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Abstract. Urban development models typically provide sim-
ulated building areas in an aggregated form. When using
such outputs to parametrize pluvial flood risk simulations in
an urban setting, we need to identify ways to characterize im-
perviousness and flood exposure. We develop data-driven ap-
proaches for establishing this link, and we focus on the data
resolutions and spatial scales that should be considered. We
use regression models linking aggregated building areas to
total imperviousness and models that link aggregated build-
ing areas and simulated flood areas to flood damage. The data
resolutions used for training regression models are demon-
strated to have a strong impact on identifiability, with too
fine data resolutions preventing the identification of the link
between building areas and hydrology and too coarse resolu-
tions leading to uncertain parameter estimates. The optimal
data resolution for modeling imperviousness was identified
to be 400 m in our case study, while an aggregation of the
data to at least 1000 m resolution is required when model-
ing flood damage. In addition, regression models for flood
damage are more robust when considering building data with
coarser resolutions of 200 m than with finer resolutions. The
results suggest that aggregated building data can be used to
derive realistic estimations of flood risk in screening simula-
tions.

1 Introduction

The development of pluvial flood risk adaptation measures in
urban areas typically requires that a variety of combinations
of different measures are tested (Radhakrishnan et al., 2018;
van Berchum et al., 2018). In addition, flood risk is strongly

affected by climate change, urbanization and socioeconomic
changes (Di Baldassarre et al., 2015; Hinkel et al., 2014;
Muis et al., 2015; Muller, 2007; Semadeni-Davies et al.,
2008). Projections of these parameters are subject to substan-
tial uncertainties over infrastructure lifetimes between 30 and
100 years (Cohen, 2004; Granger and Jeon, 2007; Hall et al.,
2014; Madsen et al., 2014).

To consider these uncertainties in the design of water in-
frastructures, scenario assessments are performed. In these
assessments, model simulations of the urban layout are
linked to water systems models (Urich and Rauch, 2014),
and the combined impact of climate change, represented as
changing forcing in the water systems model, and changes
in exposure, represented by varying simulated urban layouts,
is assessed. For example, Löwe et al. (2017, 2018) linked
a vector-based urban development model to a 1D–2D hy-
draulic model of the urban catchment to assess pluvial and
coastal flood risk, while Mustafa et al. (2018) implemented
a similar setup for fluvial flood risk, considering a cellular
automata model for urban development and 2D hydraulic
simulations. Other studies have applied cellular automata to
study the effect of urbanization on extreme rainfall and re-
sulting flood risk (Huong and Pathirana, 2013) and to quan-
tify changes in coastal flood areas as a result of urbanization
(Sekovski et al., 2015).

Raster-based implementations for modeling urban devel-
opment, such as the ones used by Mustafa et al. (2018)
and Bach et al. (2018), have the advantage of short sim-
ulation times. Such models can be combined into a flood
risk screening setup together with fast flood simulation tools,
i.e., a setup which allows for a fast evaluation of flood risk
with limited accuracy. Such setups enable testing flood risk
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adaptation measures in a scenario-based approach, where the
combination of various potential measures and different so-
cioeconomic and climate scenarios easily leads to simulation
requirements exceeding 10 000 events (Kwakkel et al., 2015;
Löwe et al., 2017, 2018; van Berchum et al., 2018). In this
context, conceptual flood simulation tools as described by
Bermúdez et al. (2018) and Jamali et al. (2018); Jamali et al.
(2019) may be preferable over machine learning techniques
(e.g., Wang et al., 2015), because they allow for a physically
interpretable implementation of surface adaptation measures
and because they can be linked to conceptual models of the
drainage system and thus be used for a combined assessment
of flood risk and other environmental impacts of the drainage
system.

When applying a linked (possibly conceptual) urban
development–hydraulic simulation setup for pluvial flood
risk assessment, we need to consider the effects of increas-
ingly impervious areas, leading to increased runoff and thus
larger flood hazard (Kaspersen et al., 2017), as well as of
increasing exposure, resulting from an increase in the poten-
tially flood-prone urban area (Löwe et al., 2017). For both pa-
rameters, urban development simulations will frequently not
provide a full quantification of the hydrologically relevant
variables. For example, impervious surfaces such as terraces,
carports or even streets might not be explicitly represented
in the urban development model. Similarly, microscale flood
damage assessments where simulated flood areas are over-
laid with building and infrastructure objects are state-of-the-
art in urban hydrology (Hammond et al., 2015), but some
building types that are relevant for flood damage assessments
(e.g., schools) might not be modeled, and the location of
buildings may not exactly reflect reality or may be blurred
if (raster-based) cellular automata approaches are applied. In
addition, while Bruwier et al. (2018) clearly demonstrated
that building data affect urban flood simulations by blocking
flow paths, this effect is difficult to consider if an urban de-
velopment simulation only provides building information in
the form of building area density.

For the case where urban development models provide ag-
gregated, raster-based outputs, it is not clear how to link this
output to hydrological modeling approaches and subsequent
economic pluvial risk assessments. Related work has applied
ad hoc definitions (Löwe et al., 2017), guesstimates from
planning documents (Bach et al., 2013) and manual tuning
of model parameters (Bach et al., 2018) to predict impervi-
ousness based on modeled building areas.

Data-driven, empirical approaches would be highly attrac-
tive to parametrize this link. Our aim is to evaluate such
procedures and to characterize the data resolutions and spa-
tial scales for which robust performance can be obtained.
Similarly, for damage assessment we would be highly inter-
ested in procedures that allow for upscaling of locally derived
depth–damage functions, which are likely to provide bet-
ter damage estimates (Cammerer et al., 2013) and facilitate
acceptance among stakeholders. This need was also recog-

nized in the literature (de Moel et al., 2015). Upscaling pro-
cedures were previously described by Kreibich et al. (2010)
and Thieken et al. (2008) but focused on mesoscale dam-
age assessments rather than assessments on the city, or even
neighborhood, scale that we are interested in when perform-
ing exploratory modeling for urban flood adaptation.

None of the previous work has explicitly assessed to what
extent data resolutions applied in the development of scal-
ing procedures affect the outcome of these procedures and at
which spatial scale reasonable predictions can be obtained.
A thorough assessment of these issues throughout the plu-
vial urban flood risk modeling chain is the main contribution
of this paper.

2 Study area and data

We consider the city of Odense, Denmark, as a case study.
Odense has approximately 200 000 inhabitants, and it is lo-
cated in a typical moraine landscape close to the sea.

As base data characterizing the urban form, we were pro-
vided with building footprints in vector format by Odense
Municipality (Fig. 1). The building footprints included infor-
mation on the building types that were grouped into the 11
classes shown in Table S1 in the Supplement. In addition,
information on the number of residential units and the com-
mercial floor space area in each building was available.

Data on impervious area were provided in vector format.
The data were obtained from remote sensing campaigns and
grouped into six classes (Fig. 3). The responsible utility
VandCenter Syd continuously performs manual, small-scale
evaluations of which percentage of each impervious area
class is connected to the sewer system. These evaluations
were performed for each of the 18 000 subcatchments used
in the existing hydrodynamic model for the city’s drainage
network. We used this processed dataset for our analysis;
i.e., impervious area was considered as effective impervious
area connected to the pipe system. A digital elevation model
(DEM) was available from the Agency for Data Supply and
Efficiency (2018) at a resolution of 0.4 m. The data supplier
ensured hydrological validity of the data by removing ob-
stacles for major flow paths such as bridges. The data were
averaged to a resolution of 5 m.

Figure 1 shows terrain elevations, footprints of the exist-
ing buildings and the network of existing major roads. We
refer to Löwe et al. (2019) for a detailed evaluation of the
characteristics of the urban layout in the case study area.

3 Methods

Figure 2 illustrates the overall problem. Hydrological model-
ing and flood damage assessment are commonly performed
based on polygon data characterizing the urban layout. Fast,
raster-based urban development models instead provide in-
formation about the building area inside a pixel or the land-
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Figure 1. Terrain elevations in Odense, footprints of buildings exist-
ing in 2017 and major road network. See © Agency for Data Supply
and Efficiency (2018) and © Agency for Data Supply and Efficiency
and Danish Municipalities (2018) for copyright conditions relating
to building, terrain and road data.

use mix inside a pixel, which, through an assumed building
density, can be translated into building area. Typically, these
models operate with raster resolutions on the order of 100
to 200 m (Bach et al., 2018; Fuglsang et al., 2013; Mustafa
et al., 2018). Such coarse input data will affect rainfall–runoff
simulations, i.e., the location where flood hazards occur, and
are likely to be incompatible with flood damage assessments
derived from polygon data. To analyze issues arising in dif-
ferent parts of the pluvial flood risk modeling chain, we per-
formed hydrological assessments considering imaginary ur-
ban development model outputs in the form of rasterized
building data with resolutions between 25 and 2000 m.

We structured our study around steps illustrated in Fig. 3.
Summarized roughly, these steps involved the identification
of a regression relationship between rasterized building foot-
print areas (the assumed urban development modeling out-
put) and impervious area. The identified relationship was
subsequently applied to derive a raster of predicted imper-
vious area, which was used to parametrize 2D hydrodynamic
simulations of surface water flow. The results of these simu-
lations were used to estimate the extent of flooded building
area, which was then used as input to regression models that
predicted flood damage derived from a reference simulation.
The reasoning behind this approach was the following:

1. Urban development models in general, and fast, raster-
based modeling approaches in particular, do not provide
detailed information on all impervious areas in a catch-
ment. Thus, we need to estimate empirical relationships
between an assumed urban development modeling out-
put (here raster-based building footprint areas for differ-

ent building types) and measured imperviousness. Fit-
ting the regression relationship to datasets with vary-
ing resolutions provides insight into the spatial scale at
which the link between urban layout and impervious-
ness can be identified. Generating predictions at vary-
ing resolutions provides insight into the spatial scale at
which reasonable predictions can be generated.

2. In a hydrological model, coarse representations of im-
perviousness affect the runoff volume and location
where runoff occurs and will thus lead to different
simulations of flood hazards. We performed hydrody-
namic 2D flood simulations where the hydrodynamic
model was parametrized using impervious areas based
on building areas with varying levels of aggregation.
Comparing the resulting flood maps to a reference sim-
ulation, we can quantify how increasingly coarse rep-
resentations of the urban layout affect simulated flood
hazard.

3. Economic flood damage is an important parameter in
decision-making related to flood adaptation. The stan-
dard approach for damage estimation in urban hydrol-
ogy is to overlay high-resolution flood areas and build-
ing polygons. If only coarse, raster-based building data
are available, flood damage can be derived by estab-
lishing a regression relationship between flood damage
derived from a reference simulation and the extent of
flooded building area as a measure of exposure. Inspect-
ing the validity of this relationship provides insight into
the combined impact of coarse representations of the ur-
ban layout on hazard and exposure.

In addition to the above, buildings affect simulated flood haz-
ards by obstructing flow paths. This effect cannot be consid-
ered when only coarse building data are available. To isolate
this effect in our study, we performed an additional baseline
simulation where buildings were not included in the DEM
(not shown in Fig. 3). We compared simulated flood areas
and damage to the reference.

3.1 Regression fitting to predict impervious area (A)

3.1.1 Model setup

Our aim was to predict impervious area in simulated ur-
ban developments when the assumed output of an urban de-
velopment is building footprint areas for different building
types. Linear regression approaches for modeling such rela-
tionships were previously documented by Butler and Davies
(2011) for detached housing only and by Chabaeva et al.
(2009) for a variety of land cover classes derived from satel-
lite observations. To identify a regression relationship, we
rasterized the high-resolution polygon data. We modeled, for
each pixel j and each of the building types i shown in Ta-
ble S1, the observed impervious area Aimp,j in square meters
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Figure 2. Building footprint polygons and total building footprint areas aggregated to data resolutions of 25 and 200 m, shown for two
selected areas in the case study together with flood maps simulated based on the building dataset shown in each subfigure for a return period
of T = 100 years. In the baseline flood simulation, buildings were included as obstacles in the terrain model, while this was not the case in the
flood simulations performed for the aggregated building datasets. Vector building data in the left column are subject to copyright conditions
defined in © Agency for Data Supply and Efficiency and Danish Municipalities (2018).

per square meters as a function of the building footprint area
Abf,i,j in square meters per square meters and coefficients ai :

Aimp,j =
∑
i

ai ·Abf,i,j . (1)

Scatterplots of impervious area versus building area are in-
cluded in the Supplement (Fig. S1). We have not included an
intercept in Eq. (1) to ensure undeveloped areas are assigned
an imperviousness of 0 and because the scatterplots did not
suggest that an intercept would be necessary. For fine data
resolutions this leads to biased regression predictions. While
the dataset certainly is subject to spatial autocorrelation, the
regression models provided strong predictive performance,
and we have therefore not investigated the matter further.

To test the impact of spatial data resolution, we fitted
regression models to datasets with 80 different resolutions
1xfit, ranging from 25 to 2000 m in steps of 25 m. The re-
gression coefficients identified for each resolution were then
used to predict imperviousness at 80 different aggregation
levels 1xpred, ranging from 25 to 2000 m. We embedded our
tests into a cross-validation setup where 80 % of the dataset
were used for calibration and 20 % for model validation. If
1xpred >1xfit, we sampled from the pixels of the dataset
used for prediction and otherwise from the pixels of the fit-
ting dataset. For cross validation, a pixel from the dataset

with finer resolution was linked to the pixel of the dataset
with coarser resolution with which it shared the greatest over-
lap. The cross-validation procedure was repeated k = 1000
times; i.e., a total of 80× 80× 1000 regression models were
considered.

3.1.2 Performance assessment

During each iteration, we computed root-mean-square er-
ror RMSEAimp,k , coefficient of determination CODAimp,k and
bias ratio RBIASAimp,k:

RMSEAimp,k =

√
1/n ·

∑
j

(Aimp,pred,j −Aimp,obs,j )2, (2)

CODAimp,k = 1−

∑
j (Aimp,pred,j −Aimp,obs,j )

2∑
j (Aimp,obs,j −Aimp,obs)2

, (3)

RBIASAimp,k =

∑
j

Aimp,pred,j/
∑
j

Aimp,obs,j , (4)

whereAimp,pred,j andAimp,obs,j were predicted and observed
impervious areas for a pixel j in the validation dataset and
Aimp,obs was the average imperviousness of all pixels j in the
validation dataset. We considered the median of RBIASAimp,k

and CODAimp,k over all k iterations as measures of goodness
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Figure 3. Outline of the analysis steps performed in this paper. Letters A to D refer to the parts of the “Methods” section where the
corresponding step is detailed. The dashed line illustrates the case where flood maps from the baseline simulation were used to derive
flooded building areas as input to damage regression. Note that the second baseline 2D flood simulation where buildings were not inserted in
the DEM is not shown in the flow chart. Steps B and D were performed for a set of eight selected building raster resolutions 1xb to reduce
the number of possible resolution combinations without compromising the overall results.

of fit and the standard deviation σ(RMSEk) of RMSEAimp,k

as a measure of how reliably the model could be identified
for a given combination of 1xfit and 1xpred.

3.2 2D flood simulations (B)

3.2.1 Model setup

We performed 2D flood simulations of pluvial hazards for 10
different models, considering

– a model where imperviousness was determined from
the original imperviousness dataset and where buildings
were included in the DEM for flow calculation (baseline
model);

– a model where imperviousness was determined from
the original imperviousness dataset and where build-
ings were not included in the DEM for flow calculation
(baseline without buildings); and

– models where imperviousness was derived considering
the regression relationship shown in the Supplement

(Sect. S2) and considering building data aggregated to
resolutions 1xb of 25, 50, 100, 200, 300, 500, 750 and
1000 m as input – buildings were not explicitly included
in the DEM for flow calculation in this case.

Our 2D modeling approach was the exact same approach
as used by Kaspersen et al. (2017) for the same case study
area. The 2D surface flow model was implemented in MIKE
21 (DHI, 2016) using a grid size of 5 m by 5 m. Simula-
tions were performed for Chicago design storms (CDSs) with
return periods of 20 and 100 years and durations of 4 h.
Rainfall–runoff computations were performed for each grid
cell during each time step of a simulated event, and the runoff
created in each cell was then included in the simulation of
surface water flows.

As in Kaspersen et al. (2017), runoff Rt in time step t for
each 5 m pixel was computed as

Rt = Pt− ft (1− IS)−Pt,RP5IS, (5)

where Pt was the rain intensity and IS the ratio of impervi-
ous area in a pixel to its total area. The effective infiltration
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intensity ft (1− IS) in a cell was computed based on a con-
stant infiltration rate ft = 29.3 mm h−1. On the impervious
portions of a pixel, the rain intensity Pt,RP5 of a 5-year de-
sign storm at the same time step t was subtracted from the
rain intensity to simulate the effect of drainage systems.

Impervious areas linked to major roads (Fig. 1) were pre-
served throughout all simulations. In an urban development
simulation, main roads would need to be considered explic-
itly, instead of being lumped into a regression prediction of
imperviousness with building areas as the only input. As an
example, we included maps of infiltration rates ft (1−IS) de-
rived for two building datasets in the Supplement, Sect. S3.

The 2D flood model was not calibrated to reflect observed
flooding in the catchment. While the simulated flood maps
may not coincide with reality, they provide a realistic base-
line for the further analysis.

3.2.2 Performance assessment

We compared the simulated flood maps to the baseline sim-
ulation where true imperviousness percentages were applied
for runoff modeling and buildings were included in the DEM.
In the comparison, we focused on built-up areas and ex-
cluded natural areas and water bodies.

We created contingency tables where we counted in how
many pixels both the predicted flood map under scrutiny and
the baseline flood map exceeded a water level of 0.1 m (hits)
and how often this was the case only for the baseline model
(misses) or the tested model (false alarms). Subsequently, we
computed the scores hit rate HR, false alarm ratio FAR and
critical success index CSI as defined in (Bennett et al., 2013).
In addition, we evaluated the total area flooded above a water
level of 0.1 m.

3.3 Flood damage assessment (C)

Based on the 2D flood simulations performed for the base-
line situation, we assessed flood damage. The derived dam-
age data were subsequently used as a reference for training
and validating the regression models derived in Sect. 3.4.

Direct flood damage in urban areas is commonly as-
sessed by overlaying polygons of exposed objects with high-
resolution flood maps. Damage is then assigned to each ob-
ject (e.g., a building) depending on the greatest adjacent wa-
ter depth (Hammond et al., 2015). For our assessment, we
have focused on direct, tangible flood damage as this is most
directly related to the urban form.

We distinguished between two approaches for damage as-
sessment, which we expected might yield different results in
terms of which impacts different data resolutions may have
in damage assessment. The first type is threshold-based ap-
proaches, where a unit damage is assigned to an object if
the water level exceeds a defined threshold. In Denmark,
such approaches are frequently applied in the context of plu-
vial risk assessments (Kaspersen and Halsnæs, 2017; Odense

Kommune, 2014; Olsen et al., 2015), because water lev-
els are generally low. In the international literature, depth–
damage curves are widely applied (Penning-Rowsell et al.,
2013; Thieken et al., 2008) where damage potential is as-
signed to different objects in the urban space. Depending on
the flood water level, different portions of the damage poten-
tial are realized.

We considered the framework of Olsen et al. (2015) as an
example for the unit-damage approach, while the framework
of Beckers et al. (2013) was considered as an example for the
depth–damage-based approach. The latter builds on damage
functions from FLEMO (Thieken et al., 2008; Kreibich et al.,
2010). It is the only example we were able to find in the liter-
ature where damage potential for residential and commercial
properties was published for the same case study. We have
therefore selected it for our work. Table 1 summarizes both
approaches. We have not considered damage to road struc-
tures, because this was of negligible magnitude.

Flood damage was derived by overlaying the simulated
flood areas with the building polygons. Damage per square
meter was derived for each building, considering the damage
functions shown in Table 1. The building polygons were then
rasterized to a resolution of 1m and subsequently aggregated
to the different data resolutions used for fitting the regression
models detailed in Sect. 3.4.

We have also derived flood damage for the baseline sim-
ulation where buildings were not included in the DEM. The
damage values were not used for regression but are shown in
the results section, as they provide insight into the impact of
blocked flow paths on damage assessment.

3.4 Flood damage regression (D)

3.4.1 Model setup

In the regression of flood damage, we considered the building
footprint area Aflooded,WL[i] flooded with a water level above
threshold WL[i] as the main input variable. This area was de-
termined by downsampling the building raster data with res-
olutions 1xb of 25, 50, 100, 200, 300, 500, 750 and 1000 m
to the same resolution as the flood maps (5 m) and summing
up the building areas for all pixels which were flooded above
the threshold of interest.

We reasoned that the regression models should reflect the
characteristics of the damage function applied in the original
damage assessment. We have therefore considered a model
structure based on the three building classes considered in
damage assessment. A square-root transformation was ap-
plied to both input and output variables to linearize the rela-

Nat. Hazards Earth Syst. Sci., 20, 981–997, 2020 www.nat-hazards-earth-syst-sci.net/20/981/2020/



R. Löwe and K. Arnbjerg-Nielsen: Data resolution and spatial scale in urban flood screening 987

Table 1. Damage assessment frameworks considered in our work. WL is water level.

Olsen et al. (2015) Beckers et al. (2013)

Immobile Mobile

Type WL Unit damage WL Loss ratio Damage potential Loss ratio Damage potential
(m) (EUR) (m) (%) (EUR m−2) (%) (EUR m−2)

Residential > 0.1 1800 > 0.1 3 389 3 119
> 0.21 8 8
> 0.6 11 11
> 1.0 17 17
> 1.5 22 22

Public > 0.1 8300 > 0.1 5 370 29 1.32
> 0.21 9 30
> 0.6 17 42
> 1.0 23 48
> 1.5 39 61

Commercial > 0.1 9500 > 0.1 5 343 29 90
> 0.21 9 30
> 0.6 17 42
> 1.0 23 48
> 1.5 39 61

tionship (see Sect. S6):

D0.5
=

n∑
i=1
(b1iA

0.5
flooded,res,WL[i]+

b2iA
0.5
flooded,comm,WL[i]+

b3iA
0.5
flooded,pub,WL[i]). (6)

The flooded building footprint areas for residen-
tial (Aflooded,res), commercial (Aflooded,comm) and public
(Aflooded,pub) buildings were computed as the total footprint
area of the corresponding class that was flooded above water
level WL[i] and below WL[i+ 1], and coefficients b1i , b2i
and b3i were estimated for each threshold WL[i]. The map-
ping between the 11 building types considered in our case
study and three building classes considered for damage as-
sessment is illustrated in Table S1.

For the damage data derived based both on
Olsen et al. (2015) and on Beckers et al. (2013), we
have applied Eq. (6) with a single damage threshold of
0.1 m, resulting in a model with three input variables that
corresponded to the total flooded footprint area for each
building type. This approach was named DMOD1 in the
following. In addition, for the damage data derived based on
Beckers et al. (2013), we also applied a model where all five
water level thresholds shown in Table 1 were considered.
The result was a regression model with 15 input variables
that reflected the building footprint areas flooded above the
different water level thresholds considered in the original
damage assessment. This approach was called DMOD2.

Similar to the approach for impervious areas in Sect. 3.1,
we fitted the regression models DMOD1 and DMOD2 con-
sidering 80 different input data resolutions 1xfit between 25
and 2000 m. The flooded building area Abf,WL[i] was always
determined at a resolution of 5m (corresponding to the reso-
lution of the flood map) and was subsequently aggregated to
the resolution that should be used for regression fitting.

To distinguish to what extent coarse building data affect
damage assessment by creating uncertainty in flood expo-
sure or flood hazard, we derived flooded building areas both
from the baseline flood map (considering true impervious-
ness and buildings included in the DEM for flood simula-
tion) and from the flood map created in a 2D simulation with
the aggregated building data which were also considered for
damage regression.

3.4.2 Performance assessment

To assess model performance, we performed cross valida-
tion. The city was divided into squares with an edge length
1xpred of 2000 m (see Sect. S5). We trained the regression
model on a random sample of 80 % of the subareas and as-
sessed model performance on the remaining 20 %. This pro-
cess was repeated k = 1000 times.

When the regression models were fitted to datasets with
resolutions 1xfit finer than 2000 m, we linked the pixels at
the lower data resolution to the subarea with which they over-
lapped most. Regression modeling was then performed at the
finer resolution, and predicted damage for each subarea was
computed by aggregating the values from the linked pixels.
The subdivision into subareas allowed us to evaluate model
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performance at a constant spatial scale despite applying dif-
ferent data resolutions for model fitting. However, it had the
disadvantage that the pixels in the datasets used for regres-
sion modeling were not always completely included in a sub-
area, leading to noise in the computed scores.

To evaluate regression fit, we computed for cross-
validation iteration k the COD of damage values Dpred,j,k
predicted for each subarea j in the validation dataset by com-
paring to the baseline damage Dbaseline,j value for the same
subarea:

CODD,CV2000,k = 1−

∑
j (Dpred,j,k −Dbaseline,j )

2∑
j (Dbaseline,j −Dbaseline)2

. (7)

The index CV2000 indicates that cross validation was per-
formed on a spatial scale of 2000 m. In addition, we com-
puted the total damage ratio DRtot,k considering all subareas
j in the validation dataset as

DRtot,k =
∑
j

Dpred,j,k
/∑

j

Dbaseline,j . (8)

Median values of CODD,CV2000,k and DRtot,k were con-
sidered in the analysis of results. For the cases where flooded
building areas Aflooded,WL[i] were derived based on the flood
map from the baseline simulation, scores were marked with
subscript BF.

4 Results

The results section was structured into the same parts that
were also highlighted in Fig. 3. Performance scores related to
the simulation of flood hazards and the assessment of flood
damage (parts B to D) were collected in Tables 2 and 3, dis-
tinguishing between results for building data with varying
resolutions 1xb.

4.1 Estimation of impervious areas (A)

Figure 4 summarizes CODAimp,k , RBIASAimp,k and
RMSEAimp,k , where regression models for impervious
area were fitted for varying data resolutions (1xfit) and
where the coefficients fitted for one resolution were used
to predict impervious areas considering building data
aggregated to varying resolutions as input (1xpred). Fig-
ure 4a–c show histograms of the score values obtained
during 1000 cross-validation iterations for the combination
1xfit =1xpred = 500 m, while Fig. 4d–f show median
values of CODAimp,k and RBIASAimp,k and the standard
deviation of RMSEAimp,k obtained for each of the 80× 80
combinations of 1xfit and 1xpred.

When the regression models were fitted to data with reso-
lutions below approximately 250 m, the relationship between
building footprint areas and imperviousness could not be
identified, because building footprint areas would then not
necessarily be located in the same pixels as the associated

features of the urban layout (e.g., sidewalks). Regression co-
efficients approached 1 for the finest data resolutions 1xfit
and hardly varied during cross validation (not shown). This
led to low values for CODAimp and an underprediction of
the total imperviousness (RBIASAimp < 1). Considering the
prediction resolution 1xpred, values of CODAimp above 0.95
were achieved at spatial scales above 500 m. For finer spatial
scales, there would be random variations in the impervious-
ness that could not be explained by the extent of building
footprint areas alone (see also Fig. S1).

While the median predictive performance of the regres-
sion models (CODAimp and RBIASAimp) remained constant
for data resolutions 1xfit between approximately 250 and
2000 m, the standard deviation of the RMSE values obtained
for a fixed prediction resolution was minimal for data resolu-
tions on the order of 400 m (Fig. 4f). For coarser data resolu-
tions there would be a larger portion of the cross-validation
iterations where the regression models were not properly
identified. This behavior was considered plausible, because
coarser data resolutions are accompanied by a loss of infor-
mation on spatial variability and because the number of data
points decreases. For finer data resolutions1xfit, the negative
bias in predicted imperviousness similarly led to an increase
in σ(RMSEk), because prediction errors varied depending on
which areas were sampled for validation. This effect was not
observed for 1xpred = 250 m, because the impervious areas
that were not captured during parameter estimation were then
also in the validation phase largely located in pixels where
the building area was zero (leading to a predicted impervi-
ousness of constant zero).

For our case study, we identified a data resolution 1xfit of
400 m as the optimal trade-off between capturing the link be-
tween urban layout and imperviousness by aggregating data
into large enough pixels on the one hand and avoiding loss of
information by blurring the dataset on the other.

4.2 2D flood simulation (B)

Figure 5 shows the total area which was simulated flooded
above different water level thresholds. Results are compared
for the baseline model and for a model where imperviousness
was specified based on building footprint areas aggregated
to a raster resolution 1xb of 200 m. The figure suggests that
the model based on aggregated building data simulated fewer
areas flooded with high water levels for the 20-year event.
The reason was that this model did not consider the blockage
of surface flow paths by buildings. The effect can also be seen
by comparing the flood maps in the lower part of Fig. 5.

For the 100-year event, similar total flooded areas were
obtained for both models, which can be associated with the
greater degree of water movement on the surface and, as a
result, the filling of sinks in both models. However, the per-
formance scores shown in Table 3 suggest that there was
substantial disagreement between the two models in where
flooding occurred. It was difficult to conclude how severely
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Table 2. Summary scores for return period T = 20 years. The top section compares flood areas simulated with the varying input datasets
to the baseline simulation. The middle and lower sections evaluate goodness of fit for the damage regression models, considering separate
results for the two damage assessment frameworks. Values shown for CODD and DRtot correspond to median values obtained during cross
validation. The subscript BF marks those cases were flood areas from the baseline simulation were used to determine flooded building areas
for regression. Score values for damage regression were derived at a fitting resolution 1xfit = 1000 m.

Score Baseline, buildings Aggregated building footprint areas used for predicting imper-
excluded from the DEM viousness and for damage regression (resolution 1xb in meters)

25 50 100 200 300 500 750 1000

Comparison of simulated flood CSI 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.54
areas (WL> 0.1 m) HR 0.70 0.69 0.68 0.67 0.67 0.67 0.66 0.67 0.67

FAR 0.27 0.26 0.25 0.24 0.24 0.24 0.25 0.25 0.26
Aflood/Aflood,baseline 0.96 0.92 0.90 0.89 0.88 0.88 0.88 0.89 0.90

Flood damage assessment DMOD1-CODD,CV2000 COD= 0.84∗ 0.54 0.58 0.66 0.7 0.64 0.67 0.59 0.64
Beckers et al. (2013) DMOD1-CODD,CV2000,BF 0.74 0.86 0.89 0.88 0.86 0.79 0.72 0.73

DMOD2-CODD,CV2000 0.52 0.63 0.66 0.65 0.47 0.7 0.67 0.74
DMOD2-CODD,CV2000,BF 0.77 0.87 0.88 0.86 0.75 0.75 0.7 0.72
DMOD1-DRtot DR= 0.68∗ 0.85 0.86 0.88 0.9 0.85 0.85 0.74 0.84
DMOD1-DRtot,BF 0.93 0.92 0.94 0.95 0.91 0.91 0.8 0.87
DMOD2-DRtot 0.87 0.88 0.91 0.93 1.01 0.96 0.96 0.97
DMOD2-DRtot,BF 0.91 0.93 0.96 0.93 0.95 0.97 1.03 1.02

Flood damage assessment DMOD1-CODD,CV2000 COD= 0.96∗ 0.88 0.89 0.87 0.86 0.82 0.79 0.75 0.76
Olsen et al. (2015) DMOD1-CODD,CV2000,BF 0.88 0.88 0.86 0.84 0.82 0.82 0.77 0.8

DMOD1-DRtot DR= 0.88∗ 0.92 0.96 0.96 0.95 0.94 0.94 0.9 0.91
DMOD1-DRtot,BF 0.95 0.96 0.97 0.96 0.96 0.95 0.93 0.93

∗ COD was computed by aggregating damage derived for the baseline simulation without buildings to 2000 m and comparing these results to the baseline simulation with buildings. DR was computed by
computing the ratio of total damage in both simulations.

Table 3. Summary scores for return period T = 100 years. The top section compares flood areas simulated with the varying input datasets
to the baseline simulation. The middle and lower sections evaluate goodness of fit for the damage regression models, considering separate
results for the two damage assessment frameworks. Values shown for CODD and DRtot correspond to median values obtained during cross
validation. The subscript BF marks those cases were flood areas from the baseline simulation were used to determine flooded building areas
for regression. Score values for damage regression were derived at a fitting resolution 1xfit = 1000 m.

Score Baseline, buildings Aggregated building footprint areas used for predicting imper-
excluded from the DEM viousness and for damage regression (resolution 1xb in meters)

25 50 100 200 300 500 750 1000

Comparison of simulated flood CSI 0.59 0.60 0.59 0.59 0.59 0.59 0.59 0.59 0.59
areas (WL> 0.1 m) HR 0.73 0.71 0.71 0.71 0.70 0.70 0.70 0.70 0.70

FAR 0.24 0.21 0.23 0.23 0.21 0.21 0.20 0.20 0.20
Aflood/Aflood,baseline 0.95 0.90 0.93 0.92 0.89 0.88 0.88 0.88 0.88

Flood damage assessment DMOD1-CODD,CV2000 COD= 0.94∗ 0.86 0.86 0.86 0.88 0.91 0.91 0.86 0.91
Beckers et al. (2013) DMOD1-CODD,CV2000,BF 0.89 0.91 0.91 0.91 0.93 0.91 0.88 0.9

DMOD2-CODD,CV2000 0.78 0.76 0.83 0.88 0.89 0.88 0.91 0.86
DMOD2-CODD,CV2000,BF 0.87 0.89 0.89 0.9 0.89 0.86 0.88 0.85
DMOD1-DRtot DR= 0.81∗ 0.92 0.94 0.93 0.95 0.93 0.95 0.9 0.94
DMOD1-DRtot,BF 0.96 0.97 0.95 0.96 0.95 0.94 0.92 0.95
DMOD2-DRtot 0.93 0.97 0.95 0.94 0.94 0.97 0.95 0.99
DMOD2-DRtot,BF 0.95 0.98 0.96 0.97 0.96 0.96 0.95 0.99

Flood damage assessment DMOD1-CODD,CV2000 COD= 0.94∗ 0.9 0.91 0.92 0.92 0.92 0.9 0.88 0.9
Olsen et al. (2015) DMOD1-CODD,CV2000,BF 0.94 0.93 0.93 0.93 0.91 0.92 0.89 0.91

DMOD1-DRtot DR= 0.79∗ 0.95 0.97 0.99 0.98 0.98 0.97 0.96 0.97
DMOD1-DRtot,BF 0.98 0.97 0.99 0.98 0.97 0.98 0.97 0.98

∗ COD was computed by aggregating damage derived for the baseline simulation without buildings to 2000 m and comparing these results to the baseline simulation with buildings. DR was computed by
computing the ratio of total damage in both simulations.
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Figure 4. Results for regression models for impervious areas. Panels (a–c): histograms of CODAimp,k , RBIASAimp,k and RMSEk obtained
during 1000 cross-validation iterations k for the combination of fitting resolution 1xfit = 500 m and prediction resolution 1xpred = 500 m.
Red lines in panels (a) and (b) indicate median values. Panels (d, e): median values of CODAimp,k and RBIASAimp,k obtained for varying
combinations of 1xfit and 1xpred. Panel (f): standard deviation (log-transformed) of RMSEk obtained for varying values of 1xfit and
selected values of 1xpred (dots with varying colors).

simulated flood maps deviated from the baseline in absolute
terms because the performance scores were based on pixel-
by-pixel comparisons and thus suffered from double-penalty
issues.

For both return periods, the score values in Tables 2 and 3
suggest that the flood maps generated with models based on
aggregated building data generally resembled the flood map
from the baseline simulation without buildings. An increas-
ingly coarse representation of imperviousness in the model
thus had little impact on the simulated flood maps as com-
pared to the effect caused by the blockage of flow paths in
the baseline simulation.

A minor effect was noticeable in particular in the total
simulated flood areas. Coarse building area resolutions im-
plied that impervious areas would be distributed increasingly
evenly over the catchment, leading to the distribution of ef-
fective precipitation over larger areas; surface flows with
small water levels; and, as a result, fewer areas where wa-
ter levels would exceed the threshold of 0.1 m. On the other
hand, total impervious areas would be underestimated by the
regression model for fine building datasets as a result of the
regression specification without intercept. In fact, total im-
pervious areas would be underestimated by 10 % with the
25 m building raster set, while the bias would exponentially

decrease to under 1 % at a resolution 1xb of 300 m. These
two competing effects implied that the flood maps obtained
based on 25 m building raster data resembled the baseline
best in the 20-year event, where runoff depths were compa-
rably small and significant water depths only occurred due to
an aggregation of impervious areas. For the 100-year event,
raster sets with resolutions of 50 and 100 m yielded the best
trade-off between avoiding an underestimation of impervious
areas and ensuring sufficient spatial aggregation of impervi-
ous areas.

It needs to be emphasized that the effects discussed above
were very minor compared to the impact of whether build-
ings were considered in the DEM applied for 2D simulation
or not. The missing impact of increasingly coarse representa-
tions of imperviousness is likely to be linked to the fact that
sewer systems were considered by reducing effective rainfall
in a manner which was proportional to the imperviousness in
a pixel (Eq. 5); i.e., the design of the assumed sewer system
followed the distribution of impervious areas in space.

4.3 Damage assessment (C)

Figure 6 compares damage derived based on the baseline
flood map and based on the flood map where buildings were
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Figure 5. Total area flooded above water level threshold in baseline 2D simulation and in simulation based on building footprint areas
aggregated to 200 m raster. Results are shown for return periods of 20 (left) and 100 (right) years. Maps below the plots illustrate simulated
water depths in the different cases with background showing building footprint polygons (baseline) and total building footprint area per
200m×200 m pixel (aggregate building data). Vector building data are subject to copyright conditions defined in © Agency for Data Supply
and Efficiency and Danish Municipalities (2018).

not considered in the 2D simulation of surface flows. In gen-
eral, the latter approach led to an underestimation of flood
damage, because blocked flow paths in the baseline led to
higher water levels.

The figure also illustrates differences in the results ob-
tained for the two damage frameworks. Considering an ag-
gregation level of 400 m, we noticed individual pixels where
damage derived using depth–damage curves (Beckers et al.,
2013) was several times greater than for the threshold-based
method (Olsen et al., 2015), while damage was of a similar
magnitude on an aggregation level of 2000 m. In addition,
the approach based on depth–damage curves was subject to
stronger variations in and stronger underestimation of total
damage. These effects were mainly caused by large com-
mercial buildings which could induce very high damage val-
ues when water ponded next to these buildings in the base-
line simulation, even though the flooded area would often be
small. The threshold-based damage assessment was more ro-
bust towards such effects, because a unit damage would be
assigned which depended on neither the building size nor the
water level.

4.4 Damage regression (D)

Performance scores for damage regression models fitted
based on building data with varying aggregation levels were
summarized in Tables 2 and 3. The scores shown in the tables
were derived considering a data resolution 1xfit of 1000 m.

The damage regression generally scored high values for
CODD,CV2000 (median values obtained in cross validation)
and only slightly biased total damage (DRtot), suggesting
that, at aggregation levels of 2000 m and above, the regres-
sion models were able to compensate for deviations in both
the simulated flood area and aggregated representations of
building exposure in the form of raster representations of
building footprint areas. In addition, there was little differ-
ence in the regression scores when flooded building areas
were derived using flood maps created based on the aggre-
gated building data and when the baseline flood map was ap-
plied (comparing CODD,CV2000 and CODD,CV2000,BF), sup-
porting the statement above.

Both of the above statements were not true for the cases
where damage was derived based on the framework of Beck-
ers et al. (2013) in the 20-year event. Similar to the observa-
tions in Sect. 4.2 and 4.3, this effect was tied to local pond-
ing near large buildings in the baseline simulation and the
associated large damage assigned by the framework of Beck-
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Figure 6. Scatterplots of flood damage estimated based on 2D flood simulations with (baseline) and without buildings included in the DEM.
Results are shown for return periods of 20 (top row) and 100 (bottom row) years, for both damage assessment frameworks and for spatial
aggregation levels of 400 and 2000 m. Damage was assessed by overlaying building polygons and the corresponding flood areas.

ers et al. (2013). CODD,CV2000,BF was much higher in these
cases than CODD,CV2000, which underlines that the regres-
sion models were not able to reproduce damage simply be-
cause no or insufficient degrees of flooding were simulated
in areas where major damage occurred.

Figure 7 illustrates how CODD,CV2000 varied when differ-
ent data resolutions 1xfit were applied for regression model
fitting and when different building data resolutions1xb were
considered both for parametrizing imperviousness in the sur-
face flood simulations and for computing flooded building
area as input to the regression models. As the computed
score values were noisy (see Sect. 3.4), we have displayed
smoothed lines (R function loess with parameter span=
0.25; Cleveland et al., 1992; R Core Team, 2018). True val-
ues were included as dots to illustrate the level of varia-
tion around the smoothed line. Values obtained for the best-
performing building data resolution 1xb = 200 m were col-
ored blue.

Similar to the results obtained for impervious areas, a min-
imal data resolution 1xfit between 200 and 1000 m was re-
quired to properly identify the regression models, depending
on the damage framework and the resolution of the building
data considered. More surprisingly, building data with a reso-
lution 1xb of 200 m consistently yielded high CODD,CV2000
values, while high-resolution building data only yielded high
score values when damage was computed according to the
threshold-based approach of Olsen et al. (2015).

For the framework of Beckers et al. (2013) and a return pe-
riod of 100 years, Fig. 8 illustrates the damage computed in
the baseline simulation and compares it to regression pre-

dictions generated using building data aggregated to raster
resolutions 1xb of 25, 200 and 750 m. For a building data
resolution of 25 m substantial over- and underpredictions of
damage were observed. These effects were mediated when
considering coarser building data with a resolution of 200 m,
while the coarsest building dataset with a resolution of 750 m
no longer allowed for the capturing of the spatial variability
in flood damage.

Figure 2 illustrates simulated flood areas and building data
for the pixels marked as Area 1 and Area 2 in Fig. (8). Simi-
lar damage was observed in the baseline simulation for both
areas. However, the extent of the flooded area is very differ-
ent in both cases. In particular, only very small parts of the
building overlap with the flooded area in Area 2 for a building
data resolution 1xb of 25 m. For a resolution 1xb of 200 m,
the spatial averaging of building areas leads to a lower value
for the flooded building area in Area 1 and a higher value
in Area 2, allowing for a better regression fit. Similar to the
discussion in Sect. 4.3, this effect was less pronounced when
flood damage was computed according to the framework of
Olsen et al. (2015), because the threshold-method was less
prone to creating high damage in individual locations.

Finally, comparing values of CODD,CV2000 and DRtot for
DMOD1 and DMOD2 in Tables 2 and 3, little difference
could be observed between the two models. In fact, the
more complex DMOD2 occasionally yielded lower scores,
because more parameters needed to be identified. In addi-
tion, the flooded building areas for different level thresholds
were correlated, because areas with large water depths would
typically also be associated with greater flood extents in gen-
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Figure 7. CODD,CV2000 considering flood damage regression mod-
els (DMOD1) fitted at different data resolutions (1xfit) and con-
sidering building data aggregated to different resolutions in meters
(lines with varying colors). Lines were smoothed, while dots indi-
cate the true CODD,CV2000 values derived from each combination
of fitting resolution and building input data resolution. Dots were
colored blue for a building data resolution of 200 m and grey other-
wise.

eral (Fig. 2), and the additional variables thus yielded little
additional information in the regression process.

5 Discussion

5.1 Using aggregated building data for flood risk
assessment

The results suggest that the consideration of aggregated
building data affected both the simulation of flood hazards,
and the assessment of flood damage. In terms of the simu-
lated flood hazards the main effect arose from not consider-
ing the blockage of surface flow paths in the 2D flood sim-
ulations when considering aggregated building data. Coarse
representations of imperviousness and the resulting change
in rainfall–runoff behavior had little effect in comparison.

Despite the aggregation of building data, we were able
to achieve realistic representations of flood exposure, which
were illustrated by the high CODD,CV2000 and DRtot val-
ues obtained during damage regression. Building data aggre-
gated to resolutions1xb on the order of 200 m yielded better

Figure 8. Flood damage predicted by DMOD1 on an aggregation
level of 500, considering the baseline dataset and regression predic-
tions generated with building data aggregated to resolutions of 25,
200 and 750 m. Damage was computed using the framework doc-
umented by Beckers et al. (2013) for a return period of 100 years.
Flood areas and building data for the pixels named Area 1 and Area
2 are shown in Fig. 2.

regression performance than building data with finer reso-
lutions when considering damage derived using the depth–
damage-based framework of Beckers et al. (2013). Perfor-
mance of the finer and coarser datasets was similar when
considering damage derived based on the threshold-based
framework of Olsen et al. (2015). These trends were inde-
pendent of whether the baseline flood map was applied in
damage regression or the flood map simulated was based on
aggregated building data. Slightly higher aggregation levels
of the building raster sets can thus be considered beneficial
for flood screening approaches, as they yield a more robust
representation of flood exposure.

The damage regression yielded total damage estimates
that, for a building data resolution 1xb of 200 m, differed
between 1 % and 10 % from the baseline values. This was
considerably better than the total damage values obtained in
the baseline simulation where buildings were neglected in the
2D flood simulation but damage assessment was performed
using building polygon data. This highlights the need for
adjusting damage frameworks developed for high-resolution
data to the actual modeling context.

5.2 Damage frameworks for pluvial flood risk
assessment

The damage assessment approach based on depth–damage
curves (Beckers et al., 2013) produced high, localized dam-
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age values where flow paths were blocked by large buildings.
These situations were difficult to reproduce using aggregated
building data, because it was not possible to simulate the lo-
cal ponding of water, in particular for the smaller event.

It is questionable whether this damage assessment ap-
proach is reasonable for pluvial flood risk, because it relies
on modeled water depths which in reality would be unlikely
to occur in this form, because the water would likely enter
the building and distribute without causing major structural
damage. Damage assessment approaches which are less sen-
sitive to water depths may thus be preferable for pluvial flood
risk assessment.

The issue could be mitigated by explicitly considering wa-
ter flow through buildings in the surface flow model, which,
however, poses technical challenges. Alternatively, robust re-
gression approaches are likely to yield better results when
performing damage regression in the presence of such issues.

5.3 Data resolution in the development of scaling
approaches

Very clear dependencies on spatial scale could be identified
when developing regression models that predicted impervi-
ous areas as a function of building footprint areas. The opti-
mal data resolution 1xfit for developing these models was
identified to be on the order of 400 m. For finer data res-
olutions, buildings would not necessarily be located in the
same pixel as other impervious areas linked to the buildings
(e.g., sidewalks), resulting in an underestimation of impervi-
ous areas by the regression models. For coarser resolutions,
the data would gradually become too aggregated to properly
identify the link between the different building types and im-
perviousness, leading to a stronger variability in the results
during cross validation. Reliable predictions of impervious-
ness could be obtained at spatial scales 1xpred above 500 m
(COD> 0.95).

In a similar manner, the performance of regression mod-
els for flood damage only reached acceptable levels when
data resolutions 1xfit between 500 and 1000 m were con-
sidered during parameter estimation, depending on the level
of aggregation of the considered building dataset. DRtot ap-
proached values near 1 only when data resolutions 1xfit of
1500 m and coarser were considered (see Fig. S6), suggest-
ing that the data needed to be aggregated to such levels to
counterbalance local variations in where flooding was simu-
lated and which buildings were exposed to flooding.

5.4 Limitations

We performed 2D surface flow simulations based on pub-
licly available DEM data where buildings and plants were
removed in an automated manner. Our results suggest that the
simulated flood maps were very strongly affected by whether
the blockage of flow paths through buildings was consid-
ered in the DEM or not. Remnants originating from the DEM

cleaning process may affect this result and could be an expla-
nation for the rather low performance scores of the simula-
tions where buildings were not included in the DEM. For ex-
ample, slight misalignments between building polygons and
building locations in the DEM may result in artificial sinks
in the baseline simulation which would not be possible to
reproduce in simulations without buildings.

Our 2D flood modeling approach was a simplified repre-
sentation of the urban water cycle. This approach was jus-
tified as our intention was to evaluate which spatial scales
should be considered in the development of flood screening
approaches. For detailed assessment of the risk we would
recommend 1D–2D calculation methods to more accurately
represent where flooding occurs in the catchment.

5.5 Generalization and application

The regression parameters for imperviousness are likely to
depend on topography and urban layout (e.g., degree of ur-
ban creep and density of the urban developments). In addi-
tion, the optimal data resolution for identifying regression
relationships is likely to depend on the urban layout, with
coarser data resolutions being optimal in less densely de-
veloped cities. This implies that regression models can be
transferred between cities with similar urban layout and to-
pography, but in many cases it will be necessary to identify
optimal spatial scales and model parameters for the specific
case study.

For flood damage regression, optimal spatial scales and the
identified regression models additionally depend on the ap-
proach which is used for calculating flood damage. Further,
the level of damage incurred by a given extent of flooded area
must be expected to depend on the location of sinks and flow
paths in the specific case study and the degree to which urban
planning was performed in a flood-aware manner (Bruwier
et al., 2018). We thus expect that these regression models al-
ways have to be identified for the specific case study. Consid-
ering the impact of different approaches to land-use planning
is an important line of future research in the development of
flood screening approaches. This effect can be considered by
training regression models to different datasets.

Based on the considerations above, we suggest the follow-
ing work flow for developing a fast flood risk screening setup
in a new case study:

1. Obtain vector-based building data and highly resolved
imperviousness data from aerial imagery as base data
characterizing the urban layout.

2. Perform hydrodynamic flood simulations (e.g., 1D–2D)
for the case study to derive a baseline flood map and
compute flood damage.

3. Train regression models for impervious area and iden-
tify a suitable data resolution 1xfit using cross valida-
tion as demonstrated in this paper (see computer code
in Löwe, 2019).

Nat. Hazards Earth Syst. Sci., 20, 981–997, 2020 www.nat-hazards-earth-syst-sci.net/20/981/2020/



R. Löwe and K. Arnbjerg-Nielsen: Data resolution and spatial scale in urban flood screening 995

4. Use the predicted impervious area as input to fast flood
simulation tools (e.g., Jamali et al., 2019) and generate
flood map.

5. Use the flood map and rasterized building data to train
damage regression models. Identify suitable resolutions
for training data (1xfit) and building rasters (1xb) using
cross validation.

6. Apply setup – simulate urban development in raster
format; predict impervious area based on the simu-
lated building areas; use predicted imperviousness for
rainfall–runoff calculation in fast flood simulation tool;
and compute flood damage based on the generated flood
map, simulated building areas and damage regression
model.

6 Conclusions

We studied how different data resolutions affect the identifi-
cation of empirical relationships between building data and
urban hydrology and at which spatial scales reasonable pre-
dictions could be obtained. Based on our results, we draw the
following conclusions:

1. The identification of empirical relations between urban
layout and urban hydrology is subject to a bias–variance
tradeoff. Too fine spatial data resolutions prevent the
identification of empirical relationships and lead to bi-
ased results, while too coarse resolutions reduce the
number of data points and blur out spatial variations,
leading to uncertainty in the estimated relationships.
The optimal data resolutions are expected to vary for
different topographies and urban layouts and must thus
be evaluated in the specific case study.

2. Simulated pluvial flood hazards are strongly affected by
whether surface flow simulations consider the block-
age of flow paths through buildings and less by spa-
tially averaged representations of imperviousness dur-
ing rainfall–runoff calculations.

3. Water levels are underestimated if local ponding near
buildings is not considered in the surface flow simula-
tions, as would be the case when considering aggregated
building data as input. Without correction, this effect
also leads to an underestimation of flood damage.

4. A simple regression model predicting flood damage in
an area as a function of the extent of flooded building
area can, to some extent, compensate for deficiencies
in the simulated flood area. Building data aggregated
to resolutions on the order of 200 m were the preferred
input in our case study and performed more robustly
than building data with finer resolutions, because they
reduced local extrema in flooded building areas.

5. Regression models for flood damage must be expected
to depend on whether flood-aware spatial planning was
applied in the case study used for model training or not.
Different models must thus be trained to consider dif-
ferent land-use management strategies.

6. Local ponding next to large buildings can create rather
large water levels in simulations of pluvial flood risk
that may be unrealistic. Damage assessment frame-
works where damage increases as a function of water
levels are vulnerable to this type of error which is spe-
cific to pluvial flood risk.
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