated for each calendar month as 80 % of the mean
monthly streamflow under the naturalized condition (Qnat),
assuming that 80 % of the natural mean monthly streamflow
that would have occurred in the river without human water
use and man-made reservoirs needs to remain in the river for
the well-being of the river ecosystem.

Differing from Smax, which represents the vegetation de-
mand for soil water, the streamflow demand is temporally

Table 2. SMDAI and QDAI range corresponding to drought classes.

SMDAI range/QDAI range Drought conditions

0<SMDAI< 0.25 Mild
0.25≥ SMDAI< 0.5 Moderate
0.5≥ SMDAI< 0.75 Severe
SMDAI≥ 0.75 Extreme

variable. dQ is, like dsoil, in the range of 0 (no deficit/stress)
to 1 (extreme deficit/stress); if dQ is less than 0 or WUsw
equals 0, then dQ is set to 0. To explore how assump-
tions about EFR and, thus, total surface water demand affect
QDAI, we set EFR to be alternatively equal to half of Qnat,
or zero (Sects. 3.2 and 4.2). These alternatives represent situ-
ations in which humans wish to protect freshwater biota less,
or not at all, so the total surface water demands and conse-
quently streamflow deficits are lower.

2.3.2 Anomaly

Streamflow anomaly (pQ) is computed based on the inter-
annual variability of monthly aggregated streamflow (Qant)
values for each calendar month. We consider the anomaly
of streamflow (Qant) instead of the anomaly of the stream-
flow deficit (dQ) as the temporal variability including long-
term trends of the water demand prevented us, for most grid
cells with relevant water demand, from identifying a standard
distribution function for the time series of dQ. Furthermore,
the methodological consistency between the calculation of
pQ and psoil is maintained, as the anomaly of soil moisture
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deficit (dsoil) is equal to the anomaly of soil moisture (S)
[mm].

In some regional streamflow drought studies (Langat et al.,
2019; Sharma and Panu, 2015; Lorenzo-Lacruz et al., 2010;
López-Moreno et al., 2009), the standard cumulative dis-
tribution function Pearson type III was used to fit monthly
streamflow values. However, Svensson et al. (2017) rightly
pointed out that the Pearson type III distribution function
with a lower bound at zero is reduced to the gamma distri-
bution function. The cumulative density function F of the
gamma distribution function can be expressed as

F (Qant;a,b)=
g (Qant;a,b)

G(a)
, (5)

where a,b ≥ 0 are the shape parameters, G(a) is the gamma
function and g(Qant;a,b) is the incomplete gamma function;
in this form the gamma distribution supports d > 0. Taking
into account that streamflow drought occurs when a certain
streamflow value is not exceeded, while in the case of psoil
a soil moisture drought occurs when a certain soil moisture
deficit is exceeded, the drought probability index for stream-
flow drought pQ is computed as

pQ =
(1−F (Qant))− 0.8

1− 0.8
. (6)

2.4 Combining deficit and anomaly to compute SMDAI
and QDAI

Water deficits (dsoil and dQ) and anomalies (psoil and pQ) are
combined into single deficit anomaly indicators (SMDAI and
QDAI) based on the desired indicator characteristics as elab-
orated by Cammalleri et al. (2016). The combined drought
indicator should be zero if there is either no deficit- or no
anomaly-based drought. It should be equal to p and d if p
and d are the same, while it should have lower values if
either d or p is close to zero. Thus, following Cammalleri
et al. (2016)

SMDAI=
√
psoil · dsoil (7)

and accordingly

QDAI=
√
pQ · dQ. (8)

Both SMDAI and QDAI values range from 0 to 1, where
0 corresponds to no drought hazard and 1 corresponds to
extreme drought hazard. The indicator values are put into
classes and coinciding drought classifications according to
Table 2.

2.5 Fitting standard cumulative functions

Out of the total 67 420 WaterGAP land grid cells, only 57 043
grid cells were considered in this study. Grid cells with bar-
ren or sparsely vegetated land cover, based on the MODIS-
derived static land cover input map used in WGHM (Müller

Schmied et al., 2014), together with grid cells in Green-
land, were not considered. For each of these grid cells and
each calendar month, we determined the best-fitting beta and
gamma cumulative distribution functions for monthly dsoil
and Qant, respectively, by utilizing a combination of func-
tions from the R packages gamlss, gamlss.dist, extremeS-
tat and fitdistrplus. However, as tested by the one-sample
Kolmogorov–Smirnov test (KS test) at the 0.05 significance
level, for 27.12 % of the grid cells in the case of dsoil and
39.94 % in the case of Qant, the fits were rejected for all
12 calendar months. Examples of an accepted grid cell and a
rejected grid cell of the beta distribution function are shown
in Fig. S3 in the Supplement. In the rejected grid cells, the
probability of non-exceedance F is determined directly from
the time series of 30 monthly values using the R function em-
pirical cumulative distribution function (ECDF). The ECDF
is a step function that increases by 1/30 at each of the 30dsoil
values of SMDAI or Qant values of QDAI (Fig. S3 left). The
computed F value of a specific dsoil orQant value is the frac-
tion of all 30dsoil orQant values that are less than, or equal to,
the specific dsoil or Qant value. Figure S4 in the Supplement
shows the grid cells where ECDFs had to be used to compute
F .

2.6 Standardized streamflow index

We compared QDAI with the well-established anomaly-
based drought indicator standardized streamflow index
(SSFI) introduced by Modarres (2007). SSFI is computed
separately for each calendar month, similar to the standard-
ized precipitation index (SPI) (Mckee et al., 1993), as

SSFI=
Qanti −Qant

σ
, (9)

where Qanti [km3 per month] is the streamflow value at time
interval i, Qant is the long-term mean of the streamflow val-
ues and σ is the standard deviation of the streamflow values.

3 Results and discussions

3.1 SMDAI

The relations between dsoil, mean monthly (dsoil_mean), psoil
and SMDAI are further clarified by the time series of
these variables in Fig. 1 for two grid cells with rather dif-
ferent characteristics: a grid cell in Germany (42.25◦ N,
−121.75◦ E, left panels in Fig. 1) and one in northeast India
( 27.25◦ N, 88.25◦ E, right panels in Fig. 1). The values of
dsoil in the German grid cell show, on average over the whole
reference period, high deficits in the summer months and
low deficits only in one to two winter months (dashed grey
line). According to the definition of psoil, an anomaly-based
drought hazard, as indicated by psoil > 0 (blue line), occurs
only if the actual soil moisture deficit (green line) is much
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Figure 1. Soil moisture drought hazard: example of a time series (2000–2010) of monthly dsoil and mean seasonality of soil moisture deficit,
psoil and SMDAI for a cell in Germany (a, c) and a cell in northeast India (b, d). The central European (CEU) drought in 2003 is indicated.

higher than the mean calendar month values dsoil_mean; per
definition, this is the case in only 1 out of 5 years (Eq. 3 and
Table 1). According to Eq. (7), SMDAI is always between
psoil and dsoil. In the German cell, an anomaly-based drought
occurred during the unusually dry, but still low-deficit, win-
ter months of 2006, resulting in an SMDAI value that was
much smaller than psoil. During the central European (CEU)
summer drought of 2003, SMDAI was approximately equal
to psoil. Thus, SMDAI appropriately indicates that anoma-
lously low soil moisture during generally wet winter months
is less of a hazard to vegetation than the same anomaly would
be during generally dry summer months. The grid cell in
northeast India is characterized by a low seasonality of soil
moisture and a generally very high soil water content. Even
for some unusually dry months (with high psoil), dsoil almost
always remains below 0.25. Due to the low deficit, even in
cases of high psoil, SMDAI is much smaller than psoil during
all drought events indicated by psoil. When comparing tem-
porally averaged drought hazards between the two grid cells,
SMDAI would indicate a relatively higher drought hazard
for the German grid cell than for the Indian grid cell, which
would not be the case if a purely anomaly-based indicator,
such as psoil, were used as the drought hazard indicator.

The relationship between SMDAI, psoil and dsoil can be
further explored by using global indicator maps for a spe-
cific month, e.g., August 2003 (Fig. 2). WaterGAP com-
putes soil moisture deficits of 75 % or more in most grid
cells, while low deficits occur only in a few areas, where
August belongs to the rainy season, e.g., the Sahel region

and the monsoon areas in India (Fig. 2a). In each grid cell,
psoil is, per definition, zero in 80 % of all August months.
Therefore, in any month, approximately 80 % of the grid
cells indicate no drought and psoil equals 0 (Fig. 2b). Only
grid cells with a non-zero psoil have a non-zero SMDAI
(Fig. 2c). For example, southeast India shows extremely high
dsoil values, but as there is no anomalously high soil mois-
ture deficit except for a few grid cells where psoil is mostly
zero, SMDAI is also mostly zero. Thus, no soil moisture
drought hazard is indicated. The difference between SMDAI
and psoil is shown in Fig. 2d. In most grid cells with differ-
ences, SMDAI is higher than psoil due to high dsoil. Focus-
ing on central Europe, SMDAI (in Fig. 2c) correctly indi-
cates the summer drought of 2003, documented in the EM-
DAT International Disaster Database (http://www.emdat.be,
last access: 11 May 2020), the European Drought Reference
database (http://www.geo.uio.no/edc/droughtdb, last access:
15 May 2020) and Spinoni et al. (2019). The location of grid
cells from Fig. 1 is represented in Fig. 2a with blue points
drawn at the center of each grid cell. During Northern Hemi-
sphere winter months, soil moisture deficits are lower, for
example, in Europe and the eastern part of North America,
but high in most snow-dominated northern high-latitude re-
gions (as no liquid water enters the soil), with correspond-
ing effects for the relationship between psoil and SMDAI
(see Fig. S5 in the Supplement showing the drought situa-
tion in December 1999). In Europe and the eastern part of
North America, for example, SMDAI is smaller than psoil
(Fig. S5d).
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Figure 2. Global maps of dsoil, psoil, SMDAI and the difference between SMDAI and psoil for August 2003. Blue points in (a) represent the
location of German and Indian grid cells from Fig. 1, and nc denotes grid cells that are not computed due to land cover.

Figure 3 shows the frequency of occurrence of the four
SMDAI drought classes specified in Table 2 and of the no-
drought condition (SMDAI= 0) during the reference period
1981–2010. SMDAI is zero in about 80 % of the cases, fol-
lowing psoil as monthly soil moisture almost never reaches
the maximum soil moisture capacity. Extreme soil moisture
drought hazards occur with a relatively high frequency in
the northwestern parts of Australia and southeastern parts
of Africa. Regions with mostly low soil moisture deficits,
such as central and eastern European countries and the east-
ern USA, show very low occurrence frequencies of extreme
drought hazards and more often than other regions a moder-
ate drought hazard (Fig. 3b). Snow-dominated regions, such
as parts of Russia and Canada, show a relatively high fre-
quency of extreme soil moisture droughts due to the high
values of simulated soil moisture deficits created by the lack
of liquid water to infiltrate the soil during the winter months
and the temperature-driven seasonal shifts of snowmelt and,
thus, infiltration of water into the soil.

3.2 QDAI

QDAI indicates the drought hazard for surface water supply
required for satisfying human water demand (WUsw), assum-
ing the water suppliers also take into consideration the water
demand by freshwater biota (EFR). The deficit component of
QDAI (dQ) is the relative difference between the total surface
water demand and streamflow, while the anomaly compo-
nent (pQ) is based on the unusualness of streamflow. QDAI
depends on more individual variables (i.e., WUsw, Qant and
EFR) than SMDAI (i.e., S and Smax). Figure 4 shows their re-
lation for two grid cells with different characteristics of hu-
man surface water demand compared to streamflow. In the
grid cell in the western USA, where streamflow of the Kla-
math River is observed in Keno (42.25◦ N, −121.75◦ E, left
panels of Fig. 4), water demand (mostly for irrigation, with
a mean of 0.038 km3 per month) is high compared to the rel-
atively small streamflow (0.105 km3 per month). In the grid
cell in Germany, human surface water demand of 0.056 km3

per month is small compared to the rather high streamflow of
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Figure 3. Frequency of occurrence [%] of different soil moisture drought classes during the period 1981–2010, as defined by SMDAI
(Table 2), and nc denotes grid cells which are not computed due to land cover.

4.6 km3 per month of the Rhine at Mainz (49.75◦ N, 8.25◦ E,
right panels of Fig. 4).

In the US grid cell, the difference between the
mean monthly streamflow under the naturalized condi-
tion (Qnat_mean) and mean monthly simulated streamflow
(Qant_mean) is high, especially in the growing period, due to
large anthropogenic abstractions of streamflow water in the
drainage basin of the grid cell (observed in the topmost plot).
While the observed (Qant_obs) and simulated (Qant) stream-
flow shows a reasonable correlation, WaterGAP appears to
overestimate streamflow depletion by human water use in the
summers. Characterized by a high seasonality, anthropogenic
surface water demand WUsw (dashed grey line in center plot)
and total surface water demand (i.e., WUsw+EFR_0.8, or-
ange line in center plot) result in very high deficits dQ (green
line of the bottom plot) during almost every summer. How-
ever, there are only a few months with drought as identified
by the anomaly-based drought hazard pQ exceeding zero

(dark blue line). This occurs because the decade shown in
Fig. 4 happens to be a very wet decade compared to the whole
reference period. Another reason is that more than 20 % of
the years show zero streamflow in the calendar months Au-
gust and September such that pQ is zero in all 30 August and
September months of the reference period; i.e., no drought is
indicated even in case of zero streamflow (see left panel of
Fig. S7 in the Supplement). Due to the large deficit values,
pQ is almost always smaller than dQ in this US grid cell.

In the German grid cell (right panels in Fig. 4), the rel-
atively low anthropogenic surface water abstractions result
in almost identical values of Qnat_mean and Qant_mean (lines
overlap in the top plot), and total surface water demand is
very similar to EFR (lines overlap in the center plot). Non-
zero dQ values (bottom plot) are mainly computed if Qant is
lower than EFR, such as during the central European drought
of 2003. It is reasonable to consider this type of situation as
a drought hazard as water supply companies would have to
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Figure 4. Streamflow drought hazard: example of a time series (2000–2010) of monthly surface water demand, surface water supply and
mean seasonality of surface water supply, as well as dQ, pQ and QDAI (e, f) for a cell in the USA (a, c, e) and Germany (b, d, f).

stop any surface water abstraction if they wished to protect
the river ecosystem. Different from the US grid cell, droughts
are rather equally distributed over all decades of the refer-
ence period in the German grid cell but the summers of 2003
and 2005 suffer from the most severe droughts of the refer-
ence period, in line with expected drier summer due of cli-
mate change. Even if taking into account EFR as 80 % of
Qnat_mean (EFR0.8), the total surface water demand is so low
that in contrast to the US cell, dQ is always smaller than pQ.

Assumptions about the magnitude of EFR have a strong
impact on dQ and thus QDAI of all grid cells except those
with very high surface water abstractions such as the US
cell. If the water demand of the ecosystem were assumed
to be only 20 % of Qnat_mean(EFR_0.2) instead of 80 % of
Qnat_mean, dQ decreases somewhat in the US cell but reduces
to zero during the whole reference period in the German cell
(Fig. S6 in the Supplement). Therefore, water suppliers in the
German grid cell would not suffer from any drought hazard
(as indicated by QDAI) and would not have to decrease their
surface water abstractions even during a drought similar to
the 2003 central European drought.

The global streamflow drought hazard maps for August
2003 (Fig. 5) help to illustrate the global variations in QDAI
as a function of its components pQ and dQ, which again de-
pends on the human surface water demand WUsw. Stream-
flow deficits are not restricted to areas with high mean an-
nual WUsw during the period 1981–2010 (Fig. 5a) but can be
greater than 75 % in regions such as South Africa were Qant
is low (Fig. 5b). Different from soil moisture drought, pQ
and dQ are strongly correlated (Fig. 5c). This is due to the

fact that total surface water demand is dominated in many
grid cells by EFR, which is a fraction of Qnat. In the EFR-
dominated cells, the mean monthly Qant is very similar to
the mean monthly Qnat, such that dQ is then approximately
the difference between mean monthly Qant and Qant; this
difference is also the basis for computing by pQ (Fig. 5d).
QDAI is mostly less than pQ (Fig. 5e). The 2003 central Eu-
ropean drought hazard for the surface water supply for hu-
mans (Fig. 5d) is, at least in many parts of Germany, less
pronounced than the soil moisture drought hazard for vege-
tation (Fig. 2c). Figure 5c–e also indicate the grid cells with
Qant = 0. If streamflow in a grid cell is zero in 20 % or more
of all August months (left panel of Fig. S7), pQ and thus
QDAI are zero because the zero streamflow is not an anomaly
that occurs in less than 1 out of 5 years.

In contrast to SMDAI, the frequency of occurrence of no-
drought conditions according to QDAI (Fig. 6) is larger than
80 % in grid cells, particularly with large rivers and barely
any human water use, such as the Amazon River in South
America, the Congo River in Africa and the Ob River in
Russia (Fig. 6e), where the deficit is often zero. In addition,
grid cells with intermittent flows also show a high percent-
age of no-drought conditions, as for any calendar month with
at least 6 months without streamflow pQ is always equal to
zero (Fig. S7). In these grid cells, no-drought conditions oc-
cur in the case of zero streamflow. This type of intermittent
grid cell, where Qant = 0 for at least 20 % of the months of
any calendar month is marked separately in Fig. 6c–e. Ex-
treme streamflow drought hazard for human water supply
(Fig. 6d) occurs most often in regions with high streamflow
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Figure 5. Global maps of mean annual WUsw, dQ, pQ, QDAI and the difference between QDAI and pQ for August 2003. Blue points in
(b) represent the location of the German and US grid cells from Fig. 4. Grid cells with Qant = 0 are indicated; nc: QDAI is not computed
due to land cover.

deficits (compare Fig. 5b), such as South Africa and parts of
southeastern Australia, i.e., regions with low streamflow and
relatively high surface water abstractions, mainly for irriga-
tion (Fig. 5a). Regions with low water human surface water
abstractions such as northern Canada and the Amazon and
Congo basins show an exceptionally high occurrence of mild
drought hazards (Fig. 6a).

3.3 Sensitivity of SMDAI to the Smax values assumed in
WaterGAP

Smax is one of the key components for computing SMDAI.
WaterGAP calibration and validation studies have indicated
that Smax may be underestimated in WaterGAP by a fac-
tor of 2 or more (Hosseini-Moghari et al., 2020). In order
to understand the sensitivity of SMDAI to changes in Smax,
we ran a version of WaterGAP in which Smax was dou-
bled (Smax2). Figure 7 presents global maps of dsoil_Smax2

(Fig. 7a), psoil_Smax2 (Fig. 7c) and SMDAI_Smax2 (Fig. 7e)
for August 2003 and the change in each parameter with re-
spect to the standard WaterGAP output, i.e., the difference
between parameters computed using Smax2 and Smax (Fig. 7b,
d and f). With doubled Smax, mean monthly soil moisture in-
creases, too. In most grid cells, the soil moisture deficit in-
creases compared to standard Smax (Fig. 7b). Differences are
mostly small except for scattered grid cells in which the soil
moisture deficit decreases by more than 50 percentage points.
Such cells are also found in central Europe where, under the
heavy drought conditions of August 2003, computed deficits
dQ are generally smaller in the case of doubled Smax; in this
region, psoil increases in the case of doubled Smax (Fig. 7d).
Globally, psoil increases or decreases in some grid cells by
more than 50 percentage points. Equally, for SMDAI, the
sensitivity to doubled Smax is low for most grid cells but can
be greater for a few (Fig. 7e).
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Figure 6. Frequency of occurrence [%] of different streamflow drought classes during the period 1981–2010 as defined by QDAI (Table 2).
Grid cells where for any calendar month there are at least 6 months withQant = 0 are indicated as int, and grid cells which are not computed
due to land cover are indicated as nc.

3.4 Sensitivity of QDAI to different assumptions about
EFR

The streamflow drought hazard for water supply indicated
by QDAI depends on how EFR is defined. In Fig. 8, we com-
pare the global distribution of QDAI values among the 57 043
0.5◦ grid cells, assuming that either 80 % or 50 % of mean
monthly natural streamflow is required to remain in the river
for the well-being of the river ecosystem, or that there is no
EFR at all that needs to be considered when the decisions
about river water abstractions are made. We distinguish be-
tween humid and (semi)arid grid cells (Fig. S8 in the Supple-
ment) and consider the two months of August and December
2003 as well as all 360 months of the reference period. The
QDAI distributions are very similar for all three time periods.
The boxplots show that a drought hazard in humid areas is
only identified if the existence of an EFR is acknowledged.
If water suppliers in humid areas assume that all water in

the river can be abstracted, they will very rarely be unable
to satisfy their demand. In humid grid cells, QDAI increases
strongly with the selected EFR, which means that with in-
creasing consideration of the water requirements of the river
ecosystems, drought hazards to the water supply increase;
i.e., there are more situations where water abstractions would
have to be reduced to keep enough water in the river for the
ecosystems to thrive. In (semi)arid regions, QDAI is already
very high, even without acknowledging any water require-
ment of the river ecosystem. This is due to an often high
surface water demand compared to naturalized streamflow,
in particular as crop production requires irrigation. Like in
humid regions, QDAI increases with increasing EFR. The
slightly higher median QDAI values in August 2003 than
in December 2003 reflect the larger amount of humid grid
cells in the Northern Hemisphere. Figure 8 shows that wa-
ter suppliers in (semi)arid and arid regions suffer much more
strongly from drought hazards than water suppliers in hu-
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Figure 7. Spatial representation of dsoil, psoil and SMDAI computed with Smax2 is presented in (a, c, e), and in (b, d, f) are the differences
in these dsoil, psoil and SMDAI compared to the results computed with the standard version of WaterGAP for August 2003. Grid cells which
are not computed due to land cover are denoted as nc.

mid areas due to the much higher ratio of water demand to
streamflow.

Further differences between QDAI values computed for an
alternative EFR are explored for two widely known drought
events, the South Asian drought of 2009 (Neena et al., 2011)
and the North American drought of 2002 (Seager, 2007). Fig-
ure 9 presents the spatial extent of both the droughts detected
by QDAI at a continental scale (left panels of Fig. 9) for Au-
gust 2009 and March 2002. Time series plots (right panels of
Fig. 9) for an Indian grid cell (24.75◦ N, 75.75◦ E, top panel),
as well as another for a US grid cell (44.25◦ N, −110.75◦ E,
bottom panel), provide a better understanding of the sensi-
tivity of QDAI to EFR. As expected, QDAI values calculated
with EFR= 0 (green) are lower and drought periods shorter
than if it is assumed that water needs to remain in the river for
the well-being of the ecosystems. Interestingly, short but se-
vere droughts in the Indian grid cell in 2002, 2006 and 2010

have almost equal QDAI values for all three EFR alterna-
tives.

3.5 Comparing QDAI to the standardized streamflow
index (SSFI)

Like pQ, SSFI (see Sect. 2.6) assumes biota and humans are
accustomed to the seasonal and interannual variability of the
streamflow. In order to quantify the added value of QDAI,
we compared QDAI values to SSFI values computed with
a 1-month timescale. The anomaly of streamflow in SSFI
was computed in the same manner as for pQ, by fitting the
gamma cumulative distribution function for monthly Qant. It
was then transformed into a Gaussian distribution by calcu-
lating the mean and standard deviation, as well as using the
approximate conversion provided by Abramowitz and Ste-
gun (1965); this is also used by Kumar et al. (2009). Fig-
ure 10 shows three grid cells characterized by rather differ-
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Figure 8. Global distribution of QDAI in August 2003 (left) and December 2003 (middle) and for all 360 months of the reference period
(right), computed with alternative assumptions about EFR for grid cells with humid and (semi)arid conditions. Grid cells where all three EFR
assumptions result in QDAI= 0 are not included.

Figure 9. Continental maps of QDAI for Asia and North America for August 2009 and March 2002, respectively (a, c), with blue points
showing the locations of the Indian and US grid cells. Time series of different QDAI with alternative EFR for the Indian grid cell for
2001–2010 (b) and the US grid cell for 1998–2007 (d). Grid cells which are not computed due to land cover are denoted as nc.

ent values of the ratio R of long-term average annual WUsw
to long-term average annual Qant: high (Vietnam, 10.75◦ N,
107.25◦ E in Fig. 10a), moderate (southeast USA, 31.75◦ N,
−84.75◦ E in Fig. 10b) and low (Russia, 63.75◦ N, 136.75◦ E
in Fig. 10c).

As expected, pQ and SSFI show an equivalent behavior in
all grid cells as they are based on the same streamflow data,
do not use any additional information and can be mathemati-
cally transformed from one to the other (Table 1). In contrast,

QDAI is based additionally on estimates of the grid cell’s
specific human surface water demand and assumptions on
EFR. A comparison of SSFI and QDAI is, therefore, essen-
tially a comparison of pQ and QDAI. If R is very small, such
as in the case of the Russian grid cell, with R = 3.5× 10−6

(Fig. 10c), QDAI is very similar to pQ, while dQ is very
similar to EFR, being 80 % of the mean monthly Qnat (see
explanation in Sect. 3.2). For the Vietnamese grid cell with a
high R value of 0.143, QDAI does not interpret the anoma-
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Figure 10. Time series of QDAI and SSFI for grid cells with different ratios of surface water abstractions to streamflow R in three regions:
(a) Vietnam (10.75◦ N, 107.25◦ E), (b) southeast USA (31.75◦ N, −84.75◦ E) and (c) Russia (63.75◦ N, 136.75◦ E). SSFI is shown in red if
it is below −0.84 standard deviations, corresponding to a 5-year return period and a p of zero (Table 1).
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lously low streamflow values in December 2003 and Decem-
ber 2005 as a drought hazard due to the low human water
demand for surface water in December. Globally averaged,
the fraction of months under drought during 1981–2010 is
16.0 % according to QDAI and 19.1 % according to SSFI.
This reflects that QDAI only identifies a drought condition
if there is, in addition to the anomalously low flow, a water
deficit.

4 Conclusions

In this paper, we presented two drought hazard indices that
combine the drought deficit and anomaly characteristics: one
for soil moisture drought (SMDAI) and the other for stream-
flow drought (QDAI). With SMDAI, which describes the
drought hazard for vegetation, we achieved the simplifica-
tion of the deficit-anomaly-based Drought Severity Index in-
troduced by Cammalleri et al. (2016). We transferred the
DSI concept to streamflow drought, creating an indicator that
specifically quantifies the hazard that drought poses for water
supply from rivers. To our knowledge, QDAI is the first ever
streamflow drought indicator that combines the anomaly and
deficit aspects of streamflow drought.

The concept of SMDAI and QDAI was tested at the global
scale by using simulated data from the latest version of the
global water resources and using the model WaterGAP. Con-
versely the reliability of the computed SMDAI and QDAI
values strongly depends on the quality of the model out-
put. The indicators themselves have been proven to provide
meaningful quantitative estimates of drought hazard that de-
pend not only on the unusualness of the situation but also
on the concurrent deficit of available water compared to
demand. We found that the values of the combined deficit
anomaly drought indices are often broadly similar to purely
anomaly-based indices and share with them the difficulty of
dealing with intermittent streamflow regimes. However, they
do provide more differentiated spatial and temporal patterns
and help to distinguish the degree and nature of the drought
hazard. QDAI can serve as a tool for informing water sup-
pliers and other stakeholders about the joint drought hazard
for water supply for both humans and the river ecosystem,
while stakeholders may adapt the EFR applied for comput-
ing QDAI in accordance with their valuation of ecosystem
health. Like all hydrological drought indicators that reflect
streamflow anomaly, QDAI needs to be interpreted carefully
in case of highly intermittent streamflow regimes.

The term “drought hazard” can be defined as the source of
a potential adverse effect of an unusual lack of water on hu-
mans or ecosystems. In this sense, SMDAI and QDAI are
drought hazard indicators, even if they include some ele-
ments of vulnerability to drought. Both SMDAI and QDAI
are well applicable in drought risk studies. In local drought
risk studies, additional indicators of ecological or societal
vulnerability should be added, for example, vegetation/crop

type or income levels. In regional or global drought risk stud-
ies, the inclusion of grid-scale values of QDAI and SM-
DAI would be beneficial as both indices contain spatially
highly resolved information on vulnerability, while most
other vulnerability indicators represent spatial averages of
much larger spatial units such as countries.

Data availability. WaterGAP 2.2d model output data used in this
study are available at https://doi.org/10.1594/PANGAEA.918447
(Müller Schmied et al., 2020). The outputs from this study are avail-
able at https://doi.org/10.6084/m9.figshare.14213852 (Popat and
Döll, 2021).
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