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Abstract. As an essential component of drought risk, crop–
drought vulnerability refers to the degree of the adverse re-
sponse of a crop to a drought event. Different drought inten-
sities and environments can cause significant differences in
crop yield losses. Therefore, quantifying drought vulnerabil-
ity and then identifying its spatial characteristics will help
understand vulnerability and develop risk-reduction strate-
gies. We select the European winter wheat growing area
as the study area and 0.5◦× 0.5◦ grids as the basic assess-
ment units. Winter wheat drought vulnerability curves are
established based on the erosion–productivity impact cal-
culator model simulation. Their loss change and loss ex-
tent characteristics are quantitatively analysed by the key
points and cumulative loss rate, respectively, and are then
synthetically identified via K-means clustering. The re-
sults show the following. (1) The regional yield loss rate
starts to rapidly increase from 0.13 when the drought in-
dex reaches 0.18 and then converts to a relatively stable
stage with the value of 0.74 when the drought index reaches
0.66. (2) In contrast to the Pod Plain, the stage transi-
tions of the vulnerability curve lags behind in the southern
mountain area, indicating a stronger tolerance to drought.
(3) According to the loss characteristics during the ini-
tial, development, and attenuation stages, the vulnerabil-
ity curves can be divided into five clusters, namely low-
low-low, low-low-medium, medium-medium-medium, high-
high-high, and low-medium-high loss types, corresponding
to the spatial distribution from low latitude to high latitude
and from mountain to plain. The paper provides ideas for the
study of the impact of environment on vulnerability and for

the possible application of vulnerability curve in the context
of climate change.

1 Introduction

Drought is a widespread natural disaster causing the largest
agricultural losses in the world. More than one-half of the
earth is susceptible to drought, including nearly all of the
major agricultural areas (Kogan, 1997). Under the context of
climate change and globalization, drought will pose a threat
to future food security. How to assess and manage agricul-
tural drought risks has become a focus of the world (Reid et
al., 2006; Li et al., 2009; Mishra and Singh, 2010). As vul-
nerability is a key factor in determining risk, drought vulner-
ability assessment is an important foundation for drought risk
assessment and management (Knutson et al., 1998; Zhang et
al., 2015).

Crop drought vulnerability assessment focuses on crops,
particularly the biophysical factors closely related to crop
growth processes (González Tánago et al., 2016; Wu et al.,
2017), describing the damage to crops caused by different
intensity hits. At present, crop drought vulnerability assess-
ment methods mainly include the following three aspects.

1. Calculation of the comprehensive vulnerability index
based on selected relevant indicators. Some of these
studies encompass recognition of the factors influenc-
ing drought vulnerability; construction of vulnerability
indicators from physiographic, climatic and hydrologic
aspects; and assignment of their weights and calculation
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of a comprehensive index (Wilhelmi and Wilhite, 2002;
Shahid and Behrawan, 2008; Jain et al., 2014). For ex-
ample, Pandey et al. (2010) identified seven influence
indicators, such as watershed geography, soil types, wa-
ter availability, and so on; graded each of them; and then
added them up to obtain the drought vulnerability in-
dex of the Sonar basin in the Madhya Pradesh. Some of
these studies are based on the components of vulnera-
bility, construct sensitivity, and exposure indicators and
combine them to form a vulnerability index (O’Brien et
al., 2004; Antwi-Agyei et al., 2012; González Tánago et
al., 2016). For example, Simelton et al. (2009) used the
crop failure index to characterize sensitivity, the drought
index to characterize exposure, and the ratio of the two
to characterize crop drought vulnerability. They then
discussed the correlation between drought vulnerability
and socio-economic characteristics in China. Although
this method cannot predict the loss quantitatively and
has certain subjectivity and uncertainty in index sys-
tem construction and weight determination, affected by
the difficulty of testing and verification, it is able to ex-
press the relative level of vulnerability between regions,
providing potential ways of disaster mitigation for de-
cision makers and providing a strong reference for the
establishment of quantitative vulnerability relationships
(Wilhelmi and Wilhite, 2002; Simelton et al., 2009; Wu
et al., 2010).

2. Quantitative research on vulnerability based on his-
torical statistics and meteorological observations. This
method mainly uses meteorological observation data
and historical statistical data to build a quantitative re-
lationship between disaster intensity and historical dis-
aster loss (Lobell and Burke, 2008; Hlavinka et al.,
2009; Rowhani et al., 2011). Fishman (2016) used In-
dian daily rainfall and statistical yield data from 1970 to
2003 to analyse the relationship between precipitation
variability and major crop yields. Jayanthi et al. (2014)
used satellite rainfall-based water requirement satisfac-
tion index and historical yield loss rate as regression in-
dicators to develop a maize drought vulnerability model
in Kenya, Malawi, and Mozambique. Xu et al. (2013)
selected consecutive rainless days as the drought in-
dex, converted drought-affected area into the drought-
induced yield loss rate, and then established vulnerabil-
ity curves of corn, wheat, and rice in the monsoon re-
gion of east China based on the daily precipitation data
and historical disaster data. Such a method explores how
crop yield loss varies with disaster intensity but is eas-
ily affected by the availability and quality of disaster
loss data, therefore having difficulties in high-resolution
vulnerability assessment and spatial analysis.

3. Quantitative research on vulnerability curves based on
field experiments and crop model simulations. This
method generally conducts field experiments or crop

growth model simulations by artificially setting up dif-
ferent disaster intensity scenarios and then fitting co-
operative vulnerability curves from the perspective of
a crop-disaster-causing mechanism. Pan et al. (2017)
conducted field experiments by artificially controlling
soil water content at the Huanghua experimental site in
Hebei, China. Based on the experimental data of maize
growth under different drought intensity, the physical
drought vulnerability curves of the five growth stages
were constructed. Yin et al. (2014) used the Erosion-
Productivity Impact Calculator (EPIC) model to ob-
tain drought index and yield loss rates and constructed
drought vulnerability curves for maize in 35 regions of
the world. Kamali et al. (2018b) used the precipitation
and EPIC-simulated maize yield data to describe the
crop sensitivity and exposure indexes to drought, re-
spectively, and linked the two indexes using a power
curve fitted to describe the physical vulnerability of sub-
Saharan African countries. This method provides a new
research idea and perspectives for vulnerability quanti-
tative assessment based on the crop growth mechanism.
Additionally, the crop model can quantitatively predict
the crop growth and yield formation process in a spe-
cific environment, with lower cost than the field experi-
ments and fewer limitations in historical disaster statis-
tical sample or spatial accuracy, which is conducive to
high-precision quantitative research on crop vulnerabil-
ity (Palosuo et al., 2011; Challinor et al., 2009). How-
ever, it is worth mentioning that as infinite dimensional
data (James and Sugar, 2003), with the vulnerability
curve used in this method it is difficult to perform spa-
tial analysis directly like the vulnerability index, which
leads to its main application in the risk assessment field
with insufficient vulnerability information mining.

Actually, there are spatial differences in crop drought
vulnerability affected by factors such as the natural
environment and crop variety (IPCC, 2012, 2014).
Analysing and mapping the spatial differences based on
a quantitative assessment can help better identify the
vulnerability distribution and local mitigation-oriented
drought management. Therefore, this paper aims to ex-
plore the vulnerability curve feature extraction and spa-
tial difference analysis method, which is beneficial to
improve the quantitative degree of vulnerability spatial
analysis. It can not only quantify regional drought vul-
nerability based on the disaster-causing mechanism but
also convey vulnerability information to decision mak-
ers from a risk visualization perspective.

As wheat is one of the three major grain crops in the
world, we select the main wheat-producing area, the Eu-
ropean winter-wheat-growing area, as the research area,
using the 0.5◦×0.5◦ grid as the basic assessment unit.
The vulnerability curves of winter wheat drought are es-
tablished based on EPIC simulation. Then, the loss ex-
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tent and loss change characteristics of the vulnerability
curve are extracted to analyse the vulnerability charac-
teristics to drought in various areas. By clustering the
curve shapes, areas with similar vulnerability charac-
teristics are identified for exploring their environment
and providing scientific guidance regarding the devel-
opment of regional drought mitigation strategies.

2 Data and methods

2.1 Basic concept

The drop drought vulnerability curve describes the functional
relationship between drought intensity and loss. As drought
intensifies, disaster losses begin to appear and gradually in-
crease until the end of the disaster. That is regarded as an
interactive process of energy accumulation and resisting ef-
fect (Chen et al., 2015, 2017). Drought intensification brings
about energy accumulation, which will be released when it
reaches a certain level; meanwhile, resistance, such as sys-
tem adjustment ability, always exists. In the initial stage, it
appears as a slow development of drought due to insufficient
energy storage and the existence of resistance. And if the
driving force is stopped or weakened, the energy accumula-
tion basically ends; otherwise, energy will continue to accu-
mulate and then break through the resistance and release, re-
sulting in explosive development. Finally, the drought event
gradually subsided with energy attenuation and resistance in-
fluence.

Therefore, the drought vulnerability curve can be divided
into three stages as follows (Kucharavy and De Guio, 2011;
Wang et al., 2013): (1) initial stage, corresponding to low
drought intensity and slight loss, during which there is slow
loss growth acceleration; (2) development stage, correspond-
ing to moderate drought intensity and a rapid increase in loss,
during which the loss growth rate continues to increase to
reach a peak and then quickly falls; and (3) attenuation stage,
corresponding to high drought intensity and stable high loss,
during which the loss growth rate slowly decays. These char-
acteristics coincide well with the S-shaped curve (Fig. 1).

In different environments, the drought vulnerability curve
presents different S shapes (Wang et al., 2013; Yue et al.,
2015; Guo et al., 2016), and the core lies in the differences in
loss extent and loss change (Gottschalk and Dunn, 2005; Hu
et al., 2012; Wang et al., 2013). Therefore, the key points
of the vulnerability curve – the transition points of three
stages (P1 and P3, where the third derivative of the vulner-
ability curve is equal to zero) and the turning point of the
loss growth rate (P2, where the second derivative of the vul-
nerability curve equals zero) – are used to describe the loss
change characteristics, the cumulative loss to the loss extent
characteristics, and the morphological classification of the
integrated description.

2.2 EPIC model and database construction

The EPIC model, published by the United States in 1984
(Williams et al., 1984), is selected to simulate the growth
process of winter wheat. It can simulate soil erosion and pro-
ductivity for hundreds of years on a daily step under a vari-
ety of climatic, environmental, and management conditions.
It simulates all crops with one model framework based on
crops’ physiological commonality and uses unique crop pa-
rameters for each crop. In the process of simulation, inter-
cepted photosynthetic active radiation is converted into po-
tential biomass, which is adjusted by five daily stress factors
(water, nitrogen, phosphorus, temperature, and aeration) to
predict actual biomass growth, where the water stress (WS)
factor is computed as the ratio of soil water use over poten-
tial plant water use. Crop yields are estimated as the product
of the actual aboveground biomass and a harvest index (eco-
nomic yield/above ground biomass) (Williams et al., 1989).

EPIC model has been successfully applied in yield simu-
lation for different crops and water input conditions in many
parts of the world (Roloff et al., 1998; Gassman et al., 2005).
Williams et al. (1989) described the EPIC model simulation
results of six crop species throughout the US and in European
and Asian countries and concluded that the average simu-
lated yields were always within 7 % of the average measured
yields. Bryant et al. (1992) used the EPIC model to dupli-
cate 38 irrigation stress experiments in the Texas High Plains
during 1975–1977 and found that simulated corn yields ex-
plained 83 %, 86 %, and 72 % of the variance in 3-year mea-
sured yields separately. Ko et al. (2009) calibrated the EPIC
model based on field studies in south Texas and demonstrated
that under full and deficient irrigation and rainfall conditions,
EPIC-simulated yields of maize and cotton were in agree-
ment with the measured yields according to a paired t test.

With good performance in water stress tests, the model is
further widely used in crop drought research, including irri-
gation management, drought impact prediction, and drought
vulnerability assessment (Guo et al., 2020). By setting dif-
ferent irrigation times, irrigation amounts, and irrigation fre-
quency to observe the EPIC-simulated yields, the optimized
irrigation scheduling can be obtained without carrying out
long and expensive field experiments (Rinaldi, 2001); by
inputting climate model data, the future yield loss due to
drought in different climate change scenarios can be pre-
dicted (Webber et al., 2018; Leng and Hall, 2019); and by
using multi-year precipitation or irrigation data, a series of
grid yield loss data can be obtained for quantifying drought
vulnerability (Wang et al., 2013; Kamali et al., 2018c). In
short, by setting up drought scenarios, the EPIC model can
efficiently provide fine yield loss data. Therefore, we choose
it as the core tool for drought vulnerability assessment.

The study area is the European wheat harvest area pro-
vided by the Center for Sustainability and the Global Envi-
ronment, University of Wisconsin-Madison (Monfreda et al.,
2008) and further screened by the wheat planting habit dis-
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Figure 1. The relationship between drought intensity and (a) loss and (b) loss growth rate as shown by the S-shaped drought vulnerability
curve. P1, P2, and P3 represent the starting point, inflection point, and end point of the rapid loss growth, respectively.

tribution map of CIMMYT (Lantican et al., 2005) for winter
wheat distribution. Distributed in the range of 10◦W–50◦ E
and 42–59◦ N, this area is one of the world’s major wheat-
producing areas.

Inputs to EPIC include topography, soil, meteorological,
and field management data (Table 1). The soil data in this
study are provided by the International Soil Reference and
Information Centre (Batjes, 2012), including soil type dis-
tribution raster maps and soil physical and chemical prop-
erty lookup tables (soil bulk density, soil water content, grit
content, clay content, organic carbon content, pH, etc.). The
daily meteorological data are derived from HadGEM2-ES
model data (Hempel et al., 2013) from 1974 to 2004, which
are based on meteorological observations including solar ra-
diation, maximum temperature, minimum temperature, aver-
age temperature, precipitation, relative humidity and average
wind speed. All the original input data are processed onto
0.5◦× 0.5◦ grids, which are the basic units for the yield sim-
ulation and vulnerability assessment.

The statistical yield data are not required for EPIC model
input but for the localization of crop parameters in the model
and validation of simulated yields. They are derived from the
Food and Agriculture Organization (FAO) and are country-
based statistics. We use statistical yields of 2000 for model
localization and yields of other years between 1974 and 2004
for validation.

Outputs from the EPIC model include daily stress fac-
tors (water, nitrogen, phosphorus, temperature, and aeration)
and annual yield value. The WS and yield can be further
processed into samples for the construction of vulnerability
curves.

2.3 Research method

This study consists of the following three parts. (1) The EPIC
model is calibrated and validated. Critical crop parameters
in the model are localized to improve the simulation ac-
curacy in different regions. Then the calibrated model per-

formance is validated by comparing simulated and statis-
tical yields. (2) Winter wheat drought vulnerability curves
are constructed based on the calibrated EPIC model simula-
tion. A set of WS and yields are simulated for each grid unit
by setting series of irrigation scenarios, which are converted
into drought index and yield loss rate for the construction
of the vulnerability curve. (3) Vulnerability curve character-
istics are analysed. Key points and cumulative loss rate of
vulnerability curves are calculated for the spatial analysis of
loss change and loss extent characteristics, and the vulnera-
bility curves are clustered for the integrated spatial analysis
(Fig. 2).

2.3.1 Calibration and validation of the EPIC model

The calibration method refers to the research of Guo et
al. (2016). Four key parameters of WA (biomass-energy ra-
tio), HI (harvest index), DLMA (maximum potential leaf
area index), and DLAI (fraction of the growing season when
the leaf area decreases) are selected for calibration (De Bar-
ros et al., 2005; Wang and Li, 2010; Wang et al., 2011). Con-
sidering the limitation of statistical yields on a grid scale, we
localize the four key parameters at the country level based on
the idea of partition calibration (Liu et al., 2007; Balkovič et
al., 2013; Kamali et al., 2018a). That is, each country has a
unique set of crop parameters, and all the grids within one
country are the same. The default values of the crop param-
eters in the EPIC model are taken as the initial value, and
the geographical environmental, field management, and me-
teorological data are entered to obtain simulated grid yields
of 2000. We simply assign a FAO national statistical yield to
the grids within a country. Then the root-mean-square error
(RMSE) between the simulated and statistical grid yields for
each country is calculated. We reiterate the yield simulations
and RMSE calculations by incrementally adjusting the four
key parameters to minimize RMSE. The calibration will be
finished when the least RMSE is below the threshold or the
number of reiterations is above the threshold.

Nat. Hazards Earth Syst. Sci., 21, 1209–1228, 2021 https://doi.org/10.5194/nhess-21-1209-2021



Y. Wu et al.: Establishment and characteristics analysis of a crop–drought vulnerability curve 1213

Table 1. Basic database.

Category Name Source Spatial
resolution

Distribution range
data

Harvested area of wheat Center for Sustainability and the Global
Environment, University of Wisconsin-
Madison (Monfreda et al., 2008)

5′× 5′

Distribution of wheat planting habit CIMMYT
(Lantican et al., 2005)

Site unit

Administrative boundary Eurostat
(https://ec.europa.eu/eurostat/web/gisco/
geodata/reference-data, last access:
1 October 2018)

1 : 10 million

Environmental data DEM United States Geological Survey (1996) 0.5′× 0.5′

Slope Food and Agriculture Organization of the
United Nations/International Institute for
Applied Systems Analysis (http://www.iiasa.
ac.at/Research/LUC/GAEZ/index.html, data
from 2000, last access: 20 June 2018)

5′× 5′

Soil International Soil Reference and Information
Centre (Batjes, 2012)

5′× 5′

Historical daily meteorological data
(1974–2004)

German Federal Ministry of Education and Re-
search: the ISIMIP Fast Track project (Hempel
et al., 2013)

0.5◦× 0.5◦

Management data Growth period of winter wheat Center for Sustainability and the Global
Environment, University of Wisconsin-
Madison (Sacks et al., 2010)

0.5◦× 0.5◦

Irrigation OKI Laboratory, University of Tokyo
(http://hydro.iis.u-tokyo.ac.jp/GW/result/
global/annual/withdrawal/index.html, data
from 2002, last access: 11 October 2017)

0.5◦× 0.5◦

Fertilizer Land Use and Global Environment
(Potter et al., 2010)

0.5◦× 0.5◦

Statistical yield data Statistical yield for calibration (2000) Food and Agriculture Organization of
the United Nations (http://www.fao.org,
last access: 1 December 2019)

National
(regional) unit

Statistical yield for validation
(1974–2004)

To validate the parameterization results, we generate the
simulated grid yields of 1974–2004 based on the calibrated
EPIC model and aggregate to the nation level by averaging.
For FAO national statistical yields of 1974–2004 with signif-
icant trends, linear de-trending transformations are applied
to remove the impacts of technology progress (Xiong et al.,
2014; Kamali et al., 2018a). Then we compare national sim-
ulated yields with the statistical yields across all European
countries.

2.3.2 Vulnerability curve construction based on the
calibrated EPIC model

(1) Generation of WS and yields under different
irrigation scenarios

After parameter localization, the EPIC model can be used
to simulate WS and the winter wheat yields under different
drought scenarios, providing samples for the construction of
vulnerability curves to drought.

To focus on physical drought vulnerability and eliminate
the impact of other stress factors on yields, we use meteoro-
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Figure 2. Basic research framework. First, we input relevant data into the EPIC model and perform model calibration. Next, we obtain a
series of water stress and yield data based on the calibrated EPIC model by setting different irrigation scenarios, which are converted into
drought index (DI) and yield loss rate (LR) for the construction of vulnerability curves. Then, we extract three key points and calculate the
cumulative loss rate of vulnerability curves for the spatial analysis of loss change and loss extent characteristics. Finally, we calculate the
LR and the growth rate of LR (LR′) under a set of fixed DI to transform the vulnerability curves into a finite data set for clustering, and the
classification of vulnerability curves can be used for the integrated spatial analysis.

logical data with suitable temperature and no precipitation,
and we control the water supply condition by setting 20 ir-
rigation scenarios, in which the irrigation amount uniformly
increases from 0 to the optimum (the maximum irrigation
amount without WS). The optimal value is determined by
pre-testing. Consequently, we obtain the outputs of 20 groups
of WS and yield for each grid evaluation unit.

(2) Calculation of the drought index and yield loss rate

As an output factor of the EPIC model, WS reflects the rela-
tionship between daily water supply and crop water demand.
WS ranges from 0–1; the larger the value, the more serious
the water shortage will be. To characterize integrated drought
intensity affecting yield, drought index (DI) is defined as
relative cumulative water stress during the crop growth pe-
riod, which can reflect both WS intensity and stress duration
(Wang et al., 2013). The calculation is shown in Eqs. (1) and
(2):

DIi =
HIi

max(HI)
, (1)

HIi =
∑n

d=1
(WSk), (2)

where DIi is the drought index of a grid unit under the ir-
rigation scenario i, ranging from 0–1; HIi is the cumulative
value of WS during the growth period under this scenario;
max(HI) is the maximum value of HIi under all irrigation
scenarios; WSk is the WS value on day k of the growth pe-
riod; and n is the number of days affected by WS during the
growth period.

The yield loss rate (LR) is used to express the response of
the yield to drought effects, calculated following Eq. (3):

LRi =
max(y)− yi

max(y)
, (3)

where LRi is the yield loss rate of a grid unit under irrigation
scenario i, yi is the yield under this scenario, and max(y) is
the maximum yield under the optimal irrigation scenario.

(3) Fitting of drought vulnerability curves

The aforementioned DI–LR samples are fitted by a logisti-
cal curve to obtain the grid vulnerability curve, as shown in
Eq. (4):

LR=
a

1+ b× ec×DI + d, (4)

where a, b, c, and d are constant parameters.
Then the coefficient of determination (R2) and RMSE are

used to measure the imitative effect (Quiring and Papakryi-
akou, 2003). R2 represents the proportion of the total vari-
ance in the observed DI–LR samples that can be explained
by the fitting model. It ranges from 0 to l, where the higher
values indicate better fitting accuracy. RMSE represents the
average difference between the predicted values by the fit-
ting model and the observed samples, and the higher values
indicate worse fitting accuracy.

2.3.3 Feature extraction and spatial analysis of the
vulnerability curves

(1) Identification of key points

According to the analysis in Sect. 2.1, taking the derivative of
Eq. (4), and setting the second and third derivatives equal to
0, the coordinates of the key points can be obtained to char-
acterize the phase change in the vulnerability curve (Table 2).
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Table 2. Key point coordinates of the vulnerability curve.

The starting point of rapid The inflection point of rapid The end point of rapid
loss growth (P1) loss growth (P2) loss growth (P3)

DI −
ln
(

2−
√

3
)
b

c −
lnb
c −

ln
(

2+
√

3
)
b

c

LR

(
3−
√

3
)
a

6 + d a
2 + d

(
3+
√

3
)
a

6 + d

(2) Calculation of the cumulative loss rate

The cumulative loss rate (CLR) is obtained by the integral of
Eq. (4) on the DI interval of [0, 1] to describe the overall vul-
nerability. All CLR values are divided into five levels by the
natural breakpoint method: extremely low (0.22–0.34), low
(0.34–0.42), moderate (0.42–0.49), high (0.49–0.55), and ex-
tremely high (0.55–0.69).

(3) Clustering of the vulnerability curves

To identify the morphological characteristics of the vulner-
ability curves, the curves are divided into some categories
by clustering. The first step is to filter the infinite dimen-
sional curve data to a finite set of representative parameters
(James and Sugar, 2003). A set of LR and growth rate of LR
(LR′) under the fixed DI (0.2, 0.4, 0.6, and 0.8) are selected
to preserve both the loss extent and change characteristics
of a curve, where distinguishing the differences between the
curves. The eight elements are separately normalized follow-
ing Eq. (5) for clustering.

N(LRDI=x)t =
(LRDI=x)t

SD(LRDI=x)
, (5)

where (LRDI=x)t is the value of LR (LR′) when DI= x

for the vulnerability curve t , and x = 0.2, 0.4, 0.6, and 0.8;
SD (LRDI=x) is the standard deviation of LR (LR′) when
DI= x for all vulnerability curves; and N(LRDI=x)t is the
normalized value.

The second step is to choose an appropriate clustering tool.
Generally, clustering algorithms can be divided into four cat-
egories, partitional clustering, hierarchical clustering, grid-
based clustering, and density-based clustering. Partitional
clustering directly divides the data set into several sub-sets
without intersection. Hierarchical clustering creates a hierar-
chical decomposition of the data set to perform clustering,
and it cannot be traced back after classifying. Density-based
clustering controls the growth of clusters through judging the
relationship of data density (the number of instances in unite
area) and threshold. Grid-based clustering divides the object
space into a limited number of cells to form a grid struc-
ture and is often combined with other methods, especially
density-based clustering methods (Sun et al., 2008; Han et
al., 2012).

K-means is a clustering algorithm based on partition. It
has the characteristics of faster calculation speed and good
clustering effect, which has been widely used in clustering
research (Sun et al., 2008; Wu et al., 2011). This paper uses
the basic K-means clustering method applied to the repre-
sentative parameter set and uses Euclidean distance to com-
pare the similarity of vulnerability curves among grid cells
(Jacques and Preda, 2014). The smaller the distance, the
more similar the vulnerability curves. The steps of the K-
means clustering are

1. setting up the classification number K of the data set,
and then randomly selecting K data points from the data
set as initial centroid of the classification;

2. sorting each data point into the class which is closest it;

3. calculating the new centroid of each class based on all
data points in it;

4. repeating steps (2) and (3) until the centroid of each
class remains the same or reaches the limit of iterations.

The selection of K value is the key of K-means clustering.
The elbow method is a commonly used method for selecting
K values, which is based on the sum of squares of errors
(SSE) (Nainggolan et al., 2019; Wang et al., 2019). The SSE
is calculated as follows:

SSE=
K∑

i=1
SSEi, (6)

SSEi =

n∑
i=1

(Pi,j −Ci)
2, (7)

where SSEi is the sum of squares of errors within the ith
class, n is the number of data points in the ith class, Ci is the
centroid of the ith class, and Pi,j is the j th sample point in
the ith class.

The principle of the elbow method is as follows (Naing-
golan et al., 2019; Wang et al., 2019). As the K value in-
creases, the data set becomes finer, the data points are closer
to the centroid, and the SSE will become smaller. The in-
crease in the K value will reduce the SSE greatly and im-
prove the clustering effect in the early stage, but when it
reaches a certain value, the SSE will decline slowly, and over-
classification may occur. That is to say, the K value has an
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Figure 3. Comparison of national winter wheat yield reported by
FAO and simulated by calibrated EPIC during the period from
1974–2004 (excluding calibration year of 2000).

elbow relationship with the SSE, and the elbow point corre-
sponds to the optimal number of clusters. Considering that
the elbow point may not be obvious, we have further counted
the number of vulnerability curves in each cluster with dif-
ferent K values, so as to determine the optimal K value com-
prehensively.

After clustering, the further category vulnerability curves
are fitted by all the DI–LR samples in corresponding clusters,
for better describing the characteristics of each cluster.

3 Results and analysis

3.1 Validation of the EPIC model simulation results

From the national comparison results from 1974 to 2004
(excluding calibration year of 2000), though the simulated
yields are slightly higher than the statistical yields, there is
high agreement between the two (Fig. 3). The regression
equation has an R2 of 0.77 and passes the test with a con-
fidence of 0.01, indicating a reliable performance of the cal-
ibrated EPIC model for yield simulation in various regions
and various years.

3.2 European winter wheat drought vulnerability
curves and characteristic analysis

3.2.1 Winter wheat drought vulnerability curves

Figure 5a shows the drought vulnerability curves of the 2010
grid assessment unit in Europe. On the grid scale, the R2

values of the vulnerability curve fitting are all above 0.94,
and 97.5 % of them are above 0.996 (Fig. 4a). Grids with
R2 less than 0.999 are mainly distributed in Ukraine, Ger-
many, Macedonia, and Greece. The RMSE values are con-
centrated between 0–0.043, and 94.5 % of them are less than
0.02 (Fig. 4b). Grids with RMSE values greater than 0.15
mainly belong to Ukraine. In general, the R2 of the regional

vulnerability curve fitted by all the grid DI–LR samples is
0.90 and the RMSE is 0.12, indicating a high overall good-
ness of fit.

There are differences in the shape of vulnerability curves
and in the coordinates of key points (Fig. 5b). The regional
starting point, inflection point, and end point of the rapid
loss of growth correspond to DI values of 0.27, 0.47, and
0.68 and LR values of 0.17, 0.43, and 0.75, respectively. For
most grids, the DI values at the three key points are mainly
distributed from 0.15–0.55, 0.35–0.7, and 0.4–0.8, while the
LR values have a relatively small distribution, from 0.1–0.2,
0.4–0.5, and 0.7–0.8. Therefore, the characteristics of stage
transitions of grid vulnerability curves can be simplified by
using the DI instead of two coordinates at key points. The
larger the DI is at key points, the more severe the drought
must be to cause a similar loss rate; this is reflected in the
lag in the stage transitions of vulnerability curve, indicating
a greater tolerance to drought disturbance.

3.2.2 Spatial distribution of the characteristic value

In terms of spatial distribution, the DI values at key points in
the south are higher than those in the north (Fig. 6). In the
southern areas, the DI values at the starting, inflection, and
end points are concentrated at 0.4–0.5, 0.5–0.7, and greater
than 0.7, respectively, while in north-central areas, they are
less than 0.2, 0.3–0.5, and 0.5–0.7, respectively. Therefore,
the stage transitions of the vulnerability curves in the south-
ern areas lag behind, indicating a higher tolerance to drought
disturbance. In the northeast, the DI values at the start and
end points are within the range of 0.2–0.4 and 0.4–0.6, re-
spectively, indicating that LR changes drastically during a
short development stage, during which these areas are par-
ticularly susceptible to drought.

The CLR represents the overall vulnerability, which is
contrary to the meaning of DI at key points and naturally
shows an opposite distribution of low in the south and high in
the north. Though both the north-central areas and the north-
east areas have extremely high CLR values, stage transition
characteristics in the two areas are different. The CLR inte-
grates the characteristics of the key points but shows infor-
mation loss in the characteristics of loss change.

3.3 Categories of winter wheat drought vulnerability
curves

To comprehensively analyse the vulnerability types of re-
gions, we convert the vulnerability curve into a representative
parameter set of loss degree and loss change characteristics
(Appendix A) and then perform K-means clustering. When
determining the optimal number of classification (K value),
it is found that when K = 5, the line graph of SSE shows
an inflection point (Fig. 7); at this time, the number of in-
stances in each cluster is relatively uniform, so as not to be
over-concentrated or over-classified (Table 3), indicating an
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Figure 4. Goodness of fit of grid vulnerability curves, including R2 and RMSE measures.

Figure 5. Distribution of (a) regional and grid vulnerability curves and (b) their three key points. The regional vulnerability curve is fitted
by all drought index and loss rate sample data in the region.

optimal classification effect. Therefore, the grid drought vul-
nerability curves are divided into five categories.

Compared to the regional loss characteristics at the ini-
tial, development and attenuation stages, these types of vul-
nerability curves are defined as low-low-low (L-L-L), low-
low-medium (L-L-M), medium-medium-medium (M-M-M),
high-high-high (H-H-H), and low-medium-high (L-M-H)
loss-type vulnerability curves (Fig. 8). Five category vulnera-
bility curves are fitted based on the DI–LR samples of related
vulnerability curves for a comprehensive characterization.

The LR values of the L-L-L loss-type vulnerability curves
are lower than the regional level under the same DI, and the
category CLR is only 0.33 (calculated by the category vul-
nerability curve), which is the lowest value of the five cate-
gories (Appendix B). These vulnerability curves are mainly

distributed in mountain areas such as the Alps and the Dinara
and Caucasus mountains, accounting for 10.0 % of the winter
wheat planting area in Europe.

The L-L-M loss-type vulnerability curves have a relatively
low loss rate and are susceptible to drought within the range
of 0.4–0.7. When the DI values reach approximately 0.4, the
loss rates begin to rapidly increase; when the DI values are
greater than 0.6–0.7, the loss rates are near the regional level.
The category CLR is 0.42. It is mainly found in the Danube
River basins, including hilly areas and plains, accounting for
20.3 % of the winter wheat planting area in Europe.

The M-M-M loss-type vulnerability curves are near the
regional vulnerability curve with a category CLR of 0.50
and mainly occur in the western European plains, the Pod
Plains, Donets Ridge, and surrounding highlands and low-
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Figure 6. Spatial distributions of drought index (DI) at the (a) starting points, (b) inflection points, and (c) end points and (d) spatial
distribution of the level of the cumulative loss rate (CLR) of vulnerability curves.

Table 3. Clustering effect of different cluster quantities.

Quantity of Quantity of vulnerability curves in each cluster

cluster (K) Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

2 739 1271 – – – – –
3 232 1076 702 – – – –
4 254 637 886 233 – – –
5 472 407 686 243 202 – –
6 3 471 683 407 243 203 –
7 3 155 706 156 193 254 543

lands. They have the widest distribution, accounting for
34.1 % of the winter wheat planting area in Europe.

The LR values of the H-H-H loss-type vulnerability curves
are higher than the regional level, and the category CLR
reaches 0.57. These vulnerability curves are concentrated in
patches on the Pod Plain, Polesí, and in lowland areas along
the Black Sea and eastern Great Britain, at approximately the

same latitude zone as that of the M-M-M loss type, account-
ing for 23.5 % of the winter wheat planting area in Europe.

The L-M-H loss-type vulnerability curves show high sus-
ceptibility to drought in the range of 0.3–0.6, where the LR
values rapidly increase and reach the regional level with the
increase in DI. When DI values are greater than 0.6 and con-
tinue to increase, the LR values maintain a relatively stable
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Figure 7. Sum of squared errors (SSE) corresponding to different
clustering numbers (K).

and high level; when DI values are less than 0.3, the LR val-
ues are slight. The category CLR is 0.53. These curves are
mainly distributed on the east European plain, accounting for
12.1 % of the winter wheat planting area in Europe.

Overall, the spatial distributions of the five types of vulner-
ability curves are obviously latitudinal and consistent with
the geographical pattern of Europe, where plains and moun-
tains mostly extend from the east to the west in the mainland
and extend from north to south in the British Isles. From
south to north, and from mountain to plain, the vulnerabil-
ity curves transition from concave to convex, and the CLR
values show an upward trend, indicating increasing vulnera-
bility. The heat difference at different latitudes and the wa-
ter and heat difference at different altitudes may be the root
cause of the type distribution.

4 Discussion

4.1 Relationship between vulnerability characteristics
and environmental variables

To further explore the relationship between the vulnerabil-
ity characteristic distribution and environmental variables,
Spearman correlation analysis is performed between the vul-
nerability characteristic parameters (DI1, DI2, DI3, and CLR)
and environmental variables (elevation, slope, soil sand con-
tent, precipitation during growth period, average temperature
during growth period, and relative humidity during growth
period). The results all passed the significance test at the level
of 0.01 (Table 4).

The DI1 value is positively correlated with relative humid-
ity and elevation, and the correlation coefficients are 0.41 and
0.40, respectively. That is, in areas with high relative humid-
ity or altitude, only when the drought develops to a rather se-
rious extent does it begin to have a significant impact on win-
ter wheat yield. Additionally, the L-L-L, L-L-M, and L-M-H
loss-type areas with high DI1 values have the characteristics
of high elevation or high relative humidity (Appendix C).

The four characteristic parameters are correlated with the
environmental variables which have latitudinal distribution,
such as elevation, slope, temperature, and soil sand content.
The DI1, DI2, and DI3 values characterizing drought toler-
ance are positively correlated with elevation, slope, and tem-
perature and negatively correlated with soil sand content,
while the CLR value characterizing the comprehensive vul-
nerability shows the opposite trend. The H-H-H loss-type ar-
eas with high vulnerability have typical characteristics of low
elevation, slope, temperature, and high soil sand content.

From the perspective of an influencing mechanism, when
the soil sand content is high, the soil drainage ability is
strong, and the crop is more vulnerable to drought (Reid et
al., 2006; Papathoma-Köhle, 2016), exhibiting low DI1, DI2,
and DI3 values and a high CLR value in the vulnerability
curve. The cause–effect relationship between the temperature
and the characteristic parameters cannot be defined, although
the spatial distributions of the two have a certain correlation.
Because temperature stress is removed from the drought sce-
narios, the temperature variable has no direct influence on
the results of yield loss rate to drought and the characteris-
tic parameters. It may have an indirect influence by affect-
ing the crop parameters of winter wheat during the previous
calibration process. Similarly, elevation does not directly af-
fect the values of the characteristic parameters. Simulation
experiments based on the EPIC model found that changing
the input of elevation has little effect on the simulated yield
(Thomson et al., 2002). Thus, the elevation may indirectly
affect yield and drought vulnerability by acting on other en-
vironmental variables such as temperature, precipitation, and
soil. The relationships between vulnerability characteristics
and environmental variables can provide ideas for further
quantitative impact study.

4.2 Uncertainty and limitation

The EPIC model default crop parameters may deviate from
the actual growth in different regions, so we localize and ver-
ify the crop parameters to be as close to reality as possible.
Nevertheless, there are some inevitable uncertainties, derived
from the selection of calibrated crop parameters, the accu-
racy of the statistical yield data, and other factors. There are
56 crop parameters in the EPIC model, and different input
parameters have different degrees of influence on the EPIC
model in different simulation environments (Zhang et al.,
2017). The main method to reduce the uncertainties of in-
put parameters is to carry out sensitivity analysis in the basic
evaluation unit and calibrate the sensitivity parameters one
by one. However, this requires multiple calculations and does
not completely eliminate the uncertainties of the input pa-
rameters (Yue et al., 2018). Therefore, with reference to pre-
vious research, we focus on the calibration and validation of
the above four main sensitive parameters. In terms of the ac-
curacy of the statistical yield, we use national-scale data due
to the availability, which is coarser than the grid simulation
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Figure 8. Five types of European winter wheat vulnerability curves to drought: (a) L-L-L, (b) L-L-M, (c) M-M-M, (d) H-H-H, and (e) L-M-H
loss-type vulnerability curves and (f) their spatial distributions.

Table 4. Correlation between vulnerability characteristic parameters and environmental variables (P ≤ 0.01).

Environmental variable DI1 DI2 DI3 CLR

Elevation 0.40 0.43 0.37 −0.44
Slope 0.31 0.44 0.45 −0.48
Soil sand content −0.10 −0.35 −0.44 0.38
Average temperature during growth period 0.32 0.34 0.30 −0.38
Precipitation during growth period −0.09 0.19 0.33 −0.26
Relative humidity during growth period 0.41 0.23 0.09 −0.27

unit, so it may cause some uncertainties in the localization
and verification results. When more multi-year and higher-
resolution statistical yield data are available in the future, the
results will be further improved.

There may also be uncertainties in the process of vulner-
ability simulation and assessment using the calibrated EPIC
model. To quantify them, we reiterate this process 20 times
and evaluate the standard deviation distribution of the results.
First, we randomly select 10 % of samples from the five types
of vulnerability curves based on the principle of stratified
sampling and obtain a total of 201 sample grids. Next, ac-
cording to the method in Sect. 2.3.1, we reiterate the vulnera-
bility simulation and vulnerability curve construction process
20 times by changing the irrigation scenario settings, that is,

keeping the non-irrigation and optimal irrigation scenarios
unchanged and then randomly setting 18 irrigation scenarios
between the two. From this, 20 reiterated vulnerability curves
can be obtained for each sample grid. Then, by calculating
the standard deviation of the LR for 20 reiterated vulnera-
bility curves at the drought index interval of 0.1, the stan-
dard deviation of LR for each sample grid can be obtained to
characterize the grid uncertainties. The mean standard devi-
ation and 95 % prediction uncertainty band (95PPU) of total
sample grids are finally calculated to characterize overall un-
certainties. The 95PPU is the range from 2.5 % to 97.5 % of
the cumulative distribution function (Abbaspour et al., 2007).
The results show that the mean standard deviation of LR is
between 0 and 0.065, and the average is 0.033. The width of
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Figure 9. Distribution of standard deviation of loss rate under differ-
ent drought index. The mean standard deviation and 95 % prediction
uncertainty band (95PPU) are calculated by the standard deviations
of sample grids, which are randomly selected from the five vulner-
ability curves at a proportion of 10 %.

PPU95 is between 0.007 and 0.135, and the average is 0.067.
The two indicators reach the peak when the drought index
is between 0.4 and 0.7 (Fig. 9). Although the prediction un-
certainty of LR is relatively large in such a range, it is still
significantly smaller than the differences in LR between re-
gions (which can reach more than 0.5), so it has little effect
on the distribution pattern of vulnerability. In summary, the
uncertainties in this process are acceptable.

4.3 Prospection of the vulnerability curves

By analysing the distribution of characteristic parameters,
it is found that the winter wheat vulnerability in Europe is
lower to the south, particularly in the surrounding areas of
the Mediterranean, which is consistent with research findings
based on experimental results of wheat varieties (Mäkinen et
al., 2018) and the crop model simulation results at country
scale (Leng and Hall, 2019).

By reflecting the spatial differences in vulnerability, the
characteristic information can accurately express the re-
sponse feature to drought in various regions and more effec-
tively guide drought risk management. We suggest paying
more attention to moderate and severe drought mitigation in
southern Europe (mainly the L-L-L and L-L-M loss-type ar-
eas), improving the prevention and mitigation capacity in the
central region (mainly M-M-M and H-H-H loss-type areas),
and seizing the susceptibility stage of drought development
for mitigation in the north-eastern region (the L-M-H loss-
type areas).

In addition, the vulnerability curve based on the crop
growth process simulation helps to understand the risk from
a vulnerability perspective. The impact of climate change on

crop yield depends not only on the temporal and spatial pat-
terns of climate change but also on species characteristics
(Trnka et al., 2014; Semenov et al., 2014). From the perspec-
tive of climate change, the drought risk in southern Europe
is more likely to increase compared to other regions of Eu-
rope, due to the predicted reduced precipitation and increased
evaporation (Olesen et al., 2011; IPCC, 2012). However, it
was found that the increase in drought effects on wheat in the
southern region may be less than or near those of the central
and north-eastern regions (Webber et al., 2018), which may
be related to a lower drought vulnerability. This is also an in-
direct verification of the spatial difference analysis results in
this paper.

Conducting a comprehensive vulnerability assessment
combined with social vulnerability will be an important di-
rection for future research. The vulnerability assessment will
focus on the agricultural social ecosystem rather than crops.
On the basis of consideration of variety characteristics and
natural environmental factors, the impact of field farming
measures such as regional irrigation, fertilization, and pest
management should also be considered (González Tánago et
al., 2016; Guo et al., 2020). In further research, we suggest
adding socio-economic factors into the crop growth simula-
tion as field management parameters, such as irrigation ca-
pacity and fertilization level. It will improve the level of eval-
uation and application value of regional vulnerability.

On the other hand, how to carry out dynamic vulnerability
assessment needs further exploration. With climate change
and socio-economic development, the crop planting dates,
growth periods, irrigation, and fertilization management may
change constantly (Moriondo et al., 2010). The future vulner-
ability curves may be different from the current ones here.
Therefore, it is recommended to explore dynamic vulnera-
bility assessment methods, combining possible scenarios of
climate change and socio-economic development, and then
evaluate differences in the comprehensive drought vulnera-
bility under different scenarios. This work has important ref-
erence value for dynamic risk assessment and risk manage-
ment.

5 Conclusion

Quantitative crop–drought vulnerability assessment and
analysis are an important basis for drought risk assess-
ment and drought risk management. Taking European win-
ter wheat as an example, we generate series data of WS and
scenario yield based on EPIC model simulation and then con-
struct S-type drought vulnerability curves. Through charac-
teristic parameter analysis and clustering analysis of vulner-
ability curves, the loss extent and loss change characteristics
are mapped to identify the regional vulnerability pattern and
drought response characteristics. The results provide quan-
titative ideas for the study of the impact of the environment
on vulnerability and provide scientific guidance for regional
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drought mitigation resource allocation and strategy develop-
ment.

The winter wheat drought vulnerability in Europe is higher
in the south and lower in the north with a latitudinal zonal-
ity, which may be related to environmental variables such as
elevation, slope, average temperature during growth period,
and soil sand content. In the southern region, the DI values at
the key points are high, and the CLR values are low, indicat-
ing a low vulnerability, while the northern region shows the
opposite trend.

The vulnerability curves can be divided into five loss
types: L-L-L, L-L-M, M-M-M, H-H-H, and L-M-H. It is rec-
ommended to improve the ability to address drought with a
greater-than 0.4 intensity in the L-L-L or L-L-M loss-type ar-
eas and a drought range from 0.3–0.6 intensity in the L-M-H
loss-type areas, as well as improve drought prevention and
mitigation in the M-M-M or H-H-H loss-type areas.
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Appendix A

Figure A1. Spatial distribution of yield loss rate and loss rate growth rate under different drought indexes.
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Appendix B

Table B1. Classification key points and cumulative loss rates calculated by category vulnerability curves.

Category vulnerability DI1 LR1 DI2 LR2 DI3 LR3 CLR
curve

L-L-L 0.44 0.19 0.67 0.48 0.90 0.76 0.33
L-L-M 0.40 0.19 0.55 0.46 0.69 0.73 0.42
M-M-M 0.28 0.18 0.47 0.47 0.65 0.75 0.50
H-H-H 0.19 0.15 0.38 0.45 0.57 0.76 0.57
L-M-H 0.33 0.19 0.44 0.47 0.56 0.75 0.53
Europe 0.27 0.17 0.47 0.46 0.68 0.75 0.48

Appendix C

Table C1. Descriptive statistics of environmental variables in various loss-type regions.

L-L-L L-L-M M-M-M H-H-H L-M-H Regional

Elevation (m) Median 677 315 165 140 160 181
Interquartile range 636 468 154 125 103 241

Slope (◦) Median 23 12 6 3 3 6
Interquartile range 25 17 9 3 3 9

Soil sand content (%) Median 43 43 43 52 52 43
Interquartile range 4 10 22 9 0 12

Precipitation during growth
period (mm)

Median 960 646 599 599 638 629

Interquartile range 306 198 128 131 53 158

Average temperature during
growth period (◦)

Median 7.1 7.8 7.5 6.9 3.9 7.1

Interquartile range 3.5 3.6 2.1 1.9 1.1 2.9

Relative humidity during
growth period (%)

Median 79.9 80.6 77.5 77.1 80.2 78.8

Interquartile range 2.7 3 3.9 3.1 2.1 3.9
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