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Abstract. Monitoring drought and mastering the laws of
drought propagation are the basis for regional drought pre-
vention and resistance. Multivariate drought indicators con-
sidering meteorological, agricultural and hydrological infor-
mation may fully describe drought conditions. However, se-
ries of hydrological variables in cold and arid regions that
are too short or missing make it difficult to monitor drought.
This paper proposed a method combining Soil and Water As-
sessment Tool (SWAT) and empirical Kendall distribution
function (KC′ ) for drought monitoring. The SWAT model,
based on the principle of runoff formation, was used to sim-
ulate the hydrological variables of the drought evolution pro-
cess. Three univariate drought indexes, namely meteorologi-
cal drought (standardized precipitation evapotranspiration in-
dex; SPEI), agricultural drought (standardized soil moisture
index; SSI) and hydrological drought (standardized stream-
flow drought index; SDI), were constructed using a para-
metric or non-parametric method to analyze the propagation
time from meteorological drought to agricultural drought and
hydrological drought. The KC′ was used to build a multi-
variable comprehensive meteorology–agriculture–hydrology
drought index (MAHDI) that integrated meteorological, agri-
cultural and hydrological drought to analyze the characteris-
tics of a comprehensive drought evolution. The Jinta River
in the inland basin of northwestern China was used as the
study area. The results showed that agricultural and hydro-
logical drought had a seasonal lag time from meteorologi-
cal drought. The degree of drought in this basin was high

in the northern and low in the southern regions. MAHDI
proved to be acceptable in that it was consistent with histor-
ical drought records, could catch drought conditions charac-
terized by univariate drought indexes, and capture the occur-
rence and end of droughts. Nevertheless, its ability to charac-
terize mild and moderate droughts was stronger than severe
droughts. In addition, the comprehensive drought conditions
showed insignificant aggravating trends in spring and sum-
mer and showed insignificant alleviating trends in autumn
and winter and at annual scales. The results provided theo-
retical support for the drought monitoring in the Jinta River
basin. This method provided the possibility for drought mon-
itoring in other watersheds lacking measured data.

1 Introduction

According to the fifth evaluation report of the Intergovern-
mental Panel on Climate Change (IPCC), climate change
characterized by temperature rise is the main concern of
the global change in the past half-century with the most
rapid warming in the mid-latitudes of the Northern Hemi-
sphere (IPCC, 2018; Ji et al., 2014). The arid inland river
basins of China are mainly located in the hinterland of the
Eurasian continent in the mid-latitudes and are very sensitive
to global climate change. Therefore, it is particularly impor-
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tant to study the drought conditions of the inland river basins
of China under the prevailing climate change scenario.

Drought is a dynamic creeping phenomenon (Oikonomou
et al., 2019; Ahmadi and Moradkhani, 2019); however,
there is no precise definition for the differences in
hydro-meteorological variables and socioeconomic elements
(Mishra and Singh, 2010). Generally, the droughts are di-
vided into four categories (Heim, 2002): (i) meteorological
drought, referring to a period of time with a lack of precipi-
tation (Mishra and Singh, 2010; Dai, 2011), (ii) agricultural
drought, referring to a period with low soil water hinder-
ing crop growth and reducing grain yield (Crow et al., 2012;
Panu and Sharma, 2002), (iii) hydrological drought, referring
to a deficit in streamflow or groundwater resources (Cam-
malleri et al., 2016), and (iv) socioeconomic drought, refer-
ring to a phenomenon that water shortage affects production,
consumption and other socioeconomic activities. There is a
close relationship among the various droughts. Insufficient
precipitation for a long time leads to meteorological drought.
When this situation lasts for a long period of time, the soil
water content decreases, which leads to a reduction in crop
yield, resulting in agricultural drought. Insufficient precipita-
tion for a long period of time also causes a significant drop
in surface water and groundwater, resulting in hydrological
drought. When all these three types of drought adversely af-
fect social production and economic development, socioeco-
nomic drought occurs.

Drought index is an important indicator to characterize and
measure the degree of drought, and it can be used to monitor,
evaluate and study the development of drought. For exam-
ple, the standardized precipitation index (SPI) (McKee et al.,
1993) and the standardized precipitation evapotranspiration
index (SPEI) (Vicente-Serrano et al., 2010) are commonly
used as meteorological drought indexes (Vicente-Serrano et
al., 2012). The hydrological drought indexes are usually gen-
erated using streamflow, such as the streamflow drought in-
dex (SDI; Nalbantis and Tsakiris, 2008) and the standard-
ized runoff index (SRI; Shukla and Wood, 2008). The soil
water content is the main variable to calculate the agricul-
tural drought index, for instance, the crop water stress index
(Jackson et al., 1988) and the standardized soil moisture in-
dex (Mishra et al., 2015). Calculation of the drought index
requires a long time series of drought variables. However, the
scarcity of measured data is a major problem in the process
of drought index construction. Therefore, to derive hydro-
logical datasets, indirect means have been attempted, such as
the watershed hydrological model. A recent study carried out
by Dash et al. (2019) apply the Soil and Water Assessment
Tool (SWAT) hydrological model to simulate the soil mois-
ture data and develop a soil moisture stress index (SMSI) for
agricultural drought analysis. Further, Zhang et al. (2017a)
adopt the variable infiltration capacity (VIC) hydrological
model to monitor soil moisture drought and construct a sea-
sonal forecasting framework subsequently.

With the deepening of drought research, the insufficiency
of univariate drought indexes has gradually emerged. Be-
cause drought characteristics are usually interrelated, tradi-
tional drought research based on univariate frequency analy-
sis can hardly reflect the multi-dimensional effects of drought
on society. Therefore, it is necessary to develop a compre-
hensive drought index integrating multiple variables related
to drought. Keyantash and Dracup (2004) use principal com-
ponent analysis (PCA) to extract dominant drought variables
to develop an aggregate drought index (ADI) for comprehen-
sive drought features (Rajsekhar et al., 2015). However, this
method is a linear combination of related variables which
could not reveal its nonlinear structural characteristics. The
copula function can connect different marginal distributions
and consider the correlation between them. It is one of the
most commonly used connection methods at present and has
been widely used in the field of hydrometeorology (Hao
and AghaKouchak, 2013). For example, the joint drought
index (JDI) is constructed by copula using joint accumu-
lated distribution of the runoff and precipitation (Kao and
Govindaraju, 2010). Guo et al. (2019) use copula to pro-
pose an improved multivariate standardized reliability and
resilience index (IMARRI) to fully appraise the dynamic risk
of socioeconomic drought. Wang et al. (2020) construct a
standardized precipitation evapotranspiration streamflow in-
dex (SPESI) based on copula to comprehensively display
characteristics of meteorological and hydrological drought.
Nevertheless, the limitation of the copula function is re-
flected when connecting three or more drought indicators
(Hao and Singh, 2013; Kao and Govindaraju, 2008, 2010),
and this phenomenon is generally called “curse of dimen-
sionality” (Hao and Singh, 2013). To overcome this limita-
tion, this study applied empirical Kendall distribution func-
tion (KC′ ) to construct a new comprehensive drought indica-
tor by combining precipitation, evapotranspiration, soil water
and streamflow. TheKC′ is obtained by Nelsen (2006), which
is based on the generation function of the Archimedean cop-
ula function family. It is a probability integral transformation
method and can transform multidimensional variable infor-
mation into single-dimensional variable information (Hao et
al., 2017).

The Jinta River basin (JRB) is a tributary basin of the
Shiyang River basin (SRB) located in a climate-sensitive
area (Wei et al., 2020). Therefore, it is important to study
further drought conditions in the basin under the influence
of climate change. The description of drought conditions
is based on the construction of a drought index, which is
limited by the shortage of measured data. In addition, the
construction of a comprehensive drought index should re-
flect the drought situation comprehensively. In this paper,
the univariate drought indexes (SDI, SSI and SPEI) estab-
lished by measuring precipitation, streamflow, soil water and
evapotranspiration simulated by the SWAT model (Arnold et
al., 1998; Zhang et al., 2010) explored the propagation time
from meteorological drought to hydrological and agricultural
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Figure 1. Basic information about the Jinta River basin. (a) The geographic location of the Jinta River in northwestern China; (b) precipitation
and hydrological stations in the Jinta River basin.

drought. A new meteorology–agriculture–hydrology drought
index (MAHDI) was developed using the empirical Kendall
distribution function based on the differences between pre-
cipitation and evapotranspiration, streamflow, and soil water.
MAHDI was also used to estimate the spatial distribution of
the temporal tendency in different seasons. The specific ob-
jectives are (i) to investigate the propagation time character-
istics from meteorological drought to hydrological and agri-
cultural drought; (ii) to validate the applicability of MAHDI
by comparing it with historical drought events and univariate
drought indexes (SDI, SSI and SPEI); and (iii) to estimate the
spatial distribution of MAHDI’s temporal tendency in differ-
ent seasons.

2 Materials and methods

2.1 Study area

The Jinta River basin (JRB) with an area of 841 km2 orig-
inates in the Qilian Mountains and is a tributary of the
Shiyang River basin located in Gansu Province, China (see
Fig. 1). It is bounded between 37◦02′ and 39◦17′ N and
100◦57′ and 104◦12′ E. The JRB is located in the middle of
the eight subbasins, adjacent to the Zamu River in the east
and to the Xiying River in the west, as shown in Fig. 1a.

The terrain of the JRB is higher in the south and lower in
the north, sloping from southwest to northeast. The altitude
ranges from 1890 to 4780 m, with an average altitude of
3000 m (Fig. 1b). The annual precipitation in the basin ranges
from 200 to 500 mm, and the annual evaporation is about
700–1200 mm.

2.2 Data sources

A digital elevation model (DEM) with a spatial resolution of
30 m provided by the Geospatial Data Cloud site, Computer
Network Information Center, Chinese Academy of Sciences
(http://www.gscloud.cn, last access: 15 June 2020), was used
for watershed delineation. The digital soil map was obtained
from the Harmonized World Soil Database (HWSD, ver-
sion 1.1) developed by the Food and Agricultural Organi-
zation of the United Nations (FAO–UN). The map provided
data for 5000 soil types containing two soil layers’ worth of
information (0–30 and 30–100 cm depth). The land-use data
(30 m× 30 m) were derived from the satellite remote sens-
ing image data of Landsat Thematic Mapper (TM) provided
by the Geographical Information Monitoring Cloud Platform
(http://www.dsac.cn/DataProduct, last access: 18 June 2020).
The observed climatic information of precipitation, maxi-
mum air temperature, minimum air temperature, wind speed
and relative humidity was obtained from six meteorologi-
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cal stations shown in Fig. 1a and three precipitation sta-
tions shown in Fig. 1b. The monthly river discharge data
for the model calibration and validation were obtained from
the Nanying hydrological station at the Hydrology and Water
Resources Bureau of Gansu Province for the period of 1986–
2012.

2.3 SWAT model

The SWAT model developed by the Agricultural Re-
search Service of the United States Department of Agri-
culture (USDA-ARS) is a continuous-time, semi-distributed
and physics-based water quality model (Arnold et al., 1998;
Gassman et al., 2014; Romagnoli et al., 2017) for simulat-
ing hydrological cycle, plant growth cycle and transportation
of sediments (Arnold et al., 1998; Pyo et al., 2019; Stefani-
dis et al., 2018; Wu et al., 2011). The SWAT model delin-
eates a catchment into subbasins based on the stream net-
work and topography and subsequently into hydrological re-
sponse units (HRUs) representing different combinations of
soil types, land use and slope. The simulation calculation of
soil effective moisture content, surface runoff, nitrogen con-
tent and sediment yield are carried out for each of the HRUs.
The hydrological part of the model is based on the water bal-
ance equation in the soil profile with processes, including
precipitation, surface runoff, infiltration, evapotranspiration,
lateral flow, percolation and groundwater flow (Arnold et al.,
1998; Kiniry et al., 2005).

SWt = SW0+

t∑
i=1

(
Rday,i −Qsurf,i −Eα,i −wseep,i −Qgw,i

)
, (1)

where SWt is the final soil water content at time pe-
riod t (mm), SW0 is the initial soil water content (mm), t is
the time (number of days), Rdays,i is the amount of rainfall
on ith day (mm), Qsurf,i is the amount of surface runoff on
ith day (mm), Eα,i is the amount of evapotranspiration on
ith day (mm), wseep,i is the amount of water giving recharge
to groundwater from the soil profile on ith day (mm), and
Qgw,i is the amount of return flow on ith day (mm).

The runoff simulation of the watershed mainly consists of
evapotranspiration, surface runoff, soil water and groundwa-
ter. The SWAT model has two main methods for estimat-
ing surface runoff, which are predicted by the Soil Con-
servation Service (SCS) curve (Bouraoui et al., 2005). The
channel routing uses the Muskingum method or the variable
storage coefficient model, including the migration of water,
sediment, nutrients and pesticides in the river network. The
simultaneous calculation of reservoir confluence is also re-
quired. Evapotranspiration in the SWAT model refers to the
process of surface water transforming into water vapor, in-
cluding water evaporation, transpiration and sublimation re-
tained by tree crowns, as well as soil water evaporation. A
part of the soil water is absorbed by plants or lost by tran-
spiration, a part of it supplies the groundwater, and the other
part forms runoff on the surface. Groundwater runoff exists

in the form of base flow calculated by groundwater storage
and continuous runoff in the dry season.

2.4 Univariate drought index

A drought index contains a clear physical mechanism
(Keyantash and Dracup, 2002) and is the main tool for the
quantitative analysis of drought characteristics. In addition,
it can monitor the situation of the start time, the end time,
duration, intensity and spatial range of drought. Therefore,
the construction of the drought index is the basis of drought
research. The differences of precipitation and evapotranspi-
ration (P–ET), soil moisture (SM) and streamflow (D) sim-
ulated by the SWAT model were used to construct a me-
teorological drought index (SPEI), agricultural drought in-
dex (SSI) and hydrological drought index (SDI) for differ-
ent timescales (1, 3 and 12 months) using parametric or non-
parametric methods.

2.4.1 Parametric methods

The monthly sequence for each drought variable was fitted
one by one by selecting an appropriate distribution func-
tion. The maximum likelihood method was applied to esti-
mate the relevant parameters of the distribution function, the
Kolmogorov–Smirnov (K–S) test was used to test the fitting
priority, and the Akaike’s information criterion (AIC) was
used to select the optimal fitting function. The cumulative
probability distribution for each drought variable was then
transformed into the standard normal distribution. Finally,
the inverse function of the normal distribution was used to
calculate the drought index.

i. The distributions selected in this study include gamma
distribution, log-normal distribution, Weibull distribu-
tion, normal distribution and logistic distribution. As-
suming that each distribution was suitable for the related
drought variable series of each timescale, the maximum
likelihood method was used to fit the parameter estima-
tion. For a probability density function f (x,θ), θ is the
parameter to be estimated, and X1, X2, X3, . . . ,Xn is
a sample from the population. If x1, x2, x3, . . . , xn is
the sample value, the steps of the maximum likelihood
method are as follows.

a. Construct the likelihood function of the sample.

L(θ)= L(x1,x2, . . ., xn;θ)=

n∏
i=1
f (xi,θ) (2)

b. The log-likelihood function is given as follows:

lnL(θ)=
n∑
i=1

f (xi,θ) . (3)
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c. Take the derivative of the parameter θ in Eq. (3) and
make the derivative value 0:

d lnL(θ)
dθ

= 0. (4)

d. Solve the likelihood equation to get the maximum
likelihood estimate θ̂ for the parameter θ .

ii. The Kolmogorov–Smirnov (K–S) test is suitable for
testing the goodness-of-fit of a dataset for most of the
probability distributions regardless of the sample size
by comparing the cumulative sample distribution with
the cumulative distribution function specified by the
null hypothesis. If the absolute value of the difference
is within the specified range, the sample obeys the as-
sumed theoretical distribution. We made H0 the sample
obeying the theoretical distribution, and H1 indicated
that the sample did not follow the theoretical distribu-
tion. The statistic D is constructed as follows:

D =max |F1(x)−F2(x)| , (5)

where F1(x) represents the cumulative distribution of
samples, and F2(x) represents the theoretical distribu-
tion. At the selected significance level of α (α = 0.05),
ifD >D(n,α) (n is the sample size), theH0 is rejected,
andH1 is accepted; otherwise,H0 is accepted, andH1 is
rejected.

iii. Akaike’s information criterion (AIC) is a standard to
measure the goodness-of-fit of the statistical model
founded and developed by Japanese statistician Akaike.
It weighs the complexity of the estimated model and the
goodness of the model fitting data and is given as fol-
lows:

AIC= 2m− lnL, (6)

where m is the number of parameters estimated by the
distribution function, and L is the maximum likelihood
function value. As increasing the number of free param-
eters improves the goodness of fitting, AIC encourages
the goodness of data fitting but tries to avoid overfitting.
Therefore, the priority model should be the one with the
lowest AIC value. A lower AIC value indicates a better
fit.

According to the AIC, the optimal theoretical distri-
bution was selected. The inverse standardized value of
the theoretical distribution value corresponding to each
drought variable was taken as the parametric drought
index:

DIp =∅−1(P ), (7)

where DIp is the parametric drought index value, ∅ is
the standard normal distribution function, and P is the
theoretical cumulative probability.

2.4.2 Non-parametric method

If the four theoretical distributions for a certain drought vari-
able could not pass the K–S test in the process of building
a parametric drought index, the non-parametric method was
used to build the drought index.

Pnonp (xi)=
i− 0.44
n+ 0.12

, (8)

where n is the length of the sequence, i is the order when
the sequence of variables is ascending, and Pnonp is the em-
pirical cumulative probability. The inverse standardization of
the empirical cumulative probability is the non-parametric
drought index expressed as follows:

DInonp =∅−1 (Pnonp
)
, (9)

where DInonp is the non-parametric drought index value.

2.5 Trivariate drought index

The Kendall distribution function is obtained from the gen-
eration function of the Archimedean copula function family.
It is a probability integral transformation method (Nelsen,
2006) and can convert multidimensional variable informa-
tion into one-dimensional variable information. As some
copula functions may not have the analytic expression of
the Kendall distribution function, this study used a non-
parametric method to construct the empirical Kendall distri-
bution function (Nelsen et al., 2003; Hao et al., 2017) ex-
pressed as follows:

KC′ = Ptri =
n2

n
, (10)

where n2 is the number of samples satisfying C′(i/n, j/n,
k/n)≤ p (C′ is the empirical copula function), n is the total
number of samples, and Ptri is the three-dimensional cumu-
lative probability. The express of empirical copula is given as
follows (Hao et al., 2017):

C′
(
i

n
,
j

n
,
k

n

)
=
n1

n
, (11)

where n1 is the number of the samples (xm, ym, zm) satisfying
(xm ≤ x(i) and ym ≤ y(j) and zm ≤ z(k)) and 1≤m≤ n.

The empirical Kendall distribution function was used to
join the three drought-related variables to obtain a trivariate
drought indicator by inverse standardization:

MAHDI=∅−1 (Ptri) , (12)

where MAHDI is the trivariate drought index value.

3 Results and discussion

3.1 SWAT model calibration and validation

In order to calibrate and validate the runoff-related pa-
rameters, we applied the SWAT calibration and uncertainty
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programs (SWAT-CUPs). The calibration period was taken
as 1986–2000, and the validation period was taken as 2001–
2012. In addition, a warm-up period of 1984–1986 was con-
sidered to minimize the uncertainty caused by the initial en-
vironment of the model (Zhang et al., 2019). In the SWAT-
CUPs, the sequential uncertainty fitting version 2 (SUFI-2)
algorithm (Abbaspour et al., 2007) was chosen for parameter
sensitivity and model uncertainty analysis (Abbaspour et al.,
2015).

Table 1 shows the top four sensitivity parameters of the
JRB and their initial and fitted values. The CN2, the com-
prehensive response of the underlying surface characteristics,
was the most sensitive parameter in the hydrological process.
The value of CN2 was calibrated to 70.51–95.03 for different
land-use types. In order, the next sensitivity parameters were
SOL_AWC, TLAPS and SOL_K. Among them, SOL_AWC
and SOL_K are soil-related sensitivity parameters, and their
fitted values were 0.008 and 99.65, respectively. The TLAPS
is a parameter related to temperature, and its optimal value
was 2.83.

Uncertainty of the model was adjudged on the basis of
P -factor and R-factor indicators (Abbaspour et al., 2007).
When the P factor > 0.7 and R factor< 1.5, the uncertainty
of the model was considered as acceptable, and the param-
eter ranges were taken as the calibrated parameters. Table 2
shows that two indicators are in the acceptable range, with
a P factor of 0.72 and an R factor of 0.65. To measure the
model performance, we selected the coefficient of determina-
tion (R2) and the Nash–Sutcliffe simulation efficiency (ENS)
(Table 2). The simulation results showed that theR2 andENS
in the JRB were 0.76 and 0.75, respectively, for the calibra-
tion period and 0.73 and 0.72, respectively, for the validation
period. Figure 2 shows the plots for the simulated monthly
streamflow against the observations. The figure indicated that
the simulated and observed monthly streamflow were in good
agreement with the period considered, and their changes fol-
lowed the precipitation. Overall, the model performance was
satisfactory for subsequent analysis.

3.2 Drought characterization

The SPEI, SSI, SDI and MAHDI were applied to all sub-
basins for different timescales. For calculating the four in-
dexes, precipitation, evapotranspiration, soil moisture and
streamflow, data from 1986 to 2012 were adopted in this
study. Thresholds of the indexes were divided according to
the SPI (McKee et al., 1993).

3.2.1 The propagation time from meteorological
drought to hydrological and agricultural drought

To study the propagation time from meteorological drought
to hydrological drought, the relationships between the SDI
and the SPEI with various timescales were explored. Sim-
ilarly, the relationship between SSI and SPEI on different

timescales also reflected the propagation time from meteo-
rological drought to agricultural drought. We can mention
subbasin no. 6 where the hydrological station is located as an
example.

Figure 3 shows the correlation coefficients between
monthly SDI and SPEI with various timescales at subbasin
no. 6. High correlation coefficients (> 0.7) of SDI and SPEI
were observed for spring and summer with the timescales
from 2 to 9 months. Low correlation coefficients (> 0.4)
were observed for autumn and winter with about a 6–9 month
scale. The lag time in spring and summer was more obvi-
ous, showing certain seasonal characteristics, whereas the lag
time in autumn and winter had inconspicuous seasonal char-
acteristics. A reasonable explanation for this phenomenon
might be more sources of recharge (rainfall and iceberg
snowmelt) in spring and summer, while groundwater was
the only source of recharging the river in autumn and win-
ter, which was related to the water stored during spring and
summer.

Similarly, Fig. 4 depicts the propagation time from mete-
orological drought to agricultural drought at subbasin no. 6,
which also shows an obvious seasonal characteristic. In sum-
mer, the lag time was approximately concentrated over 2
months with a correlation coefficient value higher than 0.8,
while the response time in other seasons was longer. The
propagation time from meteorological drought to agricultural
drought was, therefore, the shortest in summer. This may be
the result of high soil moisture due to high rainfall during the
season. The propagation time in spring was 3 months longer
than that in summer, which may be because of the potential
influence of snowmelt. In the autumn and winter, there was
a longer lag time (6–12 months) in responding to the me-
teorological drought, possibly due to the infiltration of soil
water during the preceding months. Compared with spring
and summer, the evaporation rate of soil water in autumn and
winter was slower than that in spring and summer, which pro-
longed the time when the soil water content reduced to that
of the threshold for agricultural drought. This made the agri-
cultural drought lag behind the meteorological drought for a
long time.

Compared to Fig. 3, Fig. 4 is more precise in showing
that the propagation time from meteorological drought to
agricultural drought increases with a decrease in tempera-
ture and precipitation, and there is a clear gap between dif-
ferent seasons. However, the time of hydrological drought
lagging behind the meteorological drought was not obvious.
The distribution of glaciers in the upper reaches of the Jinta
River and the significantly longer time of soil water infil-
tration than that of confluence formation might made the
propagation time from meteorological drought to agricul-
tural drought more obvious in different seasons compared to
the propagation time from meteorological drought to hydro-
logical drought. Studying the lag time of different types of
droughts from meteorological droughts was helpful in pre-
dicting other droughts using meteorological drought in the
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Table 1. Sensitivity analysis and final value range of parameters in Jinta River basin.

Parameters Meaning of parameter Initial Fitted value Method t stat p value
range

CN2∗ SCS runoff curve number for moisture condition II 35–98 70.51–95.03 Replace 43.10 < 0.01
SOL_AWC Available water capacity of the soil layer 0–1 0.008 Replace 38.69 < 0.01
TLAPS Temperature lapse rate −10–10 2.83 Replace −7.72 < 0.01
SOL_K Saturated hydraulic conductivity 0–2000 99.65 Replace 5.04 < 0.01

Note that as the CN2 of different land-use types was calibrated separately, a range of the optimal CN2 values was provided.

Figure 2. Simulated and observed monthly streamflow series relative to precipitation (P ) during the calibration and validation periods in
the JRB.

Table 2. Model performance in monthly streamflow in JRB.

Indicators P factor R factor R2 ENS

Calibration period (1986–2000) 0.72 0.65 0.76 0.75
Validation period (2001–2012) – – 0.73 0.72

absence of measured data and may provide a theoretical ba-
sis for drought prevention.

Both drought propagation and the construction of a com-
prehensive drought index were based on the data output
by the SWAT hydrological model. Drought propagation de-
scribed the response relationship between different types of
drought based on the lag time from agricultural drought and
hydrological drought to meteorological drought. The goal in
the construction of the comprehensive drought index was to
combine different types of drought indexes and include the
lag time from agricultural drought and hydrological drought
to meteorological drought. It reflected the drought state when
only one or two kinds of drought occur and could be used to
describe the characteristics of drought.

3.2.2 Applicability analysis of MAHDI

Using the empirical Kendall function to combine the uni-
variate drought indexes, a comprehensive drought index,
MAHDI, that can simultaneously characterize meteorologi-

cal, agricultural and hydrological drought was obtained. The
monthly change in MAHDI series in sub-watershed no. 6
from 1986 to 2012 was plotted, as shown in Fig. 5. It can
be seen from the figure that 1991, July 1999–May 2000,
November 1994–January 1995, 2009 and July 2010 were the
drought months. According to the China Meteorological Dis-
aster Dictionary: Gansu Volume, the area was hot and less
rainy in 1991, and continuous drought occurred in summer
and autumn; in 1994–1995, the region suffered from continu-
ous drought in winter and spring; and in 1999, the region suf-
fered from severe drought in autumn and winter, which were
consistent with the drought events described by MAHDI. Ac-
cording to the “Water Resources Bulletin of Gansu Province
in 2009”, the area had slightly less annual precipitation and
higher temperatures. MAHDI also captured the drought in
this year. Above all, MAHDI can be used to detect the occur-
rence and development of drought.

To analyze the distribution of different droughts and the
applicability of MAHDI, the year 1999 was selected for anal-
ysis. The spatial distribution of SDI, SSI, SPEI and MAHDI
for the year 1999 is shown in Fig. 6. For SDI, severe drought
was distributed in subbasin nos. 1–5, 10 and 18. Moderate
drought was observed in subbasin nos. 6–8 and 11, and mild
drought was observed in the rest of the subbasins. For SSI,
extreme drought was distributed in subbasin nos. 1, 2 and 11,
severe drought was located in subbasin nos. 3, 5, 8, 9 and 17–
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Figure 3. The correlation coefficients between monthly SDI and SPEI with different timescales at subbasin no. 6.

Figure 4. The correlation coefficients between monthly SSI and SPEI with different timescales at subbasin no. 6.

Figure 5. Monthly scale MAHDI sequence at subbasin no. 6.

19, moderate drought was observed in subbasin nos. 4, 6,
7, 10, 14, 16 and 21–22, and mild drought was distributed
in subbasin nos. 12, 13, 15, 20 and 23. For SPEI, severe
drought was observed in subbasin no. 18, moderate drought
was located in subbasin nos. 1–5 and 7–11, and mild drought
was observed in the rest of the subbasins. For MAHDI, se-

vere drought was located in subbasin nos. 1, 2 and 18, mild
drought was distributed in subbasin nos. 5, 12–16, 20 and 22–
23, and moderate drought was located in the rest of the sub-
basins. In conclusion, the drought in the northern part of the
basin was stronger than that in the southern part of the basin.

Different drought indexes showed different degrees of
drought severity. For univariate drought indexes, SSI showed
the highest degree of drought, followed by SDI, and SPEI
showed the lowest degree of drought. SPEI reflected the low-
est degree of meteorological drought, which was similar to
that described by the Thornthwaite aridity index (AI) con-
structed by Zhang et al. (2017b) using rainfall and poten-
tial evapotranspiration. As rainfall and temperature were the
core elements of SPEI, the meteorological drought was al-
leviated (Guo et al., 2016). The highest degree of drought
shown by SSI might be for topographic factors. There are
many glaciers in the JRB, and the river confluence speed
was faster than the soil infiltration speed resulting in low
soil water storage capacity. Besides, the calibrated value of
SOL_AWC by the SWAT model was only 0.008 (Table 1),
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Figure 6. Distribution of SDI, SSI, SPEI and MAHDI at a 12-month scale in JRB in 1999.

showing that the water storage in the soil layer in the basin
was very small. MAHDI captured all the mild and moderate
droughts shown by SDI, SSI and SPEI, as well as the severe
drought in some subbasins. However, it could not capture the
extreme drought shown by SSI in subbasin nos. 1 and 11.
Therefore, it may be concluded that MAHDI’s ability to cap-
ture mild and moderate droughts is stronger than its ability to
capture severe and extreme droughts.

Drought events in the periods of 1991–1992 and 1999–
2000 in subbasin nos. 6 and 8 were selected to verify
MAHDI’s ability to capture the onset and end time of drought
events (Table 3 shows the capture time of various drought
indexes for these drought events). Among the univariate
drought indexes, the SPEI captured the drought earlier than
any other index, and it also captured the earliest end time of
drought. The starting and ending time of drought represented
by SSI and SDI was later than that of SPEI, which made the
drought have a longer duration. This was because the rate
of change in precipitation and temperature was the fastest,
whereas runoff generation and soil water infiltration required
a certain time, making meteorological drought the most sen-
sitive to environmental changes. Compared with univariate
drought indexes, MAHDI characterized drought at the same
time as that of the SPEI and was consistent with SSI and
SDI’s characterization of the drought end time. It may be
concluded that MAHDI combined the advantages of SDI,
SSI and SPEI and was a comprehensive function of stream-

flow, soil water, precipitation and temperature. Overall, the
three-dimensional drought index, MAHDI, constructed in
this paper was acceptable.

3.2.3 Drought temporal characterization

To assess the spatial characteristics of comprehensive
drought temporal tendency in the JRB, we calculated the
Man–Kendall (M–K) statistics. The M–K statistics with a
significant level in MAHDI were represented for different
seasons and a 12-month scale (Fig. 7). A positive M–K statis-
tic indicated an increasing tendency in the drought index and
vice versa. Besides, the M–K statistic values also included a
test of significance (significance level was α = 0.05 and the
threshold values were ±1.96).

Figure 7 shows different spatial characteristics of drought
temporal trends for various seasons. In spring, MAHDI of
most of the subbasins showed a nonsignificant decreasing
trend, and only subbasin no. 4 showed an insignificant in-
creasing trend. In summer, MAHDI for most of the sub-
basins also showed an insignificant decreasing trend; sub-
basin no. 18 showed a significant decreasing trend. In au-
tumn, the drought index in subbasin nos. 3, 4, 21 and 18
showed a significant increasing trend, and the rest of the sub-
basins showed an insignificant upward trend. In winter, the
drought index in subbasin nos. 1 and 23 showed an insignif-
icant decreasing trend, and the changes in subbasin nos. 4,
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Table 3. The capture time of various drought indexes for the drought events that occurred in the periods 1991–1992 and 1999–2000 in
subbasin no. 6 and subbasin no. 8.

Reach 6 Reach 8

Index Onset time End time Index Onset time End time

1991–1992

SPEI June 1991 September 1991 SPEI June 1991 September 1991
SSI July 1991 January 1992 SSI June 1991 January 1992
SDI July 1991 January 1992 SDI July 1991 January 1992
MAHDI June 1991 January 1992 MAHDI June 1991 January 1992

1999–2000

SPEI June 1999 December 1999 SPEI June 1999 December 1999
SSI July 1999 May 2000 SSI June 1999 May 2000
SDI August 1999 May 2000 SDI July 1999 May 2000
MAHDI July 1999 May 2000 MAHDI June 1999 May 2000

Figure 7. M–K trend test of MAHDI at 3- and 12-month scales in JRB.

12, 13, 15 and 21 showed a significant increasing tendency;
the rest of the subbasins showed an insignificant increas-
ing trend. For a 12-month scale, MAHDI’s tendency was
mainly composed of an insignificant upward trend and an
insignificant downward trend. The subbasins with a drought
index showing an insignificant decreasing trend were sub-
basin nos. 3, 4, 10–12, 16 and 21, and the rest of the sub-
basins with a drought index showed an insignificant increas-
ing trend. Therefore, it might be concluded that the temporal
trend of drought had spatial differences that were influenced
by seasonal characteristics and geographical conditions in
the JRB during the study period.

Drought temporal tendency analysis can help people pre-
dict drought and take measures in advance to reduce the
drought damage. Our results found that an insignificant de-
creasing trend of MAHDI mainly occurred in spring and
summer, and autumn and winter showed an insignificant in-
creasing trend. About one-third of the subbasins showed an
insignificant decreasing trend, and about two-thirds of the
subbasins showed an insignificant increasing trend at a 12-
month scale. A possible explanation for this may be that
global warming made the climate in the upper reaches of the
Shiyang River warmer and more humid (Guo et al., 2016).
The trend of warming and humidification in autumn and win-
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ter was more obvious, which is consistent with the conclu-
sions put forward by previous researchers (Zhou et al., 2012).

4 Conclusion

In this paper, the SWAT hydrological model was used as an
indirect way to obtain hydrometeorological data, to simulate
the missing data to construct SDI, SSI and SPEI at different
timescales, and to analyze the transfer relationship between
different droughts. In addition, for the “dimensional disas-
ter” phenomenon that occurred when the copula function
was used to connect multidimensional variables, this study
usedKC′ to combine multiple hydrometeorological variables
to construct a comprehensive drought index, MAHDI, that
can simultaneously characterize meteorological, agricultural
and hydrological drought, and it analyzed the features of
drought changes in the JRB. The following conclusions were
derived from the research.

i. Agricultural and hydrological drought had a certain lag
to meteorological drought, and the lag time had seasonal
characteristics. The shortest lag time of about 2 months
was observed in summer, followed by spring. The lag
time in autumn and winter was the longest, mostly ex-
ceeding 6 months. The lag time of agricultural drought
was more obvious than that of hydrological drought,
which may be the reason that soil water infiltration time
was longer than runoff concentration time.

ii. The degree of drought in the north of the basin was
stronger than that in the south. The degree of agricul-
tural drought was the strongest, followed by hydrologi-
cal drought, and that of meteorological drought was the
weakest. This was due to the low water storage capac-
ity of the soil (the calibrated value of SOL_AWC by the
SWAT model is only 0.008).

iii. The drought represented by MAHDI was consistent
with historical drought events, and it could catch the
drought events captured by univariate drought indexes
(SDI, SSI and SPEI); however, its description ability of
mild and moderate drought was better than that of se-
vere drought. This may be due to the fact that the em-
pirical Kendall function uses a nonparametric method
to connect three-dimensional sequences, weakening the
influence of extrema in the sequence. In addition, it can
timely catch the occurrence and end of drought events.
In general, MAHDI was an acceptable comprehensive
drought index.

iv. MAHDI showed an insignificant downward trend in
spring and summer and an insignificant upward trend
in autumn and winter. For a 12-month scale, for about
one-third of the subbasins, MAHDI showed an insignif-
icant downward trend, and for about two-thirds of the
subbasins it showed an insignificant upward trend. The

drought situation in the JRB had been alleviated under
the influence of climate change.

The methods utilized in the present study to construct a com-
prehensive drought index (MAHDI) combining SWAT and
copula can be carried out in any other area with deficient
observed data. These results are emblematic of the drought
phenomenon in the JRB. However, the ability of MAHDI to
characterize severe drought is relatively low, and further re-
search is required to improve its ability to monitor severe
drought.
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