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Abstract. The present study is to explore the potential rela-
tionship between debris flow and landslides by establishing
susceptibility zoning maps (SZMs) separately with the use of
random forest (RF). Lhünzê county, located in southeastern
Tibet, was selected as the study area. The work was carried
out with the following steps: (1) an inventory map consist-
ing of 399 landslides and 49 debris flows was determined;
(2) slope units and 11 conditioning factors were prepared
for the susceptibility modeling of landslide while watershed
units and 12 factors were prepared for debris flow; (3) SZMs
were constructed for landslide and debris flow, respectively,
with the use of RF; (4) the performance of two models was
evaluated by 5-fold cross-validation using receiver operat-
ing characteristic (ROC), area under the curve (AUC) and
statistical measures; (5) the potential relationship between
landslide and debris flow was explored by the superimpo-
sition of two zoning maps; (6) the Gini index was applied
to determine the major factors and analyze the difference be-
tween debris flow and landslides; (7) a combined susceptibil-
ity map with two considered hazardous phenomena was ob-
tained. Two used models had demonstrated great predictive
capabilities, with an accuracy of 87.33 % and 85.17 % and
AUC of 0.902 and 0.892, respectively. Comparing the over-
lap of different susceptibility classes for two obtained maps,
it was concluded that there is no straightforward relationship
between the occurrence of debris flow and landslides. Al-
though most landslides can be converted into debris flow, the
area prone to debris flow did not promote the occurrence of
a landslide. A susceptibility zoning map composed of two
or more hazardous phenomena is comprehensive and signif-
icant in this regard, which provides a valuable reference for

research studies of disaster-chain and engineering applica-
tions.

1 Introduction

Soil slide and debris flow are two kinds of natural phenom-
ena mainly occurring in mountainous areas, which pose con-
siderable threats to people, industries, and the environment
directly or indirectly. Generally, damages can be decreased
to a certain extent by predicting the likely location of future
disasters (Pradhan, 2010). Thus, extensive research has been
conducted for the prediction and susceptibility assessment of
landslide and debris flow.

In geomorphology, a “landslide” is the movement of a
mass of rock, debris or earth down a slope under the influ-
ence of gravity (Cruden and Varnes, 1996). According to
different variables, landslides can be divided into different
types (Varnes, 1978). Debris flow is a specific type of land-
slide, which can be defined as a “Very rapid to extremely
rapid surging flow of saturated debris in a steep channel”
(Hungr et al., 2013). Most of debris flows are runoff gen-
erated (Imaizumi et al., 2006; Theule et al., 2012; Ma et al.,
2018). Generally, landslides that occur on a steep slope and
become disaggregated as they tumble down can transform
into debris flows if they contain sufficient water for saturation
(Huang et al., 2019). Debris flow usually occurs on a channel
bed for the entrainment into abundant runoff of debris sup-
plied by deep or shallow slides of slopes incised by the chan-
nel (Hurlimann et al., 2013; Zhou et al., 2019; Simoni et al.,
2020). Therefore, landslides may provide sufficient material
source for debris flow, and most of the landslides are accom-
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Figure 1. Location map of the study area showing the landslide and debris flow inventory.

panied by debris flow (Iverson et al., 1997; Lan et al., 2004).
The conditioning factors and mapping units involved in the
susceptibility assessment for different kinds of landslides are
not identical. In the past, some scholars made separate evalu-
ations between landslide and debris flow. Some scholars have
explored the mobilization of debris flow from landslides, and
the material source of the debris flow is not necessarily com-
ing from landslides (Chiang et al., 2012; Gomes et al., 2013).
Besides, the formation and manifestations of landslides and
debris flow are different. In other words, there is no deter-
mined connection between debris flow and landslides. How-
ever, seldom research studies have explored the potential re-
lationship between debris flow and landslides through the
separated susceptibility maps (Alessandro et al., 2015).

The methods used for the susceptibility assessment can
be broadly classified as qualitative or quantitative (Aleotti
and Chowdhury, 1999). There are different types of quan-
titative methods: those that are physically based (Carrara et
al., 2008), those that are heuristic (Blais-Stevens and Behnia,
2016) and those that are statistically based. Recently, new
machine learning models have been used for susceptibility
analysis: neural networks (Park et al., 2013), support vec-
tor machines (Colkesen et al., 2016) and random forest (RF)
(Liang et al., 2020a).

The present study is to explore the potential relationship
between the occurrence of debris flow and landslides by es-
tablishing susceptibility zoning maps separately with the use
of RF. The Lhünzê county in southeastern Tibet is exposed
to landslide and debris flow and chosen as the study area.

2 Materials

2.1 Study area

The study area located in Lhünzê township, Lhünzê county,
southeastern Tibet, is bounded by longitudes of 92◦15′ and
92◦45′ E and latitudes of 28◦10′ and 28◦30′ N (Fig. 1). It
covers a surface of about 535 km2 with a population of more
than 6000. It belongs to a semi-arid temperate monsoon cli-
mate with the annual rainfall of 279 mm, mainly concen-
trated in May to September. The seismic intensity within the
area has a degree of VIII on the modified Mercalli index.

The study area is distributed in the zone of stratigraphic
division of the Northern Himalayan block. The strata are
mainly composed of Mesozoic Cretaceous, Jurassic, Trias-
sic and Cenozoic units. Three types of lithology were mainly
observed during our field investigation: siltstone from the
Laka Formation (K1l ), conglomerates from the Weimei For-
mation (J3w ) and Quaternary slope wash (Qel+dl

4 ) from the
Cenozoic strata.

Main disasters in the study area consist of rain-fed high-
frequency debris flows and landslides, which destroyed and
flooded roads, bridges, farmland, villages, etc., causing great
economic losses.

2.2 Landslide and debris flow inventory

The statistically based susceptibility models are based on an
important assumption: future landslides have more chances
to occur again under the conditions which led to the past and
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Figure 2. Photos of landslide or debris flow: (a) Lunba landslide in a tributary, (b) Zhenqiong landslide in Jiayu village, (c) debris flow in
Misha township and (d) debris flow in Lelong village.

Figure 3. Multistage landslide in Xiongqu village.

present landslides (Varnes, 1984). Therefore, a complete in-
ventory map is the key for modeling. In this study, data come
from historical records (1970–2010), field surveys from 200–
2003 (Figs. 2 and 3) and interpretation of Google Earth im-
ages carried out in Google Earth Pro 7.1 (Fig. 4). Finally,
a total of 399 landslides and 49 debris flow locations with
positive label were recorded and mapped as a point (Fig. 1),
and the same number of non-landslide points with a negative
label were selected randomly from the landslide-free area.

2.3 Mapping units

The selection of the mapping unit is an important prerequi-
site for modeling (Guzzetti et al., 2006a). The mapping units
commonly used are grid cells (Reichenbach et al., 2018). De-
spite their popularity and operational advantages, grid cells
have clear drawbacks (Guzzetti et al., 1999). There is no
physical relationship between a grid cell or a group of grid
cells and slope, while slope units can make up for this defi-
ciency. A slope unit may correspond to an individual slope,
an ensemble of adjacent slopes or a small catchment. The
geometry of the debris flow is tortuous and complex, which
is not not suitable to be represented with a regular grid unit.
In the present study, adjacent slope units were applied to the
modeling. First-order subcatchments, which are also called
watershed units, were applied to the susceptibility of debris
flow (Bregoli et al., 2015; Liang et al., 2020b). Accordingly,
the study area was divided into 1003 slope units for the mod-
eling of landslides or 174 watershed units for debris flow.

2.4 Controlling factors and mapping

The selection of evaluation parameters is another key pre-
requisite to ensure that the model is accurate. Different re-
search studies emphasized different controlling factors, but
the availability, reliability and practicality of the data were
first considered (van Westen et al., 2008). In this paper,
11 controlling factors are selected for landslide susceptibil-
ity assessment and 12 for debris flow. A brief description of
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Figure 4. Remote sensing map of landslides in Lhünzê township (Tong et al., 2019): (a) landslides in Lhünzê town and (b) landslides in
Malu town.

each controlling factor is given below. Detailed information
is shown in Fig. 5a–m.

2.4.1 Factors used in landslide susceptibility
assessment

The aspect reflects sunshine duration and rainfall, which is
frequently used as a landslide controlling factor (Dai and
Lee, 2002) and was reclassified into eight classes (Fig. 5g).
Plan curvature and profile curvature, which reflect the relief
of the terrain, were both considered and reclassified into six
classes (Fig. 5b and e). Generally, faults, rivers and roads
play a key role in the occurrence of landslides as land-
slides are more likely disturbed around faults, rivers and
roads (Taskin et al., 2015), which were reclassified into seven
classes using an interval of 1500 m (Fig. 5i–k). The topo-
graphic wetness index (TWI) belongs to a hydrological vari-
able that reflects both slope and soil moisture content (Wil-
son and Gallant, 2000) and was reclassified into five classes
(Fig. 5h).

2.4.2 Factors used in debris flow susceptibility
assessment

The pre-event normalized difference vegetation in-
dex (NDVI) reflects the vegetation conditions in the
area and was reclassified into five classes (Fig. 6b). The
drainage density is the ratio of the total drainage length
to the watershed area and was reclassified into six classes
(Fig. 6g). The roundness refers to the ratio of the area of a
basin to the area of a circle with the same circumference
and was reclassified into six classes (Fig. 6d). The Melton
ratio refers to the ratio of the degree of undulation in the
watershed to the square root of the arithmetic area of the
watershed (Melton, 1965), which is reclassified into seven
classes (Fig. 6a). The basin area and main channel length
are represented by the same graph and were reclassified into
four classes (Fig. 6h). The average gradient of main channel,
which is the ratio of the maximum elevation difference of

main channel to its linear length, was reclassified into six
classes (Fig. 6j).

2.4.3 Factors used in both landslide and debris flow

Rainfall is the only triggering factor to be considered for
both landslide and debris flow in this paper, which was re-
classified into six classes (Figs. 5a and 6c). The slope angle,
which reflects kinetic energy conditions, is frequently em-
ployed in both landslide and debris flow susceptibility map-
ping and was reclassified into six classes (Figs. 5f and 6i).
The maximum elevation difference also reflects the kinetic
energy condition and is reclassified into six classes using an
interval of 200 m (Figs. 5c and 6e). Elevation affects the rain-
fall and vegetation (Figs. 5d and 6f) and was reclassified into
five classes in the study (Pourghasemi et al., 2013).

The values of the controlling factors were classified by
processing the raw data in the ArcGIS 10.2 platform. Mor-
phological and topographically related factors were derived
from the DEM with a resolution of 30× 30 m (http://www.
gscloud.cn, last access: 5 May 2018). Geologically related
factors were extracted from 1 : 50000 geological maps (http:
//www.ngac.org.cn/, last access: 5 May 2018). Rainfall is one
of the most important external factors inducing landslides
and debris flow, which was determined by ordinary kriging
interpolation in ArcGIS based on data from 11 precipitation
stations near the study area collected from the China Mete-
orological Administration. Road networks are provided by
Landsat 8 Operational Land Imager (OLI) images (12 Au-
gust 2018).

3 Methods

3.1 Sampling strategy and performance assessment

Statistical models for landslide susceptibility zoning recon-
struct the relationships between dependent and independent
variables using the training dataset and verify these relation-
ships using validation sets (Guzzetti et al., 2006b), which
usually implies the partitioning of the inventory in subsets.
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Figure 5. Study area thematic maps for landslide: (a) rainfall, (b) profile curvature, (c) maximum elevation difference, (d) average elevation,
(e) plan curvature, (f) average slope, (g) aspect, (h) wetness, (i) distance to road, (j) distance to river and (k) distance to fault.
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Figure 6. Study area thematic maps for debris flow: (a) Melton, (b) NDVI, (c) rainfall, (d) roundness, (e) maximum elevation difference,
(f) average elevation, (g) drainage density, (h) area, (i) average slope, (j) average gradient of main channel and (k) distance to fault.
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The sampling strategy affects the results of the susceptibility
map (Yilmaz, 2010). The partition of the landslide inventory
is approached based on temporal, spatial or random criteria
(Chung and Fabbri, 2003), and among these the one of ran-
dom time selection is the most used. However, there is a need
for a more reliable estimation of the model performance. The
ability of the models to classify independent test data was
elaborated using a 5-fold cross-validation procedure (James
et al., 2013).

The value of the area under the curve (AUC) is the most
popular metric to estimate the quality of model, which has
been applied for receiver operating characteristic (ROC)
curves (Green and Swets, 1966). Three extra statistical met-
rics as accuracy, sensitivity and specificity are combined to
assess the performance of models.

Accuracy=
TP+TN

TP+TN+FP+FN
, (1)

Sensitivity=
TP

TP+FN
, (2)

Specificity=
TN

FP+TN
, (3)

where TP represents true positives, i.e., cells predicted un-
stable and observed unstable; TN represents true negatives,
i.e., cells predicted stable and observed stable; FP represents
false positives, i.e., cells predicted unstable but observed sta-
ble; and FN represents false negatives, i.e., cells predicted
stable but observed unstable.

3.2 Random forests

RF is a powerful ensemble-learning method and was first in-
troduced by Breiman (2001). The bagging technique is ap-
plied to select random samples of variables and observations
as the training dataset at each node of the tree for the model-
ing of RF. Unselected cases (out of bag) are used to calculate
the error of the model (OOB error). The increase in OOB
error is proportional to the importance of the predictive vari-
able. There are no restrictions on the types of variables, either
numerical or categorical. RF has the ability to reduce errors
caused by unbalanced data, which are suitable for suscepti-
bility assessment.

The number of trees and the number of predictive vari-
ables used to split the nodes are two user-defined parameters
(Ahmed et al., 2016). Cross-validation was applied to opti-
mized the hyper-parameters before application. The scikit-
learn package (Pedregosa et al., 2011) in the programming
software Python version 3.7 was used for the modeling. The
Gini index (the larger the value of the obtained result, the
greater the contribution to the occurrence of landslide) was
applied to analyze the relative importance of conditioning
factors.

Table 1. Models’ performance using the training dataset.

Metrics Landslide Debris
flow

TP (%) 88.71 87.80
TN (%) 91.89 88.89
FP (%) 11.29 12.20
FN (%) 8.11 11.11
Sensitivity (%) 91.62 88.77
Specificity (%) 89.06 87.93
Accuracy (%) 90.65 88.57
AUC 0.976 0.967

Table 2. Models’ performance using the verification dataset.

Metrics Landslide Debris
flow

TP (%) 85.56 85.71
TN (%) 89.09 84.62
FP (%) 14.44 14.29
FN (%) 10.91 15.38
Sensitivity (%) 88.69 84.79
Specificity (%) 86.05 85.55
Accuracy (%) 87.33 85.17
AUC 0.902 0.892

4 Results and verification

4.1 Landslide susceptibility mapping results

The predictive accuracy, ROC curves and AUC values of
the RF models using the training dataset were shown in Ta-
ble 1 and Fig. 7. The RF model ensured a satisfactory per-
formance for classifying landslides with a sensitivity value
of 91.62 %. In terms of the classification of non-landslide
zones, the specificity value also reached 89.06 %. An AUC
value ranges from 0.5 to 1, with a value equal to 1 indicat-
ing a perfect prediction accuracy (Vorpahl et al., 2012). The
RF model had great performance in terms of AUC, with a
value of 0.976. Standard error (SE), confidence interval (CI)
at 95 % and significance (Sig.) were applied as three eval-
uation statistics. All these results indicated that the models
achieved a reasonable goodness of fit, for which the values
were reasonably small.

Verifying the generalization ability of the model is a key
step in prediction models as shown in Table 2 and Fig. 7.
Accordingly, the values of sensitivity and specificity were
88.69 % and 86.05 %, respectively. The model also achieved
a great performance in terms of AUC with a value of 0.902.
In comparison with the training dataset, the accuracy and
AUC values have slightly decreased but still perform well.

The landslide susceptibility map was reclassified into five
classes – very low (0–0.2), low (0.2–0.4), moderate (0.4–
0.6), high (0.6–0.8) and very high (0.8–1) – by using the
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Figure 7. Analysis of the ROC curve for the two susceptibility maps: (a) success rate curve of landslide using the training dataset, (b) pre-
diction rate curve of landslide using the validation dataset, (c) success rate curve of debris flow using the training dataset, and (d) prediction
rate curve of debris flow using the validation dataset.

Table 3. Variable importance assigned for landslide.

Test Slope Distance Plan Topographic Distance Maximum Profile Elevation
group angle to fault curvature wetness to road elevation curvature

index difference

Landslide 0.21 0.19 0.17 0.13 0.08 0.07 0.06 0.05

equal spacing method (Fig. 8). The map should satisfy two
spatial effective rules: (1) the existing disaster points should
belong to the high-susceptibility class and (2) the high-
susceptibility class should cover only small areas (Bui et al.,
2012). The number of units belonging to the very high class
accounted for 17 % of the total number of units (Fig. 9).
Disaster points were mostly in the dark (red or orange) ar-
eas. The units belonging to the moderate class accounted for
the smallest proportion, at 13 % of the total number of units
(Fig. 9).

The controlling factors with significant effects were se-
lected and normalized as shown in Table 3. The weight val-
ues of slope angle, distance to fault, plan curvature and topo-

graphic wetness index were 0.21, 0.19, 0.17 and 0.13, re-
spectively, which was closely related to the occurrence of
landslide. The weight values of distance to road, maximum
elevation difference, profile curvature and elevation are less
than 0.1 as 0.08, 0.08, 0.06 and 0.05, respectively (Fig. 10).

4.2 Debris flow susceptibility mapping result

The debris flow susceptibility model performs well with a
very high sensitivity and specificity values of 87.80 % and
88.89 %, respectively. In terms of accuracy and AUC, the
model also had a great prediction performance with a value
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Figure 8. Susceptibility maps: (a) landslide susceptibility zoning map and (b) debris flow susceptibility zoning map.

Figure 9. Numbers and percentage of units in different susceptibility classes for landslide and debris flow: (a) number of units in different
susceptibility classes for landslide and debris flow and (b) percentages of different susceptibility classes for landslide and debris flow.

of 88.57 % and 0.967 (Fig. 7). Three evaluation statistics also
indicate a reasonable goodness of fit for the model.

Table 2 shows that the values of sensitivity and specificity
were 85.71 % and 84.62 %, which were slightly decreased
compared to the training model. However, the model had
achieved a great performance in terms of AUC, with value
of 0.892.

The number of units belonging to the very high class ac-
counted for 15 % of the total number of units, while the units
belonging to the high class accounted for the smallest pro-
portion at 13 %. More than half of the units (58 %) belong
to on a low or very low class (Fig. 9). Disaster points were
mostly in the dark (bright or deep red) areas (Fig. 8).

The weight values of main channel length, roundness and
slope angle were 0.25, 0.16 and 0.14, respectively, and these
factors have significant influence on the occurrence of debris
flow (Table 4). The weight values of elevation, maximum ele-

vation difference, Melton ratio and basin area are close to 0.1,
which are 0.13, 0.12, 0.1 and 0.1, respectively (Fig. 10).

4.3 Analysis and comparison of landslide and debris
flow susceptibility

It is worth comparing the two susceptibility zoning maps. In
terms of prediction accuracy, the values of sensitivity, speci-
ficity and AUC of landslide model were slightly higher than
that of debris flow. However, both models achieved high pre-
dictive performance. Therefore, the landslide and debris flow
susceptibility assessment models based on RF are reliable.
The purpose of the present study is to explore the potential
relationship between landslides and debris flows by estab-
lishing the respective susceptibility zoning maps. Figure 11
shows the overlapping areas between debris flow and land-
slides in a high or very high class of susceptibility zoning
maps. It can be seen that most of the areas with a high or
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Figure 10. Parametric importance graphics obtained from the RF model: (a) parametric importance graphics of landslide and (b) parametric
importance graphics of debris flow.

Table 4. Variable importance assigned for debris flow.

Test group Main Roundness Slope Elevation Maximum Melton Basin
channel angle elevation area
length difference

Debris flow 0.25 0.16 0.14 0.13 0.12 0.1 0.1

very high class in the map of debris flow are covered with
landslides. However, there are also non-overlapping areas be-
tween the two zoning maps. There are 23 watershed units be-
longing to the high class in the debris flow susceptibility zon-
ing map (Fig. 8), of which 17 units correspond to the high- or
very-high-class slope units in the landslide zoning map (Ta-
ble 5). In addition, there are 4 watershed units covered with
low- or very-low-class slope units. In the same way, 19 water-
shed units belonging to the very high class are covered with
high- or very-high-class slope units and 4 watershed units
with low- or very-low-class slope units. In other words, more
than 70 % of the high- or very-high-class watershed units are
covered with high- or very-high-class slope units. However,
there are still 30 % of watershed units with a high or very
high class without the distribution of slope units in corre-
sponding grades. This validated the previous view that most
of landslides can be transformed into debris flows.

Factor analysis, which is a tool for dimensionality reduc-
tion and exploring the major factors, was applied to fur-
ther analyze the reasons for the difference. Thirty-six water-
shed units with distribution of high- or very-high-grade slope
units were taken as model 1, and the remaining eight wa-
tershed units as model 2. The KMO (Kaiser–Meyer–Olkin)
and Sig. testing are two statistical parameters which ensured
the feasibility before application and are provided by SPSS

Table 5. The overlap of the number of debris flow and landslide
high- and very-high-class mapping units.

Landslide/ Very Low High Very
Debris flow low high

High 3/23 1/23 5/23 12/23
Very high 2/26 2/26 8/26 11/26

Table 6. Statistical parameters of the two models.

Statistical Model 1 Model 2
parameters/
model

KMO 0.766 0.643
Sig. 0.001 0.003

(Statistical Product and Service Solutions). The closer the
KMO statistic is to 1, the stronger the correlation between
variables and the better the effect of factor analysis are. The
KMO values were 0.766 and 0.643, respectively, which in-
dicated that the correlation between variables was obvious
and suitable for factor analysis (Table 6). In model 1, the cu-
mulative contribution rate of the first three factors (C1–C3)
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Figure 11. Landslide–debris-flow susceptibility maps: (a) high- and very-high-class watershed units with high- or very-high-class slope
units, (b) high- or very-high-class watershed units with low- or very-low-slope units, (c) high- or very-high-class slope units with high- or
very-high-class watershed units, and (d) mapping units.
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Table 7. The correlation coefficients between common factors and
primitive variables.

Factor F1 F2 F3

NDVI 0.386 −0.336 −0.621
Basin area 0.897 −0.007 0.041
Main channel length 0.984 0.046 −0.023
Slope angle −0.223 0.829 0.455
Maximum elevation difference 0.744 0.66 0.011
Rainfall −0.768 0.33 0.201
Average gradient of main channel −0.753 0.544 0.106
Drainage density −0.844 0.06 0.015
Roundness 0.331 0.14 0.818
Elevation 0.133 0.846 0.382
Distance to fault −0.16 0.211 0.421
Melton −0.625 0.737 0.149
Contribution rate (%) 41.2 24.7 16.7
Accumulative contribution (%) 41.2 65.9 83.6

reached to 83.6 %, while the cumulative contribution rate of
the first four factors (F1–F4) reached to 80.5 % for model 2
(Table 7). According to the correlation coefficient of each
common factor, the first common factor mainly highlighted
the information of the basin area, main channel length and
maximum elevation difference. Similarly, the second and the
third common factor highlighted the information of slope an-
gle and elevation and roundness, respectively. The difference
between the two models (model 1 and model 2) is that the
second model has the fourth common factor (Table 8), which
emphasized the effects of rainfall and distance to the fault.
The transformation from a landslide to a debris flow often
occurs during heavy rainfall (Takahashi, 1978), and the land-
slides are the source area. But landslides are not the only
source of debris flows. The loose material distributed in the
basin is not necessarily caused by a landslide.

In turn, we analyze the distribution of high- or very-high-
class slope units in watershed units. The landslide zoning
map was put at the bottom floor and the debris flow zoning
map on the top floor (Fig. 11). There are 167 slope units be-
longing to the high class, of which 68 units (accounting for
about 40 %) are distributed in the area of high- or very-high-
class watershed units in the debris flow zoning map (Table 9).
Besides, 69 slope units (accounting for about 41 %) are dis-
tributed in the area of low- or very-low-class watershed units.
Similarly, 53 slope units (accounting for about 30 %) belong-
ing to the very high class are distributed in the area of high- or
very-high-class watershed units and 88 slope units (account-
ing for about 50 %) in low- or very-low-class slope units (Ta-
ble 9). Comparing with the extent of the landslide affecting
the debris flow, the impact of the debris flow on the landslide
is not obvious. It indicated that the area prone to debris flow
does not promote the occurrence of landslides.

Finally, we took the center of gravity of 1003 slope units
as the potential hazard points and spread them over 174 wa-
tershed units. Thus, a combining susceptibility zonation map

for landslide and debris flow was obtained (Fig. 11). The
darker the color, the higher the class of susceptibility will
be. It can be seen that the susceptibility in the south is gen-
erally higher than that in the north, and the area in the south-
west is disaster-prone. The northeast and central locations in
the area are less likely to be affected by landslides and be-
long to low-susceptibility areas. Green or yellow dots, which
refer to slope units with very low or low class in the land-
slide zoning map, are mainly distributed in light-colored ar-
eas, but there are also quite a few green or yellow dots dis-
tributed in dark areas, which means that the occurrence of de-
bris flow does not necessarily depend on landslides. Blue or
black spots are mainly distributed in dark areas, but there are
also quite a few blue or black spots distributed in dark areas,
which means that a landslide is not the only condition for de-
bris flow to occur. Most of the watershed units are distributed
with two or more colored dots, which means that there would
be multiple slope units with a different susceptibility class in
the same watershed. According to the combining susceptibil-
ity zoning map of landslide and debris flow, the study area
can be divided into four categories: (1) low- or very-low-
class watershed units coupled with low- or very-low-class
slope units, (2) low- or very-low-class watershed units cou-
pled with high- or very-high-class slope units, (3) high- or
very-high-class watershed units coupled with low- or very-
low-class slope units, and (4) high- or very-high-class water-
shed units coupled with high- or very-high-class slope units.
We assume that the occurrence of landslides can bring rich
sources of debris flow, thereby promoting or aggravating the
outbreak of debris flow, that is, forming a landslide–debris-
flow disaster chain. Therefore, the susceptibility assessment
of the landslide–debris-flow chain in the study area can be
roughly divided into three classes, which are low, moderate
and high (Table 10).

5 Discussion

5.1 Method used for modeling

Many researchers have used different statistically based
methods to evaluate the susceptibility of landslides or debris
flows. Logistic regression and discriminant analysis are the
most popular methods to use in traditional multivariate sta-
tistical analysis (Teigila, 2015; Abdelaziz et al., 2020). The
performance of new learning machines, such as support vec-
tor machines and neural networks, has also been verified.
RF has been little used until now for susceptibility analy-
sis of landslide and debris flows (Chen et al., 2017; Zhang
et al., 2017). Actually, RF has powerful data processing ca-
pabilities and can simultaneously solve problems such as
high-dimensional, unbalanced and data loss problems, which
are common in geological disaster assessment. Most impor-
tantly, RF can compare the important differences between
features and have ability to reduce errors caused by unbal-
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Table 8. The correlation coefficients between common factors and primitive variables.

Factor C1 C2 C3 C4

NDVI 0.042 −0.079 −0.279 −0.813
Basin area 0.802 −0.344 0.057 0.009
Main channel length 0.885 0.126 −0.196 0.227
Slope angle 0.009 0.748 0.58 −0.057
Maximum elevation difference 0.801 0.434 −0.128 0.144
Rainfall 0.197 −0.076 −0.487 0.637
Average gradient of main channel −0.744 0.205 0.15 −0.23
Drainage density −0.776 −0.176 −0.267 0.117
Roundness −0.014 0.022 0.896 −0.002
Elevation 0.34 0.746 0.25 0.326
Distance to fault 0.31 0.289 −0.344 0.757
Melton −0.182 0.932 −0.192 0.061
Contribution rate (%) 29.2 20.3 15.2 15.8
Accumulative contribution (%) 29.2 49.5 64.7 80.5

Table 9. The overlap of the number of landslide and debris flow
high- and very-high-class mapping units.

Debris flow/ Very Low High Very
landslide low high

High 36/167 33/167 25/167 43/167
Very high 48/179 40/179 25/179 28/179

Table 10. Comprehensive evaluation of landslide–debris-flow sus-
ceptibility.

Debris flow/ Low or High or
landslide very low very high

Low or very low Low Moderate
High or very high Moderate High

anced data and which achieved strong generalization proper-
ties (Liang et al., 2020a, c).

5.2 Potential relationship between landslide and debris
flow

There is a certain similarity in the evaluation of the suscepti-
bility of landslide and debris flow as the selection of control-
ling factors and the application of modeling strategies. There-
fore, some researchers have neglected the difference between
landslide and debris flow, i.e., to express two different disas-
ters with the same susceptibility zoning map (Mariantonietta
et al., 2017; Maria et al., 2017). However, similarity does
not always mean consistency. Many researchers have pre-
viously conducted studies into the debris flow mobilization
from shallow landslides using a coupled methodology (Lin
et al., 2017). However, not every landslide evolves into a de-
bris flow, which means that the analysis process is highly

selective or uncertain. In the same way, the source of the
debris flow is not limited to landslides. There, the poten-
tial relationship between landslide and debris flow needs to
be discussed more reasonably and effectively. In this study,
the corresponding influencing factors and mapping units are
selected to establish landslide and debris flow susceptibil-
ity zoning maps, respectively. The potential relationship be-
tween landslide and debris flow is explored in two ways:
(1) superimposing the high- or very-high-class susceptibil-
ity areas in the two maps and (2) transforming the slope units
into points and distributing them on the watershed units. The
relationship between landslide and debris flow is illustrated
by the distribution of slope units of different grades on the
watershed units with different susceptibility classes. Differ-
ent kinds of landslides should be evaluated respectively be-
cause of conditioning factors and scale.

5.3 Necessity and feasibility of combining multiple
natural disaster susceptibility zoning maps

Previous studies on susceptibility zoning mapping of disas-
ters have agreed that one disaster corresponds to one map.
However, it will cause some confusion in practice. For ex-
ample, multiple disasters may be bred simultaneously in
a watershed unit. For another case, the probability of one
kind of disaster like debris flow in a watershed is negligible,
while another disaster like rockfall occurs frequently. There-
fore, we need to combine multiple zoning maps at the same
time to give a comprehensive evaluation, which is difficult to
achieve. On the one hand, the prediction accuracy and error
of different zoning maps should be similar or even consistent.
On the other hand, the dimensions of the mapping unit should
be consistent or complementary. The fact that the appropriate
prediction method (like RF applied in this study) and map-
ping units were applied to the two disasters makes it possi-
ble to merge the two zoning maps. Disaster risk is higher in
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a landslide–debris-flow chain, causing significant loss of life
and property. Therefore, two natural disasters with a potential
relationship are simultaneously reflected in the same suscep-
tibility zoning map, which can better guide the implementa-
tion of engineering, such as a landslide–debris-flow disaster
chain.

6 Conclusion

In this study, susceptibility assessment models for landslide
and debris flow are established through RF, and the perfor-
mance of the models is excellent in terms of accuracy and
goodness of fit. The potential relationship between landslide
and debris flow is discussed by the superimposition of two
zoning maps, and the following conclusions can be drawn.

1. The landslide and debris flow susceptibility mapping
based on RF models have great accuracy and goodness
of fit and have the ability to analyze the relative impor-
tance of different impact factors, which is suitable for
the evaluation of natural disasters.

2. There is no straightforward relationship between the oc-
currence of the two considered phenomena. Although
most landslides will be converted into debris flow, the
landslides are not necessarily the source of debris flow,
and the loose sources carried by the debris flow are
not necessarily brought by the landslides. On the other
hand, the impact of the debris flow on the landslide is
also not obvious.

3. A susceptibility zoning map composed of two or more
natural disasters is more comprehensive and significant,
which provides a valuable reference for researchers and
engineering applications.
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cess: 19 April 2021) (Zhu, 2021).

Author contributions. ZL was responsible for the writing and
graphic production of the paper. CMW was responsible for the revi-
sion of the paper. DHM was responsible for calculation. KUJK was
responsible for the translation.

Competing interests. The authors declare that they have no conflict
of interest.

Special issue statement. This article is part of the special issue “Re-
silience to risks in built environments”. It is not associated with a
conference.

Acknowledgements. This work was supported by the Graduate In-
novation Fund of Jilin University and the National Natural Sci-
ence Foundation of China (grant nos. 41972267, 41977221 and
41572257).

Financial support. This research has been supported by the Na-
tional Natural Science Foundation of China (grant nos. 41972267,
41977221 and 41572257).

Review statement. This paper was edited by Damien Serre and re-
viewed by two anonymous referees.

References

Abdelaziz, M., Ali, P. Y., Jie, D., Jim, W., Binh, T., Dieu,
T. B., Ram, A., and Boumezbeur, A. : Machine learn-
ing methods for landslide susceptibility studies: A compara-
tive overview of algorithm performance, Earth-Sci. Rev., 207,
https://doi.org/10.1016/j.earscirev.2020.103225, 2020.

Ahmed, M. Y., Hamid, R. P., Zohre, S. P., and Mohamed, A. K.: Er-
ratum to: Landslide susceptibility mapping using random forest,
boosted regression tree, classification and regression tree, and
general linear models and comparison of their performance at
Wadi Tayyah Basin, Asir Region, Saudi Arabia, Landslides, 13,
1315–1318, 2016.

Aleotti, P. and Chowdhury, R.: Landslide hazard assessment: sum-
mary review and new perspectives, Bull. Eng. Geol. Environ., 58,
21–44, 1999.

Alessandro, T., Carla, I., Carlo, E., and Gabriele, S. M.: Com-
parison of Logistic Regression and Random Forests techniques
for shallow landslide susceptibility assessment in Giampilieri
(NE Sicily, Italy), Geomorphology, 249, 119–136, 2015.

Blais-Stevens, A. and Behnia, P.: Debris flow susceptibility map-
ping using a qualitative heuristic method and Flow-R along the
Yukon Alaska Highway Corridor, Canada, Nat. Hazards Earth
Syst. Sci., 16, 449–462, https://doi.org/10.5194/nhess-16-449-
2016, 2016.

Bregoli, F., Medina, V., Chevalier, G., Hürlimann, M., and Bate-
man, A.: Debris-flow susceptibility assessment at regional scale:
Validation on an alpine environment, Landslides, 12, 437–454,
https://doi.org/10.1007/s10346-014-0493-x, 2015.

Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.

Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., and Dick, O. B.:
Landslide susceptibility assessment in the Hoa Binh Province
of Vietnam: a comparison of the Levenberg-Marquardt and
Bayesian regularized neural networks, Geomorphology, 171–
172, 12–29, https://doi.org/10.1016/j.geomorph.2012.04.023,
2012.

Carrara, A., Crosta, G., and Frattini, P.: Comparing models of
debris-flow susceptibility in the alpine environment, Geomor-
phology, 94, 353–378, 2008.

Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D. T.,
Duan, Z., and Ma, J.: A comparative study of logistic model tree,
random forest, and classification and regression tree models for

Nat. Hazards Earth Syst. Sci., 21, 1247–1262, 2021 https://doi.org/10.5194/nhess-21-1247-2021

https://github.com/Liangzhu-mz/data
https://doi.org/10.1016/j.earscirev.2020.103225
https://doi.org/10.5194/nhess-16-449-2016
https://doi.org/10.5194/nhess-16-449-2016
https://doi.org/10.1007/s10346-014-0493-x
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.geomorph.2012.04.023


Z. Liang et al.: Exploring the potential relationship between the occurrence of debris flow and landslides 1261

spatial prediction of landslide susceptibility, Catena, 151, 147–
160. 2017.

Chiang, S. H., Chang, K. T., Mondini, A. C., Tsai, B. W., and Chen,
C. Y.: Simulation of event-based landslides and debris flows at
watershed level, Geomorphology, 138, 306–318, 2012.

Chung, C. F. and Fabbri, A. G.: Validation of spatial prediction
models for landslide hazard mapping, Nat. Hazards, 30, 451–
472, 2003.

Colkesen, I., Sahin, E. K., and Kavzoglu, T.: Susceptibility mapping
of shallow landslides using kernel-based Gaussian process, sup-
port vector machines and logistic regression, J. Afr. Earth Sci.,
118, 53–64, 2016.

Cruden, D. M. and Varnes, D. J.: Landslide types and processes,
in: Landslides, Investigation and Mitigation, Special Report 247,
edited by: Turner, A. K. and Schuster, R. L., Transportation
Research Board, Washington, D.C., 36–75, ISSN 0360-859X,
ISBN 030906208X, 1996.

Dai, F. C. and Lee, C. F.: Landslide characteristics and slope insta-
bility modelling using GIS, Lantau Island, Hong Kong, Geomor-
phology, 42, 213–228, 2002.

Gomes, R. A. T., Guimaraes, R. F., Carvalho Júnior, O. A., Fernan-
des, N. F., and Amaral Jr., E. V.: Combining spatial models for
shallow landslides and debris flows prediction, Remote Sens., 5,
2219–2237, 2013.

Green, D. M. and Swets, J. M.: Signal Detection Theory and
Psychophysics, John Wiley and Sons, New York, ISBN 0-471-
32420-5, 1966.

Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P.: Land-
slide hazard evaluation: a review of current techniques and their
application in a multi-scale study, Central Italy, Geomorphology,
31, 181–216, 1999.

Guzzetti, F., Galli, M., Reichenbach, P., Ardizzone, F., and Cardi-
nali, M.: Landslide hazard assessment in the Collazzone area,
Umbria, Central Italy, Nat. Hazards Earth Syst. Sci., 6, 115–131,
https://doi.org/10.5194/nhess-6-115-2006, 2006a.

Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., and
Galli, M.: Estimating the quality of landslide susceptibility mod-
els, Geomorphology, 81, 166–184, 2006b.

Huang, X., Guo, F., Deng, M. L., Yi, W., and Huang, H. F.: Un-
derstanding the deformation mechanism and threshold reser-
voir level of the floating weight-reducing landslide in the Three
Gorges Reservoir Area, China, Landslides, 17, 2879–2894,
https://doi.org/10.1007/s10346-020-01435-1, 2019.

Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification
of landslide types, an update, Landslides, 11, 167–194, 2013.

Hurlimann M., Abanco C., Moya, J., and Vilajosana, I.: Results
and experiences gathered at the Rebaixader debris-flow moni-
toring site, Central Pyrenees, Spain, Landslides, 11, 939–953,
https://doi.org/10.1007/s10346-013-0452-y, 2013.

Imaizumi, F., Sidle, R. C., Tsuchiya, S., and Ohsaka,
O.: Hydrogeomorphic processes in a steep debris
flow initiation zone, Geophys. Res. Lett., 33, L10404,
https://doi.org/10.1029/2006GL026250, 2006.

Iverson, R. M., Reid, M. E., and LaHusen, R. G.: Debris-flow mo-
bilization from landslides, Annu. Rev. Earth Planet. Sci., 25, 85–
138, 1997.

James, G., Witten, D., Hastie, T., and Tibshirani, R.: An Introduc-
tion to Statistical Learning, Springer, New York, p. 441, 2013.

Lan, H. X., Zhou, C. H., Wang, L. J., Zhang, H. Y., and Li, R. H.:
Landslide hazard spatial analysis and prediction using GIS in the
Xiao jiang watershed, Yunnan, China, Eng. Geol., 76, 109–128,
2004.

Liang, Z., Wang, C. M., Zhang, Z. M., and Khan, K. U. J.:
A comparison of statistical and machine learning methods
for debris flow susceptibility mapping, Stoch. Environ. Res.
Risk A., 34, 1887–1907, https://doi.org/10.1007/s00477-020-
01851-8, 2020a.

Liang, Z., Wang, C. M., Han ,S. L., Khan, K. U. J., and
Liu, Y. A.: Classification and susceptibility assessment of de-
bris flow based on a semi-quantitative method combination
of the fuzzy C-means algorithm, factor analysis and efficacy
coefficient, Nat. Hazards Earth Syst. Sci., 20, 1287–1304,
https://doi.org/10.5194/nhess-20-1287-2020, 2020b.

Liang, Z., Wang, C. M., and Khan, K. U. J.: Application and
comparison of different ensemble learning machines com-
bining with a novel sampling strategy for shallow land-
slide susceptibility mapping, Stoch. Environ. Res. Risk A.,
https://doi.org/10.1007/s00477-020-01893-y, in press, 2020c.

Lin, F. F., Peter, L., Brian, M., and Dani, O.: Linking rainfall-
induced landslides with debris flows runout patterns towards
catchment scale hazard assessment, Geomorphology, 280, 1–15,
https://doi.org/10.1016/j.geomorph.2016.10.007, 2017.

Ma, C., Deng, J., and Wang, R.: Analysis of the triggering
conditions and erosion of a run off triggered debris flow in
Mi yun County, Beijing, China, Landslides, 15, 2475–2485,
https://doi.org/10.1007/s10346-018-1080-3, 2018.

Maria, G. P., Massimiliano, B., Claudia, M., Carlotta, B., Michele,
B., Roberto, G., and Giacomo, D. A.: Shallow landslides sus-
ceptibility assessment in different environments, Geomat. Nat.
Hazards Risk, 8, 748–771, 2017.

Mariantonietta, C., Leonardo, C., and Michele, C.: A comparison of
statistical and deterministic methods for shallow landslide sus-
ceptibility zoning in clayey soils, Eng. Geol., 223, 71–81, 2017.

Melton, M. A.: The Geomorphic and Paleoclimatic Significance of
Alluvial Deposits in Southern Arizona: A Reply, J. Geol., 73,
102–106, 1965.

Park, D. W., Nikhil, N. V., and Lee, S. R.: Landslide and debris
flow susceptibility zonation using TRIGRS for the 2011 Seoul
landslide event, Nat. Hazards Earth Syst. Sci., 13, 2833–2849,
https://doi.org/10.5194/nhess-13-2833-2013, 2013.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and Duchesnay, É.: Scikit-Learn: Machine Learning in
Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.

Pourghasemi, H. R., Moradi, H. R., and Fatemi, A. S. M.: Land-
slide susceptibility mapping by binary logistic regression, ana-
lytical hierarchy process, and statistical index models and as-
sessment of their performances, Nat. Hazards, 69, 749–779,
https://doi.org/10.1007/s11069-013-0728-5, 2013.

Pradhan, B.: Landslide susceptibility mapping of a catchment area
using frequency ratio, fuzzy logic and multivariate logistic re-
gression approaches, J. Indian Soc. Remote Sens., 38, 301–320,
2010.

Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M.,
and Guzzetti, F.: A Review of Statistically-Based Land-

https://doi.org/10.5194/nhess-21-1247-2021 Nat. Hazards Earth Syst. Sci., 21, 1247–1262, 2021

https://doi.org/10.5194/nhess-6-115-2006
https://doi.org/10.1007/s10346-020-01435-1
https://doi.org/10.1007/s10346-013-0452-y
https://doi.org/10.1029/2006GL026250
https://doi.org/10.1007/s00477-020-01851-8
https://doi.org/10.1007/s00477-020-01851-8
https://doi.org/10.5194/nhess-20-1287-2020
https://doi.org/10.1007/s00477-020-01893-y
https://doi.org/10.1016/j.geomorph.2016.10.007
https://doi.org/10.1007/s10346-018-1080-3
https://doi.org/10.5194/nhess-13-2833-2013
https://doi.org/10.1007/s11069-013-0728-5


1262 Z. Liang et al.: Exploring the potential relationship between the occurrence of debris flow and landslides

slide Susceptibility Models, Earth-Sci. Rev., 180, 60–91,
https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.

Simoni, A., Bernard, M., Berti, M., Boreggio, M., Lanzoni, S., Stan-
canelli, L., and Gregoretti, C.: Runoff-generated debris flows: ob-
servation of initiation conditions and erosion-deposition dynam-
ics along the channel at Cancia (eastern Italian Alps), Earth Surf.
Proc. Land., 45, 3556–3571, https://doi.org/10.1002/esp.4981,
2020.

Takahashi, T.: Mechanical characteristics of debris flow, J. Hydraul.
Div., 104, 1153–1169, 1978.

Taskin, K., Emrehan, K. S., and Ismail, C.: Selecting optimal con-
ditioning factors in shallow translational landslide susceptibil-
ity mapping using genetic algorithm, Eng. Geol., 192, 101–112,
2015.

Theule, J. I., Liebault, F., Loye, A., Laigle, D., and Jaboyedoff, M.:
Sediment budget monitoring of debris flow and bedload transport
in the Manival Torrent, SE France, Nat. Hazards Earth Syst. Sci.,
12, 731–749, https://doi.org/10.5194/nhess-12-731-2012, 2012.

Tong, L. Q., Qi, W. S., An, G. Y., and Liu, C. L.: Remote sensing
survey of major geological disasters in the Himalayas, J. Eng.
Geol., 27, 496, 2019.

Trigila, A., Iadanza, C., Esposito, C., and Scarascia, M. G.:
Comparison of Logistic Regression and Random Forests tech-
niques for shallow landslide susceptibility assessment in Gi-
ampilieri (NE Sicily, Italy), Geomorphology, 249, 119–136,
https://doi.org/10.1016/j.geomorph.2015.06.001, 2015.

van Westen, C. J., Castellanos, E., and Kuriakose, S. L.: Spatial data
for landslide susceptibility, hazard, and vulnerability assessment:
an overview, Eng. Geol., 102, 112–131, 2008.

Varnes, D. J.: Slope movement types and processes, Special Re-
port 176: Landslides: analysis and control, Transportation Re-
search Board, Washington, D.C., USA, 11–33, 1978.

Varnes, D. J.: Landslide Hazard Zonation: A Review of Principles
and Practice, The UNESCO Press, Paris, 63 pp., 1984.

Vorpahl, P., Elsenbeer, H., Märker, M., and Schröder, B.: How
can statistical models help to determine driving factors of land-
slides?, Ecol. Model., 239, 27–39, 2012.

Wilson, J. P. and Gallant, J. C. (Eds.): Digital terrain analysis, in:
Terrain analysis, John Wiley & Sons, New York, 1–27, 2000.

Yilmaz, I.: The effect of the sampling strategies on the landslide
susceptibility mapping by conditional probability and artificial
neural networks, Environ. Earth Sci., 60, 505–519, 2010.

Zhang, K., Wu, X., Niu, R., Yang, K., and Zhao, L.: The assessment
of landslide susceptibility mapping using random forest and de-
cision tree methods in the Three Gorges Reservoir area, China,
Environ. Earth Sci., 76, 1–20, 2017.

Zhou, W., Fan, J., Tang, C., and Yang, G.: Empirical relationships
for the estimation of debris flow runout distances on depositional
fans in the Wenchuan earthquake zone, J. Hydrol., 577, 123932,
https://doi.org/10.1016/j.jhydrol.2019.123932, 2019.

Zhu, L.: Liangzhu-mz/data, GitHub, available at: https://github.
com/Liangzhu-mz/data, last access: 19 April 2021.

Nat. Hazards Earth Syst. Sci., 21, 1247–1262, 2021 https://doi.org/10.5194/nhess-21-1247-2021

https://doi.org/10.1016/j.earscirev.2018.03.001
https://doi.org/10.1002/esp.4981
https://doi.org/10.5194/nhess-12-731-2012
https://doi.org/10.1016/j.geomorph.2015.06.001
https://doi.org/10.1016/j.jhydrol.2019.123932
https://github.com/Liangzhu-mz/data
https://github.com/Liangzhu-mz/data

	Abstract
	Introduction
	Materials
	Study area
	Landslide and debris flow inventory
	Mapping units
	Controlling factors and mapping
	Factors used in landslide susceptibility assessment
	Factors used in debris flow susceptibility assessment
	Factors used in both landslide and debris flow


	Methods
	Sampling strategy and performance assessment
	Random forests

	Results and verification
	Landslide susceptibility mapping results
	Debris flow susceptibility mapping result
	Analysis and comparison of landslide and debris flow susceptibility

	Discussion
	Method used for modeling
	Potential relationship between landslide and debris flow
	Necessity and feasibility of combining multiple natural disaster susceptibility zoning maps

	Conclusion
	Data availability
	Author contributions
	Competing interests
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

