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Abstract. Drought is a ubiquitous and recurring hazard that
has wide-ranging impacts on society, agriculture and the en-
vironment. Drought indices are vital for characterising the
nature and severity of drought hazards, and there have been
extensive efforts to identify the most suitable drought in-
dices for drought monitoring and risk assessment. However,
to date, little effort has been made to explore which index (or
indices) best represents drought impacts for various sectors
in China. This is a critical knowledge gap, as impacts provide
important ground truth information for indices used in mon-
itoring activities. The aim of this study is to explore the link
between drought indices and drought impacts, using Liaon-
ing province (northeast China) as a case study due to its his-
tory of drought occurrence. To achieve this we use indepen-
dent, but complementary, methods (correlation and random
forest analysis) to identify which indices link best to drought
impacts for prefectural-level cities in Liaoning province, us-
ing a comprehensive database of reported drought impacts
in which impacts are classified into a range of categories.
The results show that the standardised precipitation evap-
otranspiration index with a 6-month accumulation (SPEI6)
had a strong correlation with all categories of drought im-
pacts, while the standardised precipitation index with a 12-
month accumulation (SPI12) had a weak correlation with
drought impacts. Of the impact datasets, “drought-suffering
area” and “drought impact area” had a strong relationship
with all drought indices in Liaoning province, while “pop-
ulation and number of livestock with difficulty in access-
ing drinking water” had weak correlations with the indices.

The results of this study can support drought planning ef-
forts in the region and provide context for the indices used in
drought-monitoring applications, so enabling improved pre-
paredness for drought impacts. The study also demonstrates
the potential benefits of routine collection of drought impact
information on a local scale.

1 Introduction

Drought is one of the most pervasive natural hazards and
can cause numerous and severe societal impacts. Drought
impacts are mainly non-structural, widespread over large ar-
eas and often have a delayed onset in relation to the start
of the drought event; therefore, it is challenging to prop-
erly define, quantify and manage drought (Mishra and Singh,
2010). There are a number of types of drought (Wilhite and
Glantz, 1985), such as meteorological, agricultural, hydro-
logical, social and ecological. Meteorological drought is de-
fined as a deficit of rainfall for a period in respect to the
long-term mean (Houérou, 1996). As these rainfall deficits
propagate through the hydrological cycle, the other drought
types occur as deficits occur in river flows, soil moisture
and groundwater. Eventually impacts become manifest in
the environment and society. China has experienced nu-
merous droughts, which have caused great impact in many
sectors since the 1950s, especially in Liaoning province in
the dry northeast of the country (Zhang, 2004). Liaoning
province experienced a severe drought from spring 2000 to
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autumn 2001 which captured a large amount of attention
from stakeholders and caused serious impacts as a result of
the consecutive years of drought (Chen et al., 2016).

The costly nature of droughts means it is essential to plan
and prepare for droughts proactively. Drought risk assess-
ment is an essential prerequisite of this proactive approach
(Wilhite, 2000; Wilhite and Buchanan, 2005) and provides
the methods to predict the potential drought risk to society
and the environment. Some risk assessment efforts focus pri-
marily on the meteorological indices of drought, e.g. assess-
ing the risk of a given severity of meteorological drought us-
ing historical precipitation data (Potopová et al., 2015). How-
ever, to adequately assess drought risk it is also necessary to
characterise the consequences of drought occurrence, i.e. the
impacts of drought on society, the economy and the environ-
ment (UNISDR, 2009).

There are a wealth of drought indices in the litera-
ture (Lloyd-Hughes, 2014); however they have predomi-
nantly been used for drought monitoring and early warn-
ing (e.g. Bachmair et al., 2016b) rather than drought risk
assessment applications. The range of drought indices re-
flects the different types of drought which can be monitored,
e.g. meteorological, hydrological and agricultural (Erhardt
and Czado, 2017). Many indices, such as the standardised
precipitation index (SPI), can be calculated over different
timescales. This enables deficits to be assessed over differ-
ent periods and can help in the monitoring of different types
of drought. For example, shorter timescales, such as the SPI
for 3 or 6 months, are used for agricultural drought moni-
toring, while SPI accumulations for 12 or 24 months are of-
ten applied to monitor hydrological droughts (Hong et al.,
2001; Seiler et al., 2002). In China, many indices are used
for drought monitoring, such as the Palmer drought severity
index (PDSI), standardised precipitation evapotranspiration
index (SPEI), SPI, China-Z index, and relative soil mois-
ture and remote sensing indices (Hong et al., 2001; Wang
and Chen, 2014; Wu et al., 2012; Yanping et al., 2018).
Li et al. (2015) found that serious drought events occurred
in 1999, 2000, 2001, 2007 and 2009 in China using the SPEI.
Zhao et al. (2015) compared drought-monitoring results be-
tween the self-calibrating PDSI and SPEI in China with
emphasis on the difference of timescales. Wu et al. (2013)
developed an integrated surface drought index for agricul-
tural drought monitoring in mid-eastern China. Drought-
monitoring efforts in China tend to focus on meteorologi-
cal and agricultural drought monitoring. Based on this and
previous drought studies, the SPI, SPEI, soil moisture in-
dex and normalised difference vegetation index (NDVI) were
selected in this research to characterise meteorological and
agricultural drought. The relationship between drought in-
dices and drought impacts, established by statistical methods
(e.g. Bachmair et al., 2016a), can be used for drought risk as-
sessment and appraisal of vulnerability. Vulnerability is by its
nature difficult to define and measure, but in effect, drought
impacts are symptoms of drought vulnerability and provide

a proxy for vulnerability appraisal by demonstrating the ad-
verse consequences of a given drought severity (Blauhut et
al., 2015a).

There are many different types of drought impacts that
affect many aspects of society and the environment, but
drought impacts are rarely systematically recorded (Bach-
mair et al., 2016b). Some countries and regions have es-
tablished drought impact recording systems to analyse his-
torical drought impacts. A leading example of this is the
US Drought Impacts Reporter (Svoboda and Hayes, 2011)
which was launched as a web-based system in July 2005.
More recently, the European Drought Impact Report Inven-
tory (EDII) has been established (Stahl et al., 2016). Such
databases are an important step forward, but the information
in them is necessarily partial and biased, as a result of being
effectively crowdsourced text-based information based on re-
ported impacts from a range of sources (the media, grey lit-
erature, etc.). In contrast to many other countries, China has
a relatively complete and systematically assembled quantita-
tive drought impact information collection system. Data are
collected and checked at the county level by the Drought Re-
sistance Department via a formalised network of reporters,
who collect information on drought impacts on agriculture,
the industrial economy and water supply in every village.
These data then are fed up to the national government and
held by the State Flood Control and Drought Relief Head-
quarters (SFDH). This consistent collection of impact re-
porting provides a rich resource for drought risk assessment.
However, impacts by themselves are not fully instructive, and
to help inform risk assessment there is a need to understand
their relationship with quantitative drought indices.

Understanding the relationship between drought indices
and drought impacts and drought vulnerability is a vital step
to improving drought risk management (Hong and Wilhite,
2004). However, whilst there have been many studies that
develop, apply and validate drought indices, relatively few
studies have assessed the link between indices and observed
impacts. Bachmair et al. (2016b) noted that this literature
tended to be dominated by studies focused on agricultural
drought, generally linking indices like the SPI or SPEI and
crop yield. Examples appraising multisectoral impacts are
much sparser – there are several recent studies in Europe,
utilising impact reports from the EDII. Stagge et al. (2014)
and Bachmair et al. (2016b) used drought impacts from the
EDII and various timescales of SPI, SPEI and streamflow
percentiles. They found that the relationships between in-
dices and impacts varied significantly by region, season, im-
pact types, etc. whilst Blauhut et al. (2015a, b) developed a
quantitative relationship between drought impact occurrence
and SPEI using logistic regression in four European regions.
However, all four studies assumed drought impacts were only
measured by the drought impact occurrence (i.e. whether
there was or was not an impact in a given month), the num-
ber of impacts or a combination of both. This means that all
drought impacts had an equal weight without considering the
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duration, intensity or spatial extent of the individual impacts.
In contrast, Karavitis et al. (2014) analysed drought impacts
transformed into monetary losses to measure drought im-
pacts in Greece; however, it is challenging to transform all
drought impacts into monetary units – especially the indirect
impacts of droughts.

In China, previous studies have also focused on agricul-
tural drought risk assessment. Hao et al. (2011) applied the
information diffusion theory to develop a drought risk anal-
ysis model which used affected crop area to measure the
drought disaster. Zhao et al. (2011) established the relation-
ship between drought frequency and simulated crop yield
data in Henan Plain, and Jia et al. (2011) used the water
stress coefficient and duration to establish a drought index.
Li et al. (2009) analysed the links between historical crop
yield and meteorological drought and established a meteo-
rological drought risk index by combining the drought fre-
quency, intensity, yield loss and extent of irrigation. The
drought index was found to explain 60 %–75 % of the ma-
jor crop yield reduction. In drought impact studies, Xiao-jun
et al. (2012) collected information on the annual drought-
affected area, damaged area, and annual losses in food yield
at a national level from China Water Resources bulletins to
explore the water management strategies during droughts. In
Hao et al. (2011), drought impacts were only measured by
the affected crop area at the 10 d time step at the county level.
In our research, eight types of drought impacts are collected
to measure drought impacts at the city unit (i.e. prefectural)
level in Liaoning province, including not only consideration
of the drought-affected area, damaged area and yield loss but
also drought impacts on humans, livestock and the agricul-
tural economy.

In summary, previous studies have focused on linking im-
pacts to only one characteristic of drought (such as inten-
sity or duration of occurrence) with most focusing on me-
teorological drought and agricultural impacts with little ap-
plication of the results to drought vulnerability assessments,
with the exception of Blauhut et al. (2015a, 2016) and An-
derson et al. (2019), for example. Here we link drought in-
dices to drought impacts in 14 cities in Liaoning province,
northeast China, showcasing the use of the Chinese drought
impact data from the SFDH. Using the drought impact–
index linkage, we evaluate drought vulnerability in Liaoning
province and assess what factors affect drought vulnerabil-
ity. A drought vulnerability evaluation method that can be
extended to other areas is then developed. The objectives of
this paper are

1. to identify when and where the most severe droughts
occurred between 1990 and 2013 in Liaoning province;

2. to identify which drought indices best link to drought
impacts in Liaoning province;

3. to determine which city or area has higher drought vul-
nerability in Liaoning province; and

4. to ascertain which vulnerability factor or set of vulnera-
bility factors have a higher contribution to drought vul-
nerability, as quantified in objective 3.

2 Materials

2.1 Study area

Located in northeastern China, Liaoning province, com-
prised of 14 prefectural cities, has a temperate continental
monsoon climate with an annual average precipitation of
686 mm, which is unevenly distributed both temporally and
spatially (Cai et al., 2015). Figure 1 shows the annual average
rainfall across Liaoning, the southeast receiving on average
more than 1000 mm yr−1, whilst the northwest receives less
than 500 mm yr−1.

The annual average volume of freshwater resources in
Liaoning province is 34.179 billion m3, and the annual av-
erage per capita volume of water resources is 769 m3 – about
one-third of the per capita water resources for the whole of
China (Sun et al., 2012). Freshwater resources are unevenly
distributed within Liaoning province, with more freshwater
resources in the southeast than the northwest (Liu and Guo,
2009; Cao et al., 2012). Thus, Liaoning province is one of
the provinces with severe water shortages in northern China.
Liaoning province is also a highly productive area for agri-
culture; spring maize is the dominant crop in agriculture pro-
duction which makes it an important high-quality maize pro-
duction area (Liu et al., 2013; Ren and Zhou, 2009). Due to
these characteristics, when drought occurs, as has frequently
been the case in Liaoning province, it causes a significant
reduction in agricultural production (Yan et al., 2012). Ac-
cording to the SFDH, between 2000 and 2016 the average
annual yield loss due to drought was 1.89 million t in Liaon-
ing province, with an average annual direct agricultural eco-
nomic loss of CNY 1.87 billion.

2.2 Data

2.2.1 Meteorological data

Daily precipitation and temperature data for each city in
Liaoning province for the period 1990–2013 were obtained
from the China Meteorological Administration (http://data.
cma.cn/, last access: 3 January 2018). Although there are
52 meteorological stations in Liaoning province, due to the
quality and length of the records and location of the stations,
one meteorological site in each city (shown in Fig. 1) was
selected to represent the meteorological conditions for the
whole city in order to derive drought indices.

2.2.2 Soil moisture data

Daily soil moisture (SoilM) data for 96 soil moisture stations
in Liaoning province (shown in Fig. 1) from 1990 to 2006
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Figure 1. Map showing the 14 prefectural cities, the distribution of meteorological and soil moisture stations, and the average annual
precipitation in Liaoning province.

were obtained from the Liaoning Provincial Department of
Water Resources. Daily soil moisture was measured at three
different depths, 10, 20 and 30 cm using frequency domain
reflectometry soil moisture sensors. Soil moisture data were
not available at most stations between November and Febru-
ary due to freezing conditions.

2.2.3 Normalised difference vegetation index (NDVI)
data

Monthly MODIS normalised difference vegetation in-
dex (NDVI) data from 2000 to 2013 were collected in Liaon-
ing province from the Geospatial Data Cloud (http://www.
gscloud.cn/, last access: 10 February 2019); the daily maxi-
mum data were used to derive the monthly average NDVI.

2.2.4 Impact data

In contrast to many other countries, China has a systematic,
centralised drought impact information collection system.
Drought statistics include drought impacts; drought mitiga-
tion actions; and benefits of action to agriculture, hydrology
and civil affairs. During a drought event, impact statistics are
collected from every day to every 3 weeks, according to the

drought warning level (Wang, 2014). When a drought warn-
ing is not triggered, drought impact data are collected after an
event has ended which could be several months afterwards;
and no data are collected when there is no drought event.
Statistics for eight drought impact types were collected from
the SFDH between 1990 and 2016 and aggregated into an-
nual totals. The impact types used are listed in Table 1.

2.2.5 Vulnerability factors

The drought impacts described in Sect. 2.2.4 are mainly fo-
cused on the agriculture sector. As a result of this, the avail-
ability of data, and the findings of Junling et al. (2015) and
Kang et al. (2014), vulnerability factors relevant to these
impacts were selected. Vulnerability factors were collected
from the 2017 Liaoning Statistical Yearbook to assess their
contribution to the drought vulnerability (Liaoning Province
Bureau of Statistics, 2017) and are shown in Table 2 for each
city unit.
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Table 1. The eight drought impact categories for Liaoning province used in this study collected by the SFDH.

Impact Abbreviation Description Unit

Drought-suffering area DSA The area that was officially declared in drought kha

Drought-impacted area DIA The area that suffered crop yield loss by 10 % or more kha

Disaster area DA The area that suffered crop yield loss by 30 % or more kha

Recessed area RA The area that suffered crop yield loss by 80 % or more kha

Population with difficulty in
PHD

Rural populations that cannot have normal access to
10 k

accessing drinking water drinking water

Number of livestock with difficulty
NLH

Number of livestock that cannot have normal access to
10 k

in accessing drinking water drinking water

Yield loss due to drought YLD The amount of yield loss due to drought 10 k t

Direct economic loss in agriculture DELA
Direct losses to agricultural economy caused by

CNY 0.1 billion
drought

Table 2. Vulnerability factors for each city in Liaoning province collected from the 2017 Liaoning Statistical Yearbook (Liaoning Province
Bureau of Statistics, 2017).

City Per Population Crop Annual Per unit Effective Number of Reservoir Per unit Livestock
capita (10 k) cultivated per area of irrigation electromechanical total area of production
gross area capita fertiliser rate (%) wells (k) storage major (10 k t)

domestic (kha) water application capacity agricultural
product supply (kg ha−1) (m m3) products
(kCNY) (m3) (kg ha−1)

Shenyang 755.8 733.9 656.0 91.5 1000.4 40.0 27.6 686.6 7090.5 64.5
Dalian 1143.4 595.6 327.0 73.4 1437.2 22.8 19.0 2523.0 4914.3 70.8
Anshan 422.9 345.7 247.7 42.3 1031.8 30.1 4.1 91.9 6641.6 36.7
Fushun 402.7 214.8 116.1 94.7 776.9 37.4 1.8 2575.5 6342.9 10.4
Benxi 511.1 150.0 58.0 167.9 756.3 29.9 0.4 6078.8 6606.3 9.3
Dandong 315.8 237.9 190.4 28.0 1049.7 41.7 1.4 16202.8 6056.9 20.2
Jinzhou 341.8 302.2 457.2 46.6 915.4 41.3 18.7 977.9 6825.7 64.0
Yingkou 496.7 232.8 109.4 42.4 1564.6 67.7 12.3 269.6 7325.0 13.5
Fuxin 215.9 188.9 479.4 39.7 881.9 30.1 26.6 545.0 5243.6 49.6
Liaoyang 373.4 178.6 162.8 42.4 1002.6 44.8 4.0 1418.8 7202.2 11.0
Panjin 778.3 130.1 143.0 70.2 937.0 68.7 1.0 141.5 8918.3 23.8
Tieling 196.5 299.9 548.5 12.2 960.2 32.0 18.1 2174.5 8397.1 46.0
Chaoyang 210.1 341.1 464.5 15.8 874.7 42.0 17.4 2085.6 6292.0 63.6
Huludao 230.8 280.5 249.7 18.7 976.8 28.9 14.0 892.7 4852.3 35.4

2.3 Methods

2.3.1 Drought indices

Two meteorological indices were selected, the standard-
ised precipitation index (SPI; McKee et al., 1993) and the
standardised precipitation evapotranspiration index (SPEI;
Vicente-Serrano et al., 2010). These standardised indices are
widely used in drought-monitoring applications around the
world, and the SPI is recommended by the World Meteoro-
logical Organization for monitoring meteorological drought
(Hayes et al., 2011). This is due to the flexibility of being
able to derive the SPI over different timescales and because
it can be compared across time and space.

The SPI, in its default formulation, assumes that precipita-
tion obeys the gamma (0) skewed distribution, which is used
to transform the precipitation time series into a normal dis-
tribution. After normalisation, classes of drought can be de-
fined with the cumulative precipitation frequency distribution
(Botterill and Hayes, 2012; Hayes et al., 1999). The SPEI
uses the same standardisation concept using the climatic wa-
ter balance (that is, precipitation minus potential evapotran-
spiration; PET) instead of precipitation. In this study PET
is calculated by the Thornthwaite method (Thornthwaite,
1984), using observed temperature and sunlight hours (es-
timated from latitude) as inputs. The SPEI is calculated by
normalising the climatic water balance using a log-logistic
probability distribution (Vicente-Serrano et al., 2010).
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The SPI and SPEI are easily calculated and can fit a wide
range of accumulation periods of interest (e.g. 1, 3, 12, 24,
72 months; Edwards, 1997). The SPEI has the added advan-
tages of characterising the effects of temperature and evapo-
transpiration on drought. In this study, the SPI and SPEI were
calculated for five accumulation periods, 6, 12, 15, 18 and
24 months, from 1990 to 2013 for 14 meteorological stations
(i.e. one in each city – as shown in Fig. 1). Generally, precip-
itation in Liaoning province is concentrated between April
and September which corresponds to the growing stage of
spring maize. Considering the climatology and crop growth
period, the SPI6 and SPEI6 ending in September were se-
lected for this study, i.e. calculated using precipitation dur-
ing April to September. The 12, 15, 18 and 24 months SPI
and SPEI ending in December were also analysed with the
annual drought impacts during 1990 to 2013.

Using the daily soil moisture of 10, 20 and 30 cm depths,
the daily average soil moisture for each station was calcu-
lated using Eqs. (1) and (2) (Lin et al., 2016).

θ1 = θ10, θ2 =
θ10+ θ20

2
, θ3 =

θ20+ θ30

2
, (1)

θ =

3∑
i=1
(θ2×hi)

H
, (2)

where θi is the soil moisture of the ith layer (i = 1, 2, 3).
θ10, θ20 and θ30 are the measured values at different depths
(10, 20 and 30 cm); θ is the average soil moisture; hi is the
thickness of the ith layer of soil, and H is the total thickness
of the measured soil.

Some of the daily soil moisture data were missing; how-
ever this was limited to 17 % of the total soil moisture data.
In some cases there were missing data for one depth of soil
moisture measurement. In these cases, the average soil mois-
ture of the other two layers was calculated, and where there
was only one layer of soil moisture available it was used
to represent the average soil moisture. The annual average
soil moisture was calculated based on the available daily soil
moisture (March to October) and was analysed with the an-
nual drought impact data during 1990 to 2006. As each city
has more than one soil moisture station, the annual soil mois-
ture of each station was calculated and then averaged to one
value for each city.

The area-averaged NDVI at the city unit was calculated us-
ing the monthly NDVI. The critical stage of the spring maize
growth in Liaoning is in July, so the area-averaged NDVI in
July was selected for the analysis with the annual drought
impacts from 2000 to 2013.

2.3.2 Correlation analysis

The Pearson correlation method was used to characterise
the correlation between indices and the selected drought im-
pacts (Özger et al., 2009). Due to the limited availability of
soil moisture data, correlation analysis of soil moisture and

drought impact data was only carried out in nine cities. The
linkage between drought indices and impacts was used to as-
sess the drought vulnerability in Liaoning province. It can be
inferred that the greater the impact caused by droughts at a
specific severity (measured according to the SPI and SPEI),
the higher the drought vulnerability of the city.

2.3.3 Random forest modelling

Decision trees are regularly implemented for machine learn-
ing tasks. They resemble flowcharts, consisting of a series
of branches, internal nodes and leaf nodes. Internal nodes
typically represent binary conditions of the explanatory vari-
ables. These nodes are connected to other internal nodes by
branches, which represent the outcome of the previous in-
ternal node. Leaf nodes represent the outcome classes. Inter-
nal nodes are eventually connected to leaf nodes, which rep-
resent the outcome classes of the classification task. Whilst
quick to train and interpretable, decision trees are limited by
overfitting to the training set. Random forests (RFs) reduce
overfitting by fitting an ensemble of uncorrelated decision
trees. This is achieved using bootstrap aggregation with re-
placement (bagging) and by only considering a random sub-
set of features for splitting at each internal node (Breiman,
1996). As well as the reduction in overfitting compared to
decision trees, the advantages of RFs include its fast train-
ing speed, good accuracy and relative efficiency (Mutanga et
al., 2012). Additionally, once RF models are established, the
values of the predictor that correspond to the first split in the
decision tree can be extracted as thresholds corresponding to
impact occurrence (Bachmair et al., 2016a).

In this analysis random forests were built for regression.
This is achieved by assigning categorical outcomes at each
leaf node and using the mean prediction as the outcome. The
R package randomForest was employed to identify the rela-
tionship of drought indices to drought impacts (Kursa, 2017;
Liaw and Wiener, 2002) using 5000 decision trees for each
RF model. The variance explained was used to determine the
goodness of fit of the random forest model (Fukuda et al.,
2013). The mean squared error (MSE), Eq. (3), was used to
evaluate the importance of each index:

MSE=
1
n

i=n∑
i=1

(
yi − ŷi

)2
, (3)

where yi and ŷi are the observed drought impacts and the
estimated drought impacts of each city, i, respectively; n is
the length of the time series.

The percent change in MSE (MSE %) is the difference in
accuracy when the effect of the variable is excluded (i.e. if the
SPEI6 is excluded from the model, the MSE % of the model
may increase). Higher MSE % represents a higher index im-
portance. The first splitting values of each decision tree were
also extracted.
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Soil moisture and the NDVI were not analysed using the
random forest approach due to their short time series and
prevalence of missing data.

2.3.4 Standardisation of drought impacts and
vulnerability factors

To ensure comparability and to facilitate their visualisation,
the drought impacts and vulnerability factors were standard-
ised to a value from 0 to 1 using Eqs. (4) and (5) (Below et
al., 2007).

SDIi =
DIi −min DI

max DI−min DI
, (4)

SVFj =
VFj −min VF

ma VF−min VF
, (5)

where SDIi and DIi are the standardised drought impacts and
the drought impacts of year i in Liaoning province, respec-
tively; max DI and min DI are the maximum and minimum
values of drought impacts in all years for the given impact
type; SVFj and VFj are the standard vulnerability factors
and vulnerability factors of city j in Liaoning province; and
max VF and min VF are the maximum and minimum values
of each category of vulnerability factors in all cities.

3 Results

3.1 Drought monitoring and drought impacts

Figure 2 shows the SPEI and the drought impact data for
Liaoning province from 1990 to 2013; the sum of SDI is
the sum of all types of standardised drought impacts in the
14 cities for each year.

Figure 2 shows that the most severe droughts occurred
in 2000, 2001 and 2009, whilst in 1994, 1995, 2012 and 2013
there was above-normal precipitation. From a visual inspec-
tion, the largest impacts are generally associated with the
lowest index values. This suggests that there is a relation-
ship between the drought indices and drought impacts. This
relationship is explored quantitatively in the next sections.

Figure 3 shows the spatial distribution of the average of
each drought impact type collected between 1990 and 2016.
It shows that more severe drought impacts were recorded in
the drier northwestern part of Liaoning province than in east-
ern parts of the province; the NLH was highest in Dalian,
whilst Shenyang had the biggest PHD.

3.2 Correlation of indices with impacts

The Pearson correlation coefficient (r) for each city and
drought impacts is shown in Fig. 4. In most cases the drought
index is negatively correlated with the drought impacts, sug-
gesting that the lower (and more severe) the drought in-
dex, the greater the drought impact. However, correlation
strength and direction varied between the cities and impact

types, ranging between −0.890 and 0.621. In most cities
of Liaoning province, the NDVI and SoilM have a weak
correlation with most types of drought impacts. In Dalian,
Chaoyang and Fuxin, all drought indices had a strong corre-
lation with DA, whilst there was a significant correlation for
drought-impacted area in Jinzhou, Fuxin and Dalian, where
most of the correlations were significant (p < 0.01). The
strongest correlation was found between indices and PHD
in Dalian, while it was the weakest in Dandong. There is a
positive correlation between PHD and the NDVI in Fushun,
while NLH has a positive correlation with the NDVI in An-
shan. Generally, the SPEI6 had the strongest correlation with
all types of drought impacts, whilst the SPI12 had the weak-
est correlation. The SPEI typically exhibited stronger corre-
lations with drought impacts than the SPI with the same ac-
cumulation period.

DSA and DIA had a strong correlation with all drought
indices in Liaoning province, while PHD and NLH had a
weak correlation. The average correlation coefficient across
all drought indices and DSA in Liaoning was −0.43, while
the average correlation coefficient with PHD and NLH
was −0.22 and −0.27, respectively. Drought indices showed
a moderate correlation with RA and YLD with average cor-
relation coefficients of −0.32 and −0.37, respectively.

The performance of soil moisture varied significantly be-
tween cities and impact types (Fig. 4); it had a strong correla-
tion with the impacts in Chaoyang and a weak correlation in
Huludao. In Chaoyang, the correlation between soil moisture
and drought impacts was significant (α = 0.01), whilst other
cities were not significantly correlated.

3.3 Drought index importance in random forest models

Each drought impact type was selected as the response vari-
able in the random forest. On average the random forests ex-
plained 41 % of the variance observed within the drought im-
pacts. The MSE % for each city and impact type is shown in
Fig. 5. The MSE % can be seen to vary between different
impact types. DIA and YLD have higher MSE % than other
impact types, with an average MSE % of 3.02 and 3.01, re-
spectively. The PHD and NLH had lower MSE %, with an
average MSE % of 1.58 and 1.39, respectively. DSA and
RA had a moderate relationship with drought indices. The
SPEI performed better than the SPI with the same durations;
the SPEI6 had the highest importance with drought impacts.
The SPI12 was the least important index in terms of drought
impacts. Indices had a higher importance with impacts in An-
shan and Dalian and lower importance in Yingkou and Dan-
dong.

The variables’ MSE % identified from the random forest
analysis generally match those with strong negative correla-
tions. This supports the statement that indices are negatively
related to impacts. The threshold of impact occurrence based
on the indices was also identified in the RF analysis using
the first splitting value. Figure 6 shows the distribution of
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Figure 2. Standardised precipitation evapotranspiration index (SPEI) for 6-, 12-, 15-, 18- and 24-month accumulation periods, and the sum
of the standardised drought impacts (SDIs) for each impact type listed in Table 1 for Liaoning province from 1990 to 2013.

first splitting values of each decision tree within the RF. The
average first splitting values for the SPI18 and SPI24 were
higher than those of the SPI6, SPI12 and SPI15 (i.e. a more
negative index value and more severe meteorological drought
state) for all categories of drought impacts. For the SPEI, the
results were similar (i.e. long-term deficits must be more se-
vere to result in equivalent impacts compared to short-term
deficits) but there was more variability between accumula-
tions. When viewed in terms of impact types, DSA had a
low threshold, indicating that DSA impacts occur more read-
ily than DA or RA, as may be expected. The impact occur-
rence of index values increase for DSA, DIA, DA and RA;
and YLD and DELA tended to occur for more severe water
deficits, with the highest severity threshold being for NLH,
indicating that only very severe drought conditions triggered
impacts on livestock.

3.4 Drought vulnerability evaluation

The results of correlation analysis and random forest analy-
sis suggest that, in most parts of Liaoning province, the SPEI
with the 6-month accumulation period has the strongest re-
lationship with drought impacts. The SPEI6 was therefore
selected to assess the drought vulnerability of the 14 cities.
Regression analysis was performed on the SPEI6 for each
category of drought impact, and an example is given in Fig. 7
which shows the linear regression of DSA with the SPEI6 in
the 14 cities. It can be surmised that the more serious the
drought impacts for a specific drought severity (as defined
by the SPEI6), the higher the drought vulnerability. Fuxin,
Tieling, Chaoyang, Jinzhou and Shenyang have a higher vul-
nerability to DSA compared to the other cities.

Similar analyses were performed for all impact types, and
Fig. 8 displays the drought impacts each city in Liaoning

province is most vulnerable to. It can be seen from Fig. 8
that there is little difference between cities in terms of sensi-
tivity to various categories of drought impacts. Considering
the various impacts, Chaoyang, Jinzhou, Tieling, Fuxin and
Shenyang had the highest drought vulnerability – these cities
are all located in the northwest part of Liaoning province.
Dalian was most vulnerable to NLH.

3.5 Vulnerability analysis

A stepwise regression model was built to explain the varia-
tion in each type of standardised drought impact using vul-
nerability factors (listed in Table 2) as predictors. Drought
impacts are symptoms of vulnerability and so can be used
to estimate vulnerability to drought (Blauhut et al., 2015a).
The vulnerability to drought can be assessed by maintaining
a constant severity of drought (i.e. particular drought index
values) and comparing the resultant impacts. More serious
impacts correspond to higher vulnerability. Thus, the stan-
dardised drought impacts corresponding to a severe meteoro-
logical drought (SPEI6 equal to −1.5) were regressed on the
standardised drought vulnerability factors for 2017 to assess
drought vulnerability for each drought impact type. Table 3
shows the results of the stepwise regression model, demon-
strating the contribution of vulnerability factors to each cat-
egory of drought impact; the results varied for each impact
type.

The relatively high R2 values demonstrate the ability of
the vulnerability factors to explain the variability exhibited
by each drought impact. This is particularly the case for
DSA, drought-suffering area, and PHD, population with dif-
ficulty in accessing drinking water, which had associated
R2 values of 0.894 and 0.805, respectively. Population, crop
cultivated area and livestock production explained 89.4 % of
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Figure 3. Distribution of average drought impacts for each impact type, identified by the codes in Table 1, for the period 1990–2016 in
Liaoning province.

the variation in DSA. Population, in combination with per
unit area of fertiliser application and reservoir total stor-
age capacity, also contributed to the DA model, explaining
80.5 % of DA variation.

Population, crop cultivated area and livestock production
were identified as significant predictors in four, five and three
models, respectively, more than other vulnerability factors.
Crop cultivated area, the most frequently significant predic-
tor of drought impacts, also exhibited relatively high regres-
sion coefficients, demonstrating the strong relationship be-

tween the areas cultivated for crops and the vulnerability to
drought impacts. These results are paralleled in a compos-
ite drought vulnerability tool, which assigns relatively high
weighting to area of land irrigated (Quinn et al., 2014).

Population exhibited negative regression coefficients for
three of four drought impacts, suggesting that, as the pop-
ulation increased, the vulnerability to drought impacts de-
creased. However, population exhibits correlation with crop
cultivated area and livestock production. This, paired with
potential unaccounted for interactions between population
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Figure 4. Correlation coefficient (r) between drought indices (SPI, SPEI, NDVI and SoilM) and drought impacts for different impact types
(identified by the codes in Table 1) in Liaoning province. The significance level of the correlation is indicated using asterisks.

and other predictors, may have resulted in inaccurate pop-
ulation coefficient estimation. This is supported by a positive
population coefficient for predicting NLH. Population was
used exclusively to predict NLH; thus correlation with other
predictors and interaction effects were unable to influence the
coefficient. Furthermore, Fig. 9 demonstrates that, as popu-
lation increases, DSA, DIA and DELA increase. The com-
posite drought vulnerability tool of Quinn et al. (2014) does
not explicitly account for population, making a direct com-
parison not possible. However, it does assign a positive rela-
tionship between the ratio of rural population and drought
vulnerability, which may explain the unexpected negative
coefficients presented here. The number of electromechan-
ical wells also exhibited a positive coefficient, suggesting
that, as the number of wells increases, drought impacts in-
crease. However, it is possible that electromechanical wells
are more prevalent in more drought-prone areas; thus, the
positive coefficient may simply demonstrate an association
between electrometrical wells and RA.

Whilst drought vulnerability factors were able to explain
47.4 %–89.4 % of the variability in drought impacts, annual
per capita water supply, effective irrigation rate and per unit
area of major agricultural products were not identified as
significant predictors of any drought impact type. It is im-
portant to consider, however, that correlation between these
other vulnerability factors could result in them not being
identified as significant, as the information is already con-
tained within other vulnerability factors. This is supported
by drought impact correlations with per capita water supply
and effective irrigation rate. However, minimal correlations
between drought impacts and unit area of major agricultural
products were observed, suggesting that the absence of a de-
tected relationship may be a true reflection.

4 Discussion

The methodology in this research has a number of dis-
tinctive characteristics in relation to previous drought im-
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Figure 5. The MSE % of drought indices (SPI and SPEI) with drought impacts (identified by the codes in Table 1) in Liaoning province
using random forest.

Figure 6. Box plots showing the splitting value (i.e. the thresholds of impacts) in the random forest construction across all impact types for
each index (a), and across all indices for each impact type (b) in Liaoning province.
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Figure 7. Linear regression results of drought-suffering area (DSA) with the SPEI6 in each of the 14 cities in Liaoning province.
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Figure 8. Map showing the drought impacts each city in Liaoning
province is most vulnerable to, based on the results of the linear
regression.

Table 3. The vulnerability factors selected for the stepwise regres-
sion model and the R2 of the resulting model for each impact type
(identified by the codes in Table 1).

Drought Predictors vulnerability factors Standardised R2

impacts coefficients

DSA
Crop cultivated area 0.814

0.894Population −0.476
Livestock production 0.451

DIA
Crop cultivated area 1.098

0.743
Population −0.451

DA
Livestock production 0.691

0.731
Per capita gross domestic product −0.436

RA
Number of electromechanical wells 0.629

0.541
Per capita gross domestic product −0.452

PHD
Crop cultivated area 0.949

0.805Reservoir total storage 0.472
Per unit area of fertiliser application 0.352

NLH Population 0.720 0.474

YLD Crop cultivated area 0.798 0.606

DELA
Crop cultivated area 0.556

0.786Population −0.879
Livestock production 0.793

pact and vulnerability assessments. The method takes many
drought impacts, across a range of sectors, into considera-
tion. The extensive drought impact data were systematically
collected at county level, which is a consistent and reliable
data source enabling regional comparisons. The drought im-
pact data used here included impact variables that are rarely
available in other settings, e.g. population with difficulty in
accessing drinking water, number of livestock with difficulty
in accessing drinking water, yield loss due to drought and
direct economic losses in agriculture. In addition, we con-
sidered not only the occurrence of drought impacts but also

the severity of impacts and their spatial variation between re-
gions. Finally, the relationship between drought indices and
drought impacts was explored using different statistical ap-
proaches, and this linkage was used to assess drought vul-
nerability in Liaoning province using a range of vulnerability
factors (Hao et al., 2011).

The study has some important limitations which must
be considered when interpreting the outcomes. The biggest
challenge was the spatial and temporal matching between the
drought impacts and indices. The regularity with which im-
pact data are collected is determined by the drought warning
level, and as such the data are not evenly spaced in time; as a
result of this, the data were aggregated to annual totals. It was
important to match the accumulation period and timing of
the selected drought indices to the timescales critical for the
drought impacts; for example the SPEI6 in September cov-
ers the critical maize growth period and is when the majority
of precipitation falls. However, the results may change if we
were to use multi-year drought impacts, as longer index accu-
mulation periods may have a stronger correlation with multi-
year drought impacts than single-year drought impacts. Soil
moisture data were collected at a daily resolution; in order to
match up soil moisture and impact data, the March to Octo-
ber average soil moisture was used in the correlation analy-
sis. However, short-term soil moisture deficits can have se-
rious impacts on crops which are sometimes unrecoverable.
The average soil moisture may not have captured these short-
term deficits, particularly if soil moisture was, in general, suf-
ficient the rest of the year. Also in some cities, the lack of soil
moisture data means that the annual average soil moisture
does not reflect the occurrence of typical agricultural drought
during the year. For this reason, soil moisture data can be
used for real-time drought-monitoring applications but may
not be appropriate to present drought impacts on an annual
scale for risk assessment, as applied here. NDVI data for the
critical growth period of spring maize (i.e. July) were used in
the analysis with annual drought impacts, but again this does
not take all drought events during the crop-growing period
into account. The correlation coefficients characterising the
relationship between the NDVI and drought impacts are both
positive and negative; this is likely due to the complexity of
NDVI drivers (e.g. diversity of land cover, crop types and
growth stages). For this reason, some studies have used the
NDVI to identify the impact of drought on vegetation (Miao
et al., 2018; Rajpoot and Kumar, 2018; Trigo et al., 2015;
Wang et al., 2015).

The results from the correlation analysis were consistent
with the results from the RF analysis. Drought-suffering
area (DSA) and drought impact area (DIA) had strong corre-
lations with all drought indices in Liaoning province, while
PHD and NLH had a weak correlation with indices. This
was because DSA and DIA are direct impacts of agricultural
drought, whilst PHD and NLH are related to many additional
factors, such as drinking water source location and the qual-
ity of water resources; for example, livestock can drink wa-
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Figure 9. Scatterplots demonstrating the association between population and drought impact in Liaoning province.

ter from the river directly, but the quality of the river water
means it is not suitable for humans – for this reason, NLH
showed the least sensitivity to water deficits.

The random forest algorithms presented in this paper ex-
plained an average of 41 % of the variance observed within
the drought impact data. This is relatively modest and may
be partially due to limitations associated with the impacts
data. The collinearity of the drought indices (e.g. SPI6 is
correlated with SPEI6) is also a potential cause of the low
MSE %. The correlation coefficients calculated for drought
indices and NLH in Yingkou and PHD in Fushun were pos-
itive. This was unexpected given the interpretation of these
indices as estimations of the drought severity and the major-
ity of reported correlation coefficients being negative. There-
fore, it seems likely this result is not representative of the true
relationships between these indices and impacts and instead
is an artefact of imperfect impact data. To explore this, years
with the highest numbers of impacts were removed before
the correlation coefficients were estimated. This resulted in
a negative correlation coefficient, providing further evidence
for the positive correlation coefficients not being representa-
tive of the true relationships in these cities. The availability
of more data would enable a better approximation of the true
relationships between indices and impacts.

For all the drought impacts, Dalian and Fuxin showed the
highest correlation coefficients among drought impacts and
drought indices in all cases. The most vulnerable cities were
Fuxin, Tieling, Chaoyang, Jinzhou and Shenyang, which are
all located in the northwestern part of Liaoning province in-
dicating there is a high drought vulnerability and drought
risk in northwestern Liaoning. This is consistent with exist-
ing research by Yan et al. (2012) and Zhang et al. (2012),
which established a drought risk assessment index system
to assess drought risk in northwestern Liaoning. Zhang et
al. (2012) used indicators such as precipitation, water re-
sources, crop area, irrigation capacity and drought resistance
cost to measure drought risk and found that Fuxin, Chaoyang
and Shenyang had a high drought risk.

The above results are also in general agreement with
Hao et al. (2011), who used 10 d affected crop area data as
the drought impacts to assess drought risk in China at the
county level. Their results showed that the west Liaohe Plain
had a high risk. The results presented in our paper identify
Chaoyang and Fuxin as having the highest drought vulnera-
bility – the majority of these two cities’ areas are located on
the west Liaohe Plain.

As the accumulation period increased, the first splitting
value extracted from the random forest model tended to de-
crease, suggesting that, over longer accumulation periods,
larger water deficits are required for equivalent impacts to
occur. There are severe water deficits associated with RA oc-
currence since they caused more yield loss compared to DIA
and DA. Drinking water for livestock requires lower water
quality compared to that for humans; for example, livestock
can drink water from the river directly, but the water quality
of the river cannot meet the human drinking needs. For this
reason, NLH showed the least sensitivity to water deficits.

The relationships analysed in this research support the
use of drought indices as a predictor of drought impacts,
and the impact thresholds identified can also support im-
proved drought warning and planning. The drought vulner-
ability map (Fig. 8) can be used to support drought risk
planning, helping decision makers to implement appropri-
ate drought mitigation activities through an improved under-
standing of the drivers of drought vulnerability – for exam-
ple, by sinking more wells to enhance resilience to drought
(noting of course, that this measure has potential longer-term
implications on, for example, groundwater exploitation; see
e.g. Changming et al., 2001).

The methods used here can be applied in other areas to
better understand drought impacts and drought vulnerabil-
ity where similar data (e.g. drought impacts, meteorological
data) are collected. While systematic statistical archives of
drought impact are comparatively rare, there are numerous
other potential sources of impact data globally that could be
used (e.g. see Bachmair et al., 2016b).
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5 Conclusion

This study used correlation analysis and random forest meth-
ods to explore the relationship between drought indices
and drought impacts. It assessed drought risk in Liaoning
province and proposes a drought vulnerability assessment
method which can be applied to study the contribution of
various socioeconomic factors to drought vulnerability. Here,
we return to the original objectives of the study to summarise
the key findings.

1. When and where did the most severe droughts occur be-
tween 1990 and 2013 in Liaoning province?
Based on the drought-monitoring results of the SPI,
severe droughts occurred in 2000, 2001 and 2009.
In 2000–2001, drought resulted in many impacts in
Liaoning province, particularly in the northwestern part
of Liaoning province. The drought-monitoring data
shown corresponded well with the recorded drought im-
pacts.

2. Which drought indices best link to drought impacts in
Liaoning province?
The results showed that the indices varied in their ca-
pacity to identify the different type of drought and im-
pacts. The strongest correlation was found for the SPEI
at 6 months, whilst the SPI12 had a weak correlation
with drought impacts. The SPEI was found to better link
to drought impacts than the SPI for the same accumula-
tion period. The NDVI and soil moisture index showed
some links with impacts in some cities, but the results
were generally weaker and less consistent than for either
the SPI or the SPEI – primarily reflecting the limitations
in the soil moisture index and NDVI datasets.

3. Which city or areas has a higher drought vulnerability
in Liaoning province?
Chaoyang, Jinzhou, Fuxin, Shenyang and Tieling had
higher drought vulnerability, all of which are located
in the northwestern part of Liaoning province, indicat-
ing that drought vulnerability is higher in these regions
than in other parts, which is consistent with previous re-
search. However, in contrast with past work, the present
research provides a much more comprehensive assess-
ment based on the occurrence of observed impact data.

4. Which vulnerability factor or set of vulnerability factors
has a higher contribution to drought vulnerability?
Population and crop cultivated area were strongly as-
sociated with drought vulnerability, suggesting these
factors are good indicators of drought vulnerability.
However, the complexities of these relationships with
drought vulnerability require further investigation.

The results shown here give a clearer understanding about
drought conditions in Liaoning province. The linkage devel-
oped can be used to assess drought risk and to map vulnera-

bility. It can also be used to help develop early-warning sys-
tems and predict drought impacts, which are vital tools for
drought management. The results of the vulnerability analy-
sis can guide management measures to mitigate drought im-
pacts – an important step to shift from post-disaster recovery
to proactive pre-disaster prevention.
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