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Abstract. Verification of forecasts and warnings of high-
impact weather is needed by the meteorological centres, but
how to perform it still presents many open questions, starting
from which data are suitable as reference. This paper reviews
new observations which can be considered for the verifica-
tion of high-impact weather and provides advice for their us-
age in objective verification. Two high-impact weather phe-
nomena are considered: thunderstorm and fog. First, a frame-
work for the verification of high-impact weather is proposed,
including the definition of forecast and observations in this
context and creation of a verification set. Then, new observa-
tions showing a potential for the detection and quantification
of high-impact weather are reviewed, including remote sens-
ing datasets, products developed for nowcasting, datasets de-
rived from telecommunication systems, data collected from
citizens, reports of impacts and claim/damage reports from
insurance companies. The observation characteristics which
are relevant for their usage in forecast verification are also
discussed. Examples of forecast evaluation and verification
are then presented, highlighting the methods which can be

adopted to address the issues posed by the usage of these
non-conventional observations and objectively quantify the
skill of a high-impact weather forecast.

1 Introduction

Verification of forecasts and warnings issued for high-impact
weather is increasingly needed by operational centres. The
model and nowcast products used in operations to sup-
port the forecasting and warning of high-impact weather
such as thunderstorm cells also need to be verified. The
World Weather Research Programme (WWRP) of the World
Meteorological Organization (WMO) launched in 2015 the
High-Impact Weather Project (HIWeather), a 10-year inter-
national research project, which will advance the predic-
tion of weather-related hazards (Zhang et al., 2019). Fore-
cast evaluation is one of the main topics of the project.
The WWRP/WGNE Joint Working Group on Forecast Ver-
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ification Research (JWGFVR)1 of the WMO has among its
main tasks to facilitate the development and application of
improved diagnostic verification methods to assess and en-
able improvement of the quality of weather forecasts. The
verification of high-impact weather requires a different ap-
proach than the traditional verification of the meteorolog-
ical variables (for example, precipitation, temperature and
wind) constituting the ingredients of the high-impact weather
phenomenon. The phenomenon should be verified with its
spatio-temporal extent and by evaluating the combined ef-
fect of the different meteorological variables that constitute
the phenomenon. Therefore, the development of verification
approaches which make use of new sources and types of ob-
servations is encouraged.

Verification of weather forecasts is often still restricted to
the use of conventional observations such as surface synoptic
observation (SYNOP) reports. These conventional observa-
tions are considered the gold standard with well-defined re-
quirements for where they can be located and their quality
and timeliness (WMO-No.8, 2018). However, for the pur-
poses of verifying forecasts of high-impact weather, these
observations often do not permit characterization of the phe-
nomenon of interest and therefore do not provide a good ref-
erence for objective verification. In Europe, 10 years ago, a
list of new weather elements to be subject to routine verifica-
tion was proposed by Wilson and Mittermaier (2009) follow-
ing the member states and cooperating states’ user require-
ments for ECMWF products. Among others, visibility/fog,
atmospheric stability indices and freezing rain were men-
tioned, and the observations needed for the verification of
these additional forecast products were reviewed.

Depending on the phenomenon, many reference datasets
exist. Some are direct measurements of quantities to ver-
ify, e.g. lightning strikes compared to a lightning diagnostic
from a model, but many are not. In that case, we can derive
or infer estimates from other measurements of interest. The
options are many and varied, from remote sensing datasets,
datasets derived from telecommunication systems including
cell phones, data collected from citizens, reports of impacts
and claim/damage reports from insurance companies. In this
instance, it enables the definition of observable quantities
which are more representative of the severe weather phe-
nomenon (or its impact) than, for example, purely consider-
ing the accumulated precipitation for a thunderstorm. These
less conventional observations, therefore, enable more direct
verification of the phenomena and not just the meteorological
parameters involved in their occurrence.

The purpose of this paper is to present a review of new
observations or, more generically, quantities which can be
considered as reference data or proxies, which can be used
for the verification of high-impact weather phenomena. Far
from being exhaustive, this review seeks to provide the nu-

1The JWGFVR is a Working Group joint between WWRP and
WGNE (Working Group on Numerical Experimentation).

merical weather prediction (NWP) verification community
with an organic starter package of information about new
observations which may be suitable for high-impact weather
verification, providing at the same time some hints for their
usage in objective verification. In this respect, in this paper
the word “observations” will be used interchangeably with
“reference data”, considering also that in some cases what is
usually considered an observation may be only a component
to build the reference data against which to verify the forecast
(for example, a measurement of lightning with respect to a
thunderstorm cell). The word “verification” is used through-
out the paper to stress the focus towards a quantitative usage
of these observations. However, the word “evaluation” may
better represent in many cases the kinds of analyses that can
be undertaken using the datasets here considered, allowing
a better understanding of the forecast performance, particu-
larly for phenomena that have direct human consequences.

The review is limited to the new observations, meaning
those observations which are not already commonly used in
the verification of weather forecasts. The choice of what is
a new observation is necessarily subjective. For example, we
have chosen to consider radar reflectivity as a standard ob-
servation for the verification of precipitation, while the light-
ning measurements are considered among the new observa-
tions. Nonetheless, some of the methodologies developed for
standard observations may also provide guidance about how
to use the new observations. As an example, the significant
use of radar mosaics to evaluate convective and precipitation
forecasts (see Gilleland et al., 2009; Roberts et al., 2012) is a
useful guidance for any verification of thunderstorms. Some
of the new observations are familiar to meteorologists (e.g.
for monitoring and nowcasting) but quite new for the NWP
community, particularly from the point of view of their usage
in forecast verification.

In order to provide practical and quantitative examples, the
paper focuses on specific types of high-impact weather. First,
thunderstorms – a phenomenon occurring over several areas
of the globe, characterized by high spatio-temporal variabil-
ity as well as spatial extension – are considered. Many dif-
ferent data provide information about this phenomenon, per-
mitting us to span quite a variety of new observations. Sec-
ond, fog – a different phenomenon dominated by a very local
character, where the structure is less important – is consid-
ered. Starting from these examples, it is possible to extend
the subject to a wider spectrum of high-impact weather phe-
nomena following the same approach. Depending on their
being localized or spatially extended or characterized by fine
structure, phenomena like tornadoes, heat waves and urban
floods can benefit from approaches similar to the ones pre-
sented here.
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2 A proposed framework for high-impact weather
verification using non-conventional observations

In order to transform the different sources of information
about high-impact weather phenomena into an objective ref-
erence against which to compute the score of the forecast,
four steps are proposed.

The first step is to define the quantity or object to be ver-
ified, selected for forecasting the phenomenon, which will
be simply referred to as forecast, even if it may not be a
direct model output or a meteorological variable. As noted
above, for thunderstorms, accumulated precipitation may not
be the only quantity to be objectively verified, but it can be
a component of the entity to be verified, along with light-
ning, strong winds and hail. Suitable quantifiable compo-
nents should be directly observable or have a proxy highly
correlated to it. In the case of thunderstorms, the quantity to
be verified can be the lightning activity, or areas representing
the thunderstorm cells. An example of the latter case is given
by the cells predicted by the algorithms developed in the con-
text of nowcasting, where the cells are first identified in the
observations from radar or satellite data, possibly in combi-
nation with other sources of data. With Doppler-derived wind
fields, the occurrence of damaging winds could also be ex-
plored. In the case of fog, the quantity to be verified can be
visibility or fog areas, either directly predicted by a model or
obtained with a post-processing algorithm.

The second step is to choose the observation, or reference,
against which to verify the forecast. Observations which rep-
resent some of the phenomena described above already exist,
but often they are used only qualitatively, for the monitoring
of the events in real time or for nowcasting. Ideally, these new
observation types should have adequate spatial and temporal
coverage, and their characteristics and quality should be well
understood and documented. Even when a forecast of a stan-
dard parameter (e.g. 2 m temperature) is verified against a
standard, conventional, observation (e.g. from SYNOP), care
should be taken in establishing the quality of the observations
used as reference and their representativeness of the verified
parameter. This need becomes stronger in the case of non-
standard parameters (e.g. a convective cell) verified against a
non-standard observation (e.g. lightning occurrence or a con-
vective cell “seen” by some algorithm). In order to indirectly
assess the quality of the observations, or to include the un-
certainty inherent in them, comparing observed data relative
to the same parameter but coming from different sources is
a useful strategy. This approach can contribute to increasing
the different sources of observations available for the veri-
fication of a phenomenon, considering that they are all un-
certain. In the verification of phenomena, when new obser-
vations are used for verifying new products, it becomes even
more crucial to include the uncertainties inherent in the ob-
servations in the verification process, as they will affect the
objective assessment of forecast quality in a context in which
there may not be a previously viable evaluation of that fore-

cast. How to include uncertainties in verification will not be
discussed in the present paper. For a review of the current
state of the research, it is suggested to read Ben Bouallegue
et al. (2020) and the references therein.

After having identified the forecast and the reference, the
third step is the creation of the pair, called a verification
set. The matching of the two entities in the pair should
be checked before the computation of summary measures.
For example, is one lightning strike sufficient for verifying
the forecast thunderstorm cell? Since forecast and observa-
tion do not necessarily match in the context of high-impact
weather verification using non-conventional observations, a
preparatory step is needed for ensuring a good degree of
matching. In this step, the correlation between the two com-
ponents of the pair should be analysed. Some of the observa-
tion types may be subject to biases. As correlation is insensi-
tive to the bias for some types of forecast–observation pairs,
any thresholds used to identify the objects of the two quan-
tities must also be studied to ensure that the identification
and comparison is as unbiased (from the observation point
of view) as possible. In particular, the forecast and the ob-
servation should represent the same phenomenon, and this
can be achieved by stratifying the samples. A simple exam-
ple is the case where the forecast is a rainfall area and the
observation is a lightning strike: all the cases of precipita-
tion not due to convection in the forecast sample will make
the verification highly biased; therefore, they should be ex-
cluded. Another element of the matching is to assess spatial
and temporal representativeness, which may lead to the need
to suitably average or re-grid the forecasts and/or observa-
tions. Some examples of how the matching is performed are
presented in the next sections. If the forecasts and observa-
tions show a good statistical correlation (or simply a high
degree of correspondence), it can be assumed that one can
provide the reference for the other and objective verification
can be performed. This approach can be extended to proba-
bilities: an area where the probability of occurrence of a phe-
nomenon exceeds a certain threshold can be considered as
the predictor for the forecast of the phenomenon, provided
that its quality as predictor has been established through pre-
vious analysis. Therefore, the same verification approach can
be applied in the context of ensemble forecasting (Marsigli
et al., 2019). Verification of probability objects for thunder-
storm forecast is performed in Flora et al. (2019).

A special case of pair creation occurs when an object iden-
tified by an algorithm is used as the reference, as in the ex-
ample of the thunderstorm cell identified by radar. In this
case, a choice in the matching approach is required: should
the algorithm be applied only for the identification of the
phenomenon as observation or should it also be applied to
the model output for identifying the forecast phenomenon?
This is similar to what is done in the standard verification,
when observations are upscaled to the model grid, to be com-
pared to a model forecast, or instead both observations and
model output are upscaled to a coarser grid. In the first case,
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the model forecasts, expressed as a model output variable
(e.g. the precipitation falling over an area), are directly com-
pared with the observation (e.g. a thunderstorm cell identi-
fied by an algorithm on the basis of some observations). In
the second case, the same algorithm (an observation oper-
ator) is applied to the same set of meteorological variables
in both the observed data and the model output in order
to compare homogeneous quantities. This approach elimi-
nates some approximations made in the process of observa-
tion product derivation, but observation operators are also far
from perfect. Therefore, although this approach can ensure
greater homogeneity between the variables, it may still in-
troduce other errors resulting from the transformation of the
model output.

Finally, the fourth step is the computation of the verifica-
tion metrics. This step is not principally different from what
is usually done in objective verification, taking into account
the specific characteristics of the forecast–observation pair.
In general, high-impact weather verification requires an ap-
proach to the verification problem where the exact matching
between forecast and observation is rarely possible; there-
fore, verification naturally tends to follow fuzzy and/or spa-
tial approaches (Ebert, 2008; Dorninger et al., 2020). An is-
sue inherent in the verification of objects, such as convec-
tive cells, is the definition of the non-event: while it is in-
tuitive how to perform the matching between a forecasted
and an observed convective cell, how to define the mismatch
between a forecasted cell and the non-occurrence of con-
vective cells in the domain (false alarms) is not trivial. This
question should be addressed when the verification method-
ology is designed, and the answer may depend on the specific
methodology adopted for the spatial matching. Some of the
spatial methods (e.g. distance metrics, Method for Object-
based Diagnostic Evaluation (MODE; Davis et al., 2006))
do make it relatively easy to identify and/or evaluate false
alarms, and they should be preferred when the false alarms
are particularly relevant for the evaluation.

3 High-impact weather: thunderstorms

In convective situations, meteorological centres use a large
amount of real-time data from different sources (e.g. ground-
based, satellite and radar) in order to perform nowcast-
ing and monitoring of thunderstorms and thus issue official
weather warnings. In recent years, with the development of
convection-permitting models, thunderstorm forecasting has
become an aim of short-range forecasting, particularly with
the advent of modelling frameworks such as the Rapid Up-
date Cycle (RUC), which provides NWP-based forecasts at
the 0–6 h timescale updated every 15–60 min. These predic-
tions of thunderstorms, from nowcasting to forecasting, need
to be verified in order to provide reliable products to the fore-
casters and to the users.

New observations which could be used, or have been used
on a limited basis, for the verification of thunderstorms are
reviewed here, categorized as lightning detection networks,
nowcasting products and data collected through human ac-
tivities. Examples of usage of these data, sometimes in com-
bination, in the objective verification of thunderstorms are
presented.

3.1 Lighting detection networks

Data from lightning detection networks are used for now-
casting purposes in several centres. Lightning density and
its temporal evolution can serve as a useful predictor for the
classification of storm intensity and its further development
(Wapler et al., 2018). Therefore, these data show a good po-
tential in thunderstorm verification. Lightning data can be
used as observations in different ways, from the most direct,
verifying a forecast also expressed in terms of lightning to
more indirect, for example, by verifying a predicted thunder-
storm cell. In both cases, some issues need to be addressed,
starting from how many strokes are needed to detect the oc-
currence of a thunderstorm (specification of thresholds). In
the indirect cases, how large an area defines the region of
the phenomenon (thunderstorm) needs to be specified. These
choices are relevant also when lightning data are combined
with other observations (e.g. radar data), in order to im-
prove the detection of the phenomenon. Some of these issues
are further discussed when examples of forecast verification
against lighting data are presented.

Data from lightning localization networks have the advan-
tage of continuous space and time coverage and of a high
detection efficiency, compared to human thunderstorm obser-
vations. Some lightning detection networks which have been
used for thunderstorm verification (often only subjectively)
are listed in Table 1.

Lightning observations are also provided from space (Ta-
ble 2), which can complement ground-based weather radars
over sea and in mountainous regions.

3.2 Nowcasting products

National Meteorological Services develop tools for nowcast-
ing, where observational data from different sources (satel-
lite, radar, lightning, etc.) are integrated in a coherent frame-
work (Wapler et al., 2018; Schmid et al., 2019), mainly with
the purpose of detection and very-short-range prediction of
high-impact weather phenomena. In this context, the use of
machine learning to detect the phenomenon from new ob-
servations, after training the algorithm with a sufficiently
large sample of past observations, could play an important
role by mimicking a decision tree where different ingredients
(predictors) are combined and computing how they should
be weighted. Usually different algorithms are developed for
the different products. For a description of nowcasting meth-
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Table 1. Lightning detection networks used for thunderstorm verification in the papers referenced in this section.

Name of the dataset Scope Short description References

EUCLID (European Coopera-
tion for Lightning Detection)

Collaboration among national
lightning detecting networks
over Europe

Lightning data with homoge-
nous quality in terms of detec-
tion efficiency and location ac-
curacy. About 164 sensors in 27
countries.

http://www.euclid.org (last ac-
cess: 20 April 2021)

LINET
(Lightning Detection Network)

Originally developed at the
University of Munich

Lightning sensors set up in the
area to be monitored (base-
line 200 to 250 km). Informa-
tion about location, time and
stroke current.

http://www.nowcast.de (last ac-
cess: 20 April 2021)
Betz et al. (2009)

ATDnet (Arrival Time Differ-
ence network)

Met Office Network of 11 sensors around
the world.

https://navigator.eumetsat.
int/product/EO:EUM:DAT:
OBS:ATDNET (last access:
20 April 2021)
Anderson and Klugmann
(2014)

NORDLIS
(Nordic Lightning Information
System)

Scandinavia Cooperative lightning location
network between Norway, Swe-
den, Finland and Estonia; about
30 sensors.

Mäkelä et al. (2010)

National Lightning Detection
Network (NLDN)

USA NOAA develops derived prod-
ucts freely available for all
users, including summaries of
lightning flashes by county and
state and gridded lightning fre-
quency products.

Cummins and Murphy (2009)
https://www.ncdc.noaa.gov/
data-access/severe-weather/
lightning-products-and-services
(last access: 20 April 2021)

SA-LDN (South African Light-
ning Detection Network)

South African Weather Service Network of 26 Vaisala cloud-to-
ground lightning detection sen-
sors.

Gijben (2012)

Table 2. Lightning sensors on board satellites and the International Space Station.

Sensor/dataset Operated by Short description References

Lightning Imaging Sensor
(LIS)

International Space Station
(ISS)

Provides total lightning mea-
surements between+/−48◦ lat-
itude.

Blakeslee and Koshak (2016)

Geostationary Lightning Map-
per (GLM)

GOES-16 (NOAA) Measures a region including the
United States, providing light-
ning detection with a spatial
resolution of about 10 km.

https://ghrc.nsstc.nasa.
gov/lightning (last access:
20 April 2021)

Geostationary Lightning Im-
ager (or Lightning Mapping
Imager)

FY-4 (CMA) Provides measurements of the
total lightning activity with a
resolution of about 6 km at the
subsatellite point.

https://fy4.nsmc.org.cn/nsmc/
en/theme/FY4A_instrument.
html#LMI (last access:
20 April 2021)

Lightning Imager mission Meteosat Third Generation Provides lightning products
with 4.5 km resolution.

http://www.eumetsat.int (last
access: 20 April 2021)
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ods and systems, see WMO-No.1198 (2017) and Schmid et
al. (2019).

For the purpose of this paper, the detected vari-
ables/objects of nowcasting (thunderstorm cells, hail, etc.)
can become observations against which to verify the model
forecast. The detection step of the nowcasting algorithm can
be considered as a sort of analysis of the phenomenon ad-
dressed by that algorithm, e.g. an observation of a convective
cell, which could be used for verifying the forecasts of this
phenomenon. Here, nowcasting products are proposed as ob-
served data instead of prediction tools.

Remote-sensing-based nowcasting products have the clear
advantage of offering high spatial continuity over vast ar-
eas. As a disadvantage, it should be noted that some data
have only a qualitative value, but qualitative evaluation could
become quantitative by relaxing the comparison through
neighbourhood/thresholding (examples will be provided in
Sect. 3.4). The quantification of the errors affecting the prod-
ucts is also an issue, since usually this is not provided by
the developers. Efforts towards such an error quantification
should be made to provide appropriate confidence in the ver-
ification practice.

Exploring the possible usage of the variables/objects iden-
tified through nowcasting algorithms for the purpose of fore-
cast verification requires strengthening the collaboration be-
tween the verification and the nowcasting communities. On
the one hand, the nowcasting community has a deep knowl-
edge of the data sources used in the nowcasting process and
of the quality of the products obtained by their combination.
On the other hand, the forecast verification community can
select, from the huge amount of available data, those show-
ing greater reliability and offering a more complete represen-
tation of the phenomenon to be verified.

Many meteorological centres have developed their own
nowcasting algorithms, (Wapler et al., 2019), usually differ-
ent for different countries, but a complete description of them
is difficult to find in the literature. Therefore, it is recom-
mended to contact the meteorological centre of the region of
interest. The example of EUMETSAT collaboration shown
below indicates the kind of available products.

The EUMETSAT NWC-SAF example

EUMETSAT (http://www.eumetsat.int, last access:
20 April 2021) proposes several algorithms for using
their data. The Satellite Application Facility for supporting
NoWCasting and very-short-range forecasting (NWC-SAF,
nwc-saf.eumetsat.int) provides software packages for gener-
ating several products from satellite: clouds, precipitation,
convection and wind. The software is distributed freely to
registered users of the meteorological community. The Euro-
pean Severe Storms Laboratory (ESSL, https://www.essl.org,
last access: 20 April 2021) has performed a subjective eval-
uation of the products of the NWC-SAF for convection
(Holzer and Groenemeijer, 2017) indicating the usefulness

of the products for nowcasting and warning for objective
verification. For example, the stability products (lifted index,
K-index, Showalter index) and precipitable water (low,
mid- and upper troposphere) have been judged to be of
some value. The RDT (Rapid Developing Thunderstorms)
product in its present form has been judged difficult to use,
but elements of the RDT product have significant potential
for the nowcasting of severe convective storms, namely the
cloud top temperatures and the overshooting-top detections.
Furthermore, the RDT index has proven to be useful in
regions where radar data do not have full coverage. De
Coning et al. (2015) found good correlations between the
storms identified by the RDT and the occurrence of lightning
over South Africa. Gijben and de Coning (2017) showed
that the inclusion of lightning data had a positive effect on
the accuracy of the RDT product, when compared to radar
data, over a sample of 25 summer cases. RDT is considered
as an observation against which to compare model forecasts
of convection, as well as high-impact weather warnings, at
the South African Weather Service (Stephanie Landman,
personal communication). A review of the products for
detecting the convection is made by the Convection Working
Group, an initiative of EUMETSAT and its member states
and ESSL (https://cwg.eumetsat.int/satellite-guidance, last
access: 20 April 2021, Fig. 1), indicating which products are
appropriate for the detection of convection.

3.3 Data collected through human activities

Human activities permit generation and collection of a wide
and diverse amount of data about the weather. Some of these
data are collected with the purpose of monitoring the weather
(citizen networks, reports of severe weather); others are gen-
erated for quite different purposes but may be related to the
weather (impact data, insurance data). The data generated in
the social networks are a special category: a report of se-
vere weather may be generated only for the purpose of com-
plaining about the weather. The quality of these data and
their correlation with weather phenomena are very different
in these three cases. A review of the so-called “volunteered
geographic information” related to weather hazards has been
performed by Harrison et al. (2020), including also crowd-
sourcing and social media.

Data collected through human activities can be distin-
guished by those solicited by the potential user and those that
are not. An example of the first is report data collected in a
dedicated website, prepared by the potential user, inviting the
citizen to submit their report. Table 3 describes three widely
used databases. This kind of data may be biased by the fact
that people may feel pushed to report. Non-solicited data
include those associated with public assistance (e.g. emer-
gency services) and those spontaneously generated by people
(e.g. in social networks). Solicited and unsolicited human re-
ports need to be quality checked in order to take into account
and correct for biases which are introduced (e.g. multiple re-
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Figure 1. Satellite-derived products for the detection of convection. From https://cwg.eumetsat.int/satellite-guidance (last access:
20 April 2021).

ports of the same event with little spatial or temporal dis-
tance, subjective and conflicting evaluations of the intensity,
and variation of the sample with time). Human reports and
impact data have the advantage of being particularly suitable
for high-impact weather verification and the disadvantage
that they are biased: the non-event is usually not reported.
In addition, they depend on the density of the population:
where no or few people live, no reports are issued even if the
impact on the society (e.g. agriculture) or on the environment
may be high. Therefore, this kind of data have a particularly
inhomogeneous spatial distribution.

Severe weather reports are an important source of infor-
mation which can be made objective and used in forecast
verification. Hitchens et al. (2013) define a practically per-
fect warning region based on point-based storm reports (e.g.
for wind, hail). The practically perfect region is consistent
with a forecast which a forecaster would make given perfect
knowledge of the reported event. Statistical methods are used
to convert point observations (here reports) into a spatial field
that can be compared directly to a warning or the output from
a model. The field gives the probability that an event occurs
in a given grid box. By considering each probability value
as an individual threshold, the range of probabilities can be
converted into a set of dichotomous (yes or no) observation
of severe weather.

Reports can be also be combined with other data sources
to identify the phenomenon. Valachova and Sykorova (2017)
use a combination of satellite data, lightning data and radar
data (cells identified through a tracking algorithm) in order to
detect thunderstorms and their intensity for nowcasting pur-

poses, in combination with reports from ESWD operated by
ESSL.

Crowdsourcing can also provide a new kind of data useful
for verifying thunderstorm as a phenomenon, using the re-
ports from the citizens as observations of the thunderstorm.
Wiwatwattana et al. (2015) describe the use of reports from
a crowdsourcing weather app to verify probabilistic precip-
itation forecasts in Bangkok, Thailand. Crowdsourced hail
reports gathered with an app from MeteoSwiss make an ex-
tremely valuable observational dataset on the occurrence and
approximate size of hail in Switzerland (Barras et al., 2019).
The crowdsourced reports are numerous and account for
much larger areas than automatic hail sensors, with the ad-
vantage of unprecedented spatial and temporal coverage, but
provide subjective and less precise information on the true
size of hail. Therefore, they need to be quality controlled.
Barras et al. (2019) noted that their reflectivity filter requires
reports to be located close to a radar reflectivity area of at
least 35 dBZ. Overall, the plausibility filters remove approx-
imately half of the reports in the dataset.

Among the impact data, insurance data are a useful source,
but their availability is limited because of economic inter-
ests (Pardowitz, 2018). In some cases partnerships between
weather services and insurance providers may be arranged to
exchange data.

A special branch of non-solicited impact data is comprised
of those generated in the social networks. Recent work at Ex-
eter University (UK) has shown that social sensing provides
robust detection/location of multiple types of weather haz-
ards (Williams, 2019). In this work, Twitter data were used
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Table 3. Widely used severe weather report databases.

Dataset name Operated by Characteristics References

European Severe Weather
Database (ESWD)

ESSL (European Severe Storm
Laboratory)

Quality-controlled information
on severe convective storm
events over Europe. Among
other parameters, hailstones
with a diameter of at least
2.0 cm are reported.

https://www.eswd.eu (last ac-
cess: 20 April 2021)
Dotzek et al. (2009)

Storm Prediction Center (SPC) NOAA Archive of severe weather
events, including tornadoes,
wind, hail and thunderstorms.

https://www.spc.noaa.gov (last
access: 20 April 2021)

Severe Storms Archive BoM (Australian Bureau of
Meteorology)

Data relating to recorded severe
thunderstorm and related events
in Australia dating back to the
18th century. Information on re-
lated severe weather (e.g. wind
gusts) is also provided.

http://www.bom.gov.au/
australia/stormarchive (last
access: 20 April 2021)

for sensing the occurrence of flooding. Methods to automate
detection of social impacts are developed, focusing also on
the data filtering to achieve a good quality. In the usage of all
these data as observations for an objective verification, a cru-
cial step is the pre-processing of the data in order to isolate
the features which are really representative of the forecasted
phenomenon. As noted earlier, an assessment of the observa-
tion error should accompany the data, for example by vary-
ing the filtering criteria and producing a range of plausible
observations.

3.4 Usage of the new observations in the evaluation or
verification of thunderstorms

In this section, some studies describing the verification of
thunderstorm and convection are presented. They represent
only a subset of those that have been undertaken worldwide
to address this topic.

They are used here to show which verification methods
have been used and how the authors addressed the issues
posed by the usage of non-standard observations and by the
need to create a meaningful verification set. The different ob-
servations listed in the previous subsection are used, some-
times in combination. For each work, their most significant
feature for the purpose of this paper is indicated in the title
as keyword(s).

Lightning – matching forecast and observation. Caumont
(2017) verified lightning forecasts by computing 10 differ-
ent proxies for lightning occurrence from the forecast of the
AROME model run at 2.5 km. In order for them to be good
proxies for lightning, calibration of their distribution was per-
formed, offering a good example of the process of matching
the predicted quantity with the observed one.

Lightning – spatial coverage. For a thunderstorm probabil-
ity forecasting contest, Corbosiero and Galarneau (2009) and
Corbosiero and Lazear (2013) predicted the probability to the
nearest 10 % that a thunderstorm was reported during a 24 h
period at 10 locations across the continental United States.
The forecasts were verified by standard METAR (METeoro-
logical Aerodrome Report) reports as well as by the National
Lightning Detection Network (NLDN) data. For this com-
parison, strikes were counted within 20 km of each station
(Bosart and Landin, 1994). Results show that, although there
was significant variability, the 10 km NLDN radial ring best
matches METAR thunderstorm occurrence.

Lightning – matching forecast and observation. Brunet et
al. (2019) use lightning data in a 25 km radius of a forecast
point to be a thunderstorm observation for the purpose of
verifying NWP-based warnings and comparing to human-
generated thunderstorm warnings. They propose a verifica-
tion methodology for the fair comparison between contin-
uous and categorical probabilistic forecasts, as needed for
comparing human and automatically generated object-based
forecasts derived from probabilistic forecasts.

Lightning – spatial coverage, pointwise vs. spatial. Wapler
et al. (2012) computed the probability of detection (POD) by
comparing the cells detected by two different nowcasting al-
gorithms to lightning data. The comparison was made both
pointwise and using an areal approach (following Davis et
al., 2006). They showed how the score improves by increas-
ing the radius of the cell and that the verification is also de-
pendent on the reflectivity threshold used to detect the cells.
The pointwise approach gave a higher POD than the areal
approach, showing how the choice of the verification method
influences the results. The area covered by lightning gener-
ally extends beyond the area covered by a cell (identified by
high reflectivity values), leading to a decrease in the areal
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POD. The false alarm ratio was computed only for the areal
approach and considered the difficulty of counting the num-
ber of non-forecasted events in the pointwise approach. They
also compared the detection of hail from the ESWD report
with the cells detected by two nowcasting algorithms, but no
scores were computed. As the authors pointed out, since ob-
servations of “no event” are not provided, it is difficult to
compute scores resulting from the presence of “yes event”
observations only.

Lightning – spatial coverage, false alarms. Lighting data
were used for verification of nowcasting of thunderstorms
from satellite data by Müller et al. (2017). They used a search
radius of 50 km, within which at least two flashes in 10 min
should be recorded in order to detect the event. A false alarm
was identified when the nowcasted thunderstorm was not as-
sociated with a detected event.

Lightning – spatial method. In the work of de Rosa et
al. (2017) extensive verification of thunderstorm nowcast-
ing was performed against ATDnet lightning data over a
large domain covering central and southern Europe using the
MODE method (Davis et al., 2006; Bullock et al., 2016) of
the MET (Model Evaluation Tools) verification package. The
cells detected from the nowcasting algorithm were compared
against lightning objects obtained by clustering the strikes.

Combination of lightning and report data. Wapler et
al. (2015) performed a verification of warnings issued by
the Deutscher Wetterdienst (DWD) for two convective events
over Germany. They qualitatively compared warning areas
against data from ESWD reports and lightning data. They
also performed a quantitative comparison against lightning
data via a contingency table for the two events. This approach
could be extended to a larger dataset in order to perform a
statistically robust verification.

Combination of lightning and report data. At ECMWF,
two parameters, convective available potential energy
(CAPE) and a composite CAPE–shear parameter, have re-
cently been added to the extreme forecast index/shift of tails
products (EFI/SOT), targeting severe convection. Verifica-
tion is performed against datasets containing severe weather
reports only and a combination of these reports with ATDnet
lightning data (Tsonevsky et al., 2018). Verification results
based on the area under the relative operating characteris-
tic curve show high skill at discriminating between severe
and non-severe convection in the medium range over Europe
and the United States (Fig. 2). More generally, report data
and lightning data were used to evaluate the performance of
ECMWF systems in a collection of severe-weather-related
case studies, including convection, for the period 2014–2019
(Magnusson, 2019).

Satellite data – observation operator. Wilson and Mitter-
maier (2009) employed a MSG-satellite-derived lifting index
to evaluate the lifted index forecasted by the model, to ver-
ify regions of convective activity. The index can be computed
only on cloud-free areas but, with respect to that derived from

radiosoundings, has the advantage of much larger geograph-
ical coverage.

Satellite data – observation operator. Rempel et al. (2017)
verified convective development in a convection-permitting
model against satellite data. An observation operator was
used to derive synthetic satellite images from the model.
The computation of object-based metrics (SAL, Wernli et
al., 2008) was performed after the identification of individ-
ual cloud objects within the considered domain both in the
observed and synthetic satellite images.

Satellite data – matching forecast and observation. Deep
convection in a convection-permitting model, compared to
the one forecasted by a convection-parameterized model,
was evaluated by Keller et al. (2015). The observables were
satellite-derived cloud top pressure, cloud optical thickness,
brightness temperature, outgoing longwave radiation and re-
flected solar radiation. They were used in combination to
evaluate the characteristics of the convection. No objective
verification was performed, but a categorization of the satel-
lite products (Fig. 3) permits the use of these indicators for
verification of cloud type and timing of convection.

Evaluation from citizens used for verification. MeteoSwiss
carried out a subjective verification by beta testers of thunder-
storm warnings issued for municipalities on mobile phones
via app (Gaia et al., 2017). The forecast was issued in cate-
gories: “a developing/moderate/severe/very severe thunder-
storm is expected in the next XX min in a given munici-
pality”. Probability of detection and false alarm ratio of the
thunderstorm warnings were computed against beta-tester
evaluation.

Insurance data and emergency call data. Schuster et
al. (2005) analysed characteristics of Australian hailstorms
using data of insurance claims costs, emergency calls and
emergency service intervention, in addition to data from
severe weather reports (Fig. 4). Rossi et al. (2013) used
weather-related emergency reports archived in a database by
the Ministry of the Interior in Finland to determine hazard
levels for convective storms detected by radar, demonstrating
the potential of these data especially for long-lasting storms.

Emergency services data – matching forecast and obser-
vation. Pardowitz and Göber (2017) compared convective
cells detected by a nowcasting algorithm against data of fire
brigade operations. In addition to the location and time of the
alerts, the data included keywords associated with each op-
eration, which permitted the selection of the weather-related
operations relevant for this work (water damages and tree-
related incidents). Pardowitz (2018) examined fire brigade
operation data in the city of Berlin with respect to their cor-
relation to severe weather.

Airport operation data used in verification – matching
forecast and observation. A simple and effective verification
framework for impact forecasts (in this case, probabilistic
forecasts of thunderstorm risk) was demonstrated by Brown
and Buchanan (2018) based on 2 years of data. The London
terminal manoeuvering area (TMA) thunderstorm risk fore-
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Figure 2. Area under the ROC curve for EFI for CAPE (left) and CAPE–shear (right) for Europe, compared against datasets containing
severe weather reports only (red curves) and a combination of these reports with ATDnet lightning data (blue curves). From Tsonevsky et
al. (2018).

Figure 3. Histograms of cloud frequency as a function of cloud optical thickness and cloud top pressure for (a) satellite data and (b–d) three
simulations made with the COSMO model at 12 km (b) and 2 km (c, d, the latter with enhanced microphysics scheme) horizontal resolution.
From Keller et al. (2015).

cast is a specific customer-oriented forecast with the purpose
of providing early warning of convective activity in a par-
ticular area. The London TMA thunderstorm risk forecasts
were verified for a range of thresholds against observations
provided by the UK air navigation service provider (ANSP)
of the delay in minutes (arrival, en route and alternative com-
bined) and arrival flow rate experienced at airports across the
London TMA. Applying thresholds to the delay in minutes
and flow rate data received directly from the UK ANSP al-
lows for categorization of each forecast period into a high or
medium impact event. This process enables a simple 2× 2
contingency approach to be taken when verifying the fore-
casts. Brown and Buchanan (2018) analysed the results using
relative operating characteristic (ROC) curves, reliability di-
agrams and economic value plots (e.g. Jolliffe and Stephen-
son, 2012).

4 High-impact weather: fog

The second high-impact weather phenomenon considered
here is fog. According to the WMO definitions, fog is de-
tected in observations when the visibility is below 1000 m,
but in the context of high-impact weather different thresh-
olds are often adopted, specific to the application of inter-
est. NWP models generally are not efficient in predicting
fog and visibility conditions near the surface (Steeneveld et
al., 2015, since the stable boundary layer processes are typ-
ically not represented well in the NWP models. Therefore,
for forecasting of fog/visibility, very-high-resolution (300 m
grid) models are employed in some of the NWP centres (Lon-
don Model in Met Office UK and Delhi Model in NCMRWF,
India).

4.1 Observations for fog

Fog and low stratus can be detected by surface or satellite
observations. Problems of visibility measures from manual
and automatic stations are described in Wilson and Mitter-
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Figure 4. Affected area and storm paths derived from radar data (closed contours) with (a) hailstone sizes categorized according to their
diameters in centimetres and (b) requests for assistance to the NSW State Emergency Service. From Schuster et al. (2005).

maier (2009). In principle, surface instruments can easily de-
tect fog (e.g. visibility and cloud base height measurements).
However, observation sites are sparsely distributed and do
not yield a full picture of the spatial extent of fog. Satellite
data can compensate because of the continuous spatial cover-
age they provide (Cermak and Bendix, 2008). The disadvan-
tage of satellite data is the lack of observations when mid-
and high-level clouds are present (Gultepe, 2007). Also, the
precise horizontal and vertical visibility at the ground is dif-
ficult to assess based solely on satellite data. Satellite data
alone cannot distinguish between fog and low stratus, be-
cause it cannot be determined if the cloud base reaches the
surface. Therefore, detection methods usually include both
phenomena. Satellite data are used for the detection of fog
in several weather centres during the monitoring phase of
operational practice. As an example, in India, fog is moni-
tored using satellite maps from fog detection algorithms de-
veloped for the INSAT-3D satellite of the Indian Space Re-
search Organization (ISRO). Published evaluations of model
outputs for the prediction of fog employing satellite images
have mainly taken a case study approach (e.g. Müller et al.,
2010; Capitanio, 2013). Only few studies employed satellite
data in an objective verification framework, using spatial ver-
ification methods.

The EUMETSAT NWC-SAF example

The Satellite Application Facility for supporting NoWCast-
ing and very-short-range forecasting (NWC-SAF) of EU-
METSAT provides cloud mask (CMa) and cloud type (CT)
products. In CMa, a multispectral thresholding technique is
used to classify each grid point. The thresholds are deter-
mined from satellite-dependent lookup tables using as in-
put the viewing geometry (sun and satellite viewing angles),
NWP model forecast fields (surface temperature and total at-
mospheric water vapour content) and ancillary data (eleva-
tion and climatological maps). With the CT mask a cloud
type category is attributed to the clouds detected by the CMa.
To assess the cloud height, the brightness temperature of a
cloud at 10.8 µm is compared to a NWP forecast of air tem-
perature at various pressure levels. The CMa followed by the
CT application classifies each grid point as one of the listed
categories (Derrien and Le Gléau, 2005). The points (or ar-
eas) that are labelled as fog can be used quantitatively, for
example as a dichotomous (fog/no fog) value.

The 24 h Microphysics RGB (red–green–blue; descrip-
tion available at http://www.eumetrain.org, last access:
20 April 2021) makes use of three window channels of MSG:
12.0, 10.8 and 8.7 µm. This product has been tuned for de-
tection of low-level water clouds and can be used day and
night throughout the year. In the 24 h Microphysics RGB
product fog and low clouds are represented by light green-
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ish/yellowish colours. Transparent appearance (sometimes
with grey tones) indicates a relatively thin, low feature that is
likely fog. In order to use this product for fog and low-cloud
detection as an observation in a verification process, a mask
could be created, where pixels with light greenish/yellowish
colours are set to the value of 1 and all other colours set to 0.

Other centres developed different algorithms for similar
purposes: NOAA developed GEOCAT (Geostationary Cloud
Algorithm Test-bed), which, among others, provides esti-
mates fog probability from satellite. Thresholds should be
applied to the probabilities in order to perform verification of
model fog forecasts.

4.2 Usage of the new observations in the evaluation or
verification of fog

Some studies demonstrating the verification of fog forecasts
are briefly described below. Depending on the observation
they use and on the purpose of the verification, pointwise or
spatial verification methods are adopted. In addition, there
is a distinction, depending on the purpose of verification,
between model-oriented and user-oriented methods. Spatial
verification, e.g. using objects, or allowing for some sort of
spatial shift, can be informative for modellers and as a gen-
eral guidance for users. If a user needs information about per-
formance at a particular location only (e.g. an airport), it does
not matter whether the fog that was missed in the forecast
was correctly predicted at a nearby location. For this user,
classical pointwise verification measures are still the most
relevant. However, with the increased use of probabilistic
forecasts (to be recommended especially in the case of fog)
this distinction blurs somewhat, because the nearby correct
forecast is likely to indirectly show up in the probabilistic
scores of a given location. The work presented is organized
as pointwise or spatial verification methods.

4.2.1 Pointwise verification

Zhou and Du (2010) verified probabilistic and deterministic
fog forecasts from an ensemble at 13 selected locations in
China, where fog reports were regularly available. The fore-
cast at the nearest model grid point was verified against ob-
servations over a long period. Boutle et al. (2016) performed
an evaluation of the fog forecasted by a very-high-resolution
run (333 m) of the Unified Model over the London area. Ver-
ification was made at three locations where measurements
were available: two visibility sensors at two nearby airports
and manual observations made at London city. Bazlova et
al. (2019) presented the results of the verification of fog pre-
dicted with a nowcasting system at three airports in Russia,
in the framework of the WMO Aviation Research Demon-
stration Project (AvRDP). Indices from the contingency table
were computed against observations available from aviation
weather observation stations.

Terminal area forecasts (TAFs) give information about the
expected conditions of wind, visibility, significant weather
and clouds at airports. Mahringer (2008) summarized a novel
strategy to verify TAFs using different types of change
groups, where the forecaster gives a range of possible val-
ues valid for a time interval. A TAF thus contains a range
of forecast conditions for a given interval. In this approach,
time and meteorological state constraints are relaxed in ver-
ification. To evaluate the correctness of a forecast range, the
highest (or most favourable) and lowest (or most adverse)
conditions valid for each hour of the TAF are taken for veri-
fication. For this purpose, all observations within the respec-
tive hour are used (METAR and SPECI), which span a range
of observed conditions. For each hour, two comparisons are
made: the highest observed value is used to score the high-
est forecast value, and the lowest observed value is used to
score the lowest forecast value. Entries are made accordingly
into two contingency tables which are specific for weather
element and lead time.

From a model-oriented verification point of view of fog
and visibility, aiming at improving the modelling compo-
nents, generally the focus is on how accurately the model re-
produces ground and surface properties, surface layer meteo-
rology, near-surface fluxes, atmospheric profiles, and aerosol
and fog optical properties. Ghude et al. (2017) give details of
an observation field campaign for the study of fog over Delhi
in India. Such campaigns allow not only verification of var-
ious surface, near-surface and upper-air conditions, but also
allow calibration of models or the application of statistical
methods to improve raw model forecasts at stations of high
interest (e.g. airports). Micro-meteorological parameters like
soil temperature and moisture, near-surface fluxes of heat,
water vapour, and momentum in the very-high-resolution
models (London Model and Delhi Model; 330 m grid reso-
lution) could be verified using the field data.

4.2.2 Spatial verification using satellite data

Morales et al. (2013) verified fog and low-cloud simula-
tions performed with the AROME model at 2.5 km horizon-
tal resolution using the object-oriented SAL measure (Wernli
et al., 2008). The comparison was made against the Cloud
Type product of NWC-SAF. Roux (2017) subjectively veri-
fied ACCESS model forecasts of fog fraction in the vicinity
of Perth, Australia, against fog probability estimated from
Himawari-8 geostationary satellite data using the GEOCAT
package mentioned earlier.

Westerhuis et al. (2018) and Ehrler (2018) used a differ-
ent satellite-based method for fog detection. The detection
method calculates a low-liquid-cloud confidence level (CCL
method) from the difference between two infrared channels
(12.0 and 8.7 µm) from Meteosat Second Generation with a
spatial resolution of about 3 km. The grid points are also fil-
tered for high- and mid-level clouds using the Cloud Type
product information from the NWC-SAF data. The CCL

Nat. Hazards Earth Syst. Sci., 21, 1297–1312, 2021 https://doi.org/10.5194/nhess-21-1297-2021



C. Marsigli et al.: Observations for high-impact weather and their use in verification 1309

satellite data ensures consistent day- and nighttime detec-
tion of fog, in contrast to the NWC-SAF cloud detection,
which was also tested as a reference. Cases with high- and
mid-level clouds must be excluded. The same method for
fog detection was also used in Hacker and Bott (2018), who
studied the modelling of fog with the COSMO model in the
Namib Desert. Ehrler (2018) verified the fog forecasted by
the COSMO model using the fractions skill score (Roberts
and Lean, 2007). First, grid points with high- or mid-level
clouds were filtered, both in the CCL satellite and in the
COSMO model data. Then, the score was computed on the
remaining points. The CCL satellite data are not binary but
rather ranges from 0 to 1; therefore, an adequate CCL thresh-
old above which a grid point is assumed as fog needed to be
determined. For this purpose, the fractions skill score (FSS)
was calculated for different thresholds (0.5–0.8) in the CCL
satellite data, leading to the choice of a threshold of 0.7.

In order to verify fog extent, measures considering the
area impacted by a phenomenon could be employed, as for
example the Spatial Probability Score (SPS) introduced by
Goessling and Jung (2018).

5 Final considerations

This paper reviews non-standard observations and proposes
that they be used in objective verification of forecasts of
high-impact weather. Apart from the description of the data
sources, their advantages and critical issues with respect to
their usage in forecast verification are highlighted. Some ver-
ification studies employing these data, sometimes only qual-
itatively, are presented, showing the (potential) usefulness
of the new observations for the verification of high-impact
weather forecasts.

Several data sources are not new in other contexts but have
not been routinely applied for objective forecast verification.
For example, some data are well established as sources of
information for nowcasting and monitoring of high-impact
weather. Others are used in the assessment of the impacts
related to severe weather. In this paper, the element of nov-
elty is given by reviewing these observations in a unique
framework, addressing the community of NWP verification,
and aiming at stimulating the usage of these observations for
the objective verification of high-impact weather and of spe-
cific weather phenomena. In this context, this work proposes
to establish or reinforce the bridge between the nowcasting
and the impact communities on one side and the NWP com-
munity on the other side. In particular, a closer cooperation
with nowcasting groups is suggested, because of their experi-
ence in developing products for the detection of high-impact
weather phenomena. This cooperation would allow for the
identification of nowcasting objects and algorithms which
can be used as pseudo-observations for forecast verification.

The possibility offered by non-standard types of obser-
vations generated through human activities, such as reports

of severe weather, impact data (emergency calls, emergency
services, insurance data) and crowdsourcing data, could be
extended to many more data sources. For example, no studies
referenced here made use of weather-related data which can
be collected automatically when a car is driving (e.g. condi-
tion of the road with respect to icing), but their potential for
forecast verification has already been foreseen (Riede et al.,
2019), though not yet in a mature stage. Other possibilities
are offered by new impact data (e.g. the effect of the weather
on agriculture) or by the exploitation of the huge amount of
information available in the social networks.

Performing verification of phenomena using new types of
observations requires that the matching between forecasted
and observed quantities be addressed first. The paper high-
lights, in reviewing the referenced works, how the matching
between forecast and new observations has been performed
by those authors, in order to provide the reader with useful
indications of when the same observations, or even other ob-
servations with similar characteristics, could be used in veri-
fication.

The assessment of the data quality and of the uncertainty
associated with the observations is part of this verification.
The usage of multiple data sources is suggested as a way to
take into account this issue. As we have seen, few studies
follow this approach.

Finally, high-impact weather verification requires an ap-
proach to the verification problem where the exact matching
between forecast and observation is rarely possible; there-
fore verification naturally tends to follow fuzzy and/or spa-
tial approaches. In some studies, spatial verification meth-
ods already established for the verification using standard
observations for rainfall (SAL, MODE, FSS) have been ap-
plied also with non-standard observations. Following this ap-
proach, the full range of spatial methods may be applied in
this context, depending on the characteristics of the specific
phenomenon and the observation used. Since this is a rela-
tively new field of application for the objective verification,
it is not known which is the most suitable method for each
phenomenon/observations case, but the reader is invited to
consider the hints provided by the authors who first entered
this realm and expand on them.

This paper does not provide an exhaustive review of all
possible new observations potentially usable for the verifi-
cation of high-impact weather forecast, but it seeks to pro-
vide the NWP verification community with an organic starter
package of information about new observations, their charac-
teristics and hints for their usage in verification. This infor-
mation should serve as a basis to consolidate the practice of
the verification of high-impact weather phenomena, stimulat-
ing the search, for each specific verification purpose, of the
most appropriate observations.
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