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Abstract. A large fraction of extreme precipitation and flood
events across western Europe are triggered by atmospheric
rivers (ARs). The association between ARs and extreme pre-
cipitation days over the Iberian Peninsula has been well doc-
umented for western river basins.

Since ARs are often associated with high impact weather,
it is important to study their medium-range predictability.
Here we perform such an assessment using the ECMWF
ensemble forecasts up to 15d for events where ARs made
landfall in the western Iberian Peninsula during the winters
spanning between 2012-2013 and 2015-2016. Vertically in-
tegrated horizontal water vapor transport (IVT) and precipi-
tation from the 51 ensemble members of the ECMWF Inte-
grated Forecasting System (IFS) ensemble (ENS) were pro-
cessed over a domain including western Europe and the con-
tiguous North Atlantic Ocean.

Metrics concerning AR location, intensity, and orientation
were computed, in order to compare the predictive skill (for
different prediction lead times) of IVT and precipitation. We
considered several regional boxes over western Iberia, where
the presence of ARs is detected in analysis/forecasts, en-
abling the construction of contingency tables and probabilis-
tic evaluation for further objective verification of forecast ac-
curacy. Our results indicate that the ensemble forecasts have
skill in detecting upcoming AR events, which can be par-
ticularly useful to better predict potential hydrometeorologi-
cal extremes. We also characterized how the ENS dispersion
and confidence curves change with increasing forecast lead
times for each sub-domain. The probabilistic evaluation, us-
ing receiver operating characteristic (ROC) analysis, shows
that for short lead times precipitation forecasts are more ac-

curate than IVT forecasts, while for longer lead times this re-
verses ( ~ 10d). Furthermore, we show that this reversal oc-
curs for shorter lead times in areas where the AR contribution
is more relevant for winter precipitation totals (e.g., north-
western Iberia).

1 Introduction

Extreme precipitation events in the Iberian Peninsula are of-
ten due to anomalous vertically integrated water vapor trans-
port (IVT) which are generally associated with an atmo-
spheric river (AR; Ramos et al., 2015, 2018; Eiras-Barca
et al., 2016). According to the definition of the American
Meteorological Society glossary of Meteorology, ARs cor-
respond to “a long, narrow, and transient corridor of strong
horizontal water vapor transport that is typically associated
with a low-level jet stream ahead of the cold front of an ex-
tratropical cyclone. The water vapor in ARs is supplied by
tropical and/or extratropical moisture sources and these sys-
tems frequently lead to heavy precipitation where they are
forced upward — for example, by mountains or by ascent in
the warm conveyor belt. Horizontal water vapor transport in
the mid-latitudes occurs primarily in atmospheric rivers and
is focused in the lower troposphere” (Ralph et al., 2018).
Extreme precipitation and floods in other regions of the
world have been shown to be also associated with ARs, es-
pecially on the western continental coastlines of the mid-
latitudes (Guan and Waliser, 2015; Gimeno et al., 2016).
Common regions where ARs strike are the western coast
of continents, such as in California (e.g., Gershunov et
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al.,, 2017; Ralph et al., 2017; Rutz et al., 2019), South
Africa (e.g., Blamey et al., 2018; Ramos et al., 2019), Chile
(e.g., Viale et al., 2018, Valenzuela and Garreaud, 2019), the
Iberian Peninsula (Ramos et al., 2015; Eiras-Barca et al.,
2016), and even southern Australia and New Zealand (Guan
and Waliser, 2015; Kingston et al., 2016). However, their cli-
mate and socioeconomic impacts are significant also in other
regions of the world, such as western and northwestern Eu-
rope (Lavers and Villarini, 2013, 2015; Sodemman and Stohl,
2013) and even the east coast of the USA (Mahoney et al.,
2016; Miller et al., 2019).

AR impacts are not always hazardous, as they can also be
responsible for providing beneficial water supply (e.g., Det-
tinger, 2013). Lavers and Villarini (2015) show that for west-
ern Europe, the west coast of the USA, and for the central
and northeastern USA, the AR contribution to total precip-
itation occurring during the winter months is in the range
between 30 % and 50 %. In addition, Ralph et al. (2019), in-
troduced a new scale for the intensity and impacts of ARs
along the west coast of the USA, where the authors showed
that weak ARs are mostly beneficial, since they can enhance
water supply and snowpack, while stronger ARs tend to be
frequently hazardous.

Due to its importance to the hydrological cycle, in recent
years, there has been an increase in the number of stud-
ies dealing with the predictive skill of the different forecast
systems in terms of ARs at short- and medium-range fore-
casts, as well as seasonal to sub-seasonal scales. Regarding
short- (1-3d) and medium-range (3—14d) forecasts, most
studies are focused on the USA. Among them, Nayak et
al. (2016) analyzed the skill of global numerical weather pre-
diction models to forecast atmospheric rivers over the central
United States showing that, for five different numerical mod-
els, AR occurrences are predicted quite well for short lead
times, with an increase in the location errors as the lead time
increases to about 7d. The authors show that, as expected,
the skill of the forecast decreases with increasing lead time
in both occurrence and location.

On the other hand, Martin et al. (2018), examined in
detail the skill of a mesoscale numerical weather predic-
tion system (WRF) and compared it with a global numer-
ical weather prediction model (Global Ensemble Refore-
cast Dataset, Hamill et al., 2013) during AR events for the
western USA. It was shown that both models present sim-
ilar and important errors in low-level water vapor flux, and
consequently on the magnitude of precipitation. However, it
was found that WRF (at 9 km horizontal resolution) can add
value to the forecast when compared with a global numerical
weather prediction model by means of dynamical downscal-
ing of the medium-range forecast.

Using an adjoint model framework (Errico, 1997), it was
shown for short-range forecast that both low-level winds and
precipitation, for ARs striking California, are most sensi-
tive to mid-to-lower-tropospheric perturbations in the initial
state in and near the ARs (Doyle et al., 2014; Reynolds et
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al., 2019). These kinds of studies can help identify locations
of greatest sensitivity in the forecast, thus helping to plan
observational campaigns that probe ARs using research air-
craft and dropsondes; the dropsonde observations will then
be assimilated into operational forecast models (Lavers et al.,
2018b; Guan et al., 2018).

Weather forecasting uses a process called ensemble fore-
casting to generate multiple realizations of possible future
atmospheric conditions or states. This is undertaken to take
into account uncertainties in the initial atmospheric state and
inadequacies in the numerical model formulations. In recent
years a new approach based on the IVT forecasts (Lavers
et al., 2014) has revealed that the IVT may provide ear-
lier awareness of ARs and extreme precipitation than pre-
cipitation forecasts in different regions of the world (Lavers
et al., 2016, 2017, 2018a). The rationale behind it is using
higher IVT predictive skill (e.g., Lavers et al., 2014, 2016)
and then using the ECMWF Extreme Forecast Index (EFI,
Zsoter et al., 2014). The EFI assesses how extreme the en-
semble forecasts are with respect to the model climate and
provides values that range between —1 and 1. Regarding
the Iberian Peninsula, Lavers et al. (2018a) showed, using
a high-density daily surface precipitation observation for the
winters of 2015-2016 and 20162017, that the IVT EFI has
slightly more skill than the precipitation EFI in discrimi-
nating extreme precipitation anomalies across the western
Iberian Peninsula (Portugal and northwestern Spain) from
forecast day 11 onwards. The EFI for IVT became opera-
tional at ECMWF in the summer of 2019.

Since the ARs are relatively narrow corridors of strong
horizontal water vapor transport, its landfall position will in-
fluence the location of a possible extreme precipitation event.
In the case of the Iberian Peninsula, it was shown by Ramos
et al. (2015) that the occurrence (or not) of extreme precip-
itation days over western river basins is highly sensitive to
the latitudinal location of the AR landfall. Therefore, it is
important to obtain an objective assessment of the forecast
accuracy at different lead times regarding AR landfall posi-
tion by using the IVT. This will be explored here through a
validation procedure that is based on observational precipita-
tion records.

The main objective here is twofold: (a) to compare the pre-
dictive skill of precipitation and IVT at different lead times
during extreme ARs striking western Iberia, using ECMWF
ensemble forecasts up to 15 d for the winters between 2012—
2013 and 2015-2016; and (b) to assess the skill (or accuracy)
of IVT probabilistic forecasts in terms of location landfall
and intensity, through a probabilistic verification procedure,
thus allowing the identification of possible model biases dur-
ing extreme AR events, and to define simple metrics which
may be suitable for operational purposes.
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2 Dataset
2.1 Forecast dataset

The ECMWEF integrated forecasting system (IFS) ensem-
ble (ENS) operational forecasts were processed for the ex-
tended winter seasons (October to March) for four win-
ters: 2012-2013, 2013-2014, 2014-2015, and 2015-2016.
ENS has a control run and 50 ensemble members. The two
daily forecasts initialized at 00:00 and 12:00 UTC with a
lead time of 15d were processed. The control forecast is
produced with the best estimate of the initial atmospheric
state. The remaining 50 members are generated by pertur-
bating the initial conditions. The data considered here con-
sist of instantaneous IVT values (for both direction and
magnitude), at 00:00 and 12:00 UTC, and 12 h accumulated
precipitation centered around these time steps. The IVT
was computed using the specific humidity and zonal and
meridional winds between the 300hPa and 1000 hPa levels
(e.g., Ramos et al., 2015). The ECMWEF operational forecasts
in the four winters had several upgrades, including model
and resolution updates (https://www.ecmwf.int/en/forecasts/
documentation-and-support/changes-ecmwf-model, last ac-
cess: 18 September 2019). A detailed evaluation of the im-
pact of these model changes on forecast skill would have re-
quired a detailed analysis of the past forecasts (hindcasts) of
each model version, which is beyond the scope of this study.

2.2 Observed precipitation dataset

In order to evaluate the operational forecasts, we have used
the Portuguese national network of automatic weather sta-
tions surface provided by the Portuguese Institute of Me-
teorology (Instituto Portugués do Mar e da Atmosfera,
IPMA). The data include 10 min accumulated precipitation
from around 100 automatic weather stations over main-
land Portugal, which were chosen based on a combina-
tion of tests for completeness and quality. The 10 min pre-
cipitation were accumulated into consecutive 12h periods
centered at 00:00 and 12:00 UTC of each day. Therefore,
the 12:00 UTC covers the precipitation that occurs between
06:00 and 18:00 UTC for the same day, while 00:00 UTC
covers the precipitation registered between 18:00 UTC from
the previous day and the 06:00 UTC of the following day.

3 Comparing the predictive skill of precipitation
and IVT

Firstly, a receiver operating characteristic (ROC, Wilks,
2006) curve analysis was performed for IVT and precipita-
tion forecasts for mainland Portugal. To begin with, using
the observed precipitation dataset presented in Sect. 2.2, the
mean precipitation (averaged over all mainland Portuguese
stations) was computed. Afterwards, a list of extreme pre-
cipitation events associated with ARs was obtained by con-
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sidering observations where the 12 h-cumulated precipitation
averaged over Portugal (using the surface stations) exceeded
the 95th percentile, considering (i) only events with spatially
averaged precipitation > 0.1 mm; (ii) that an AR was de-
tected simultaneously in the region (IVT > 450kgm~!s™1),
following the threshold found by Ramos et al. (2015) for
ERA-Interim reanalysis.

In addition, for the forecasts of extreme IVT and precip-
itation, we computed the 95th percentile of the correspond-
ing period of analysis (2012-2016). In the computation of
the percentiles we took into account the data for the winters
spanning 2011-2012 and 2015-2016 and defined the specific
percentiles for each forecast day 1 to 14.

These forecasts are then compared against extreme pre-
cipitation observations, considering a “yes” forecast if a
sufficient number of ensemble members surpass that given
threshold. The minimum fraction of ensemble members pre-
senting a yes forecast varies between 0.1 and 1, so that
0.1 means 10 % of the ensemble members have a yes fore-
cast, while 1 corresponds to the totality of the ensemble
members. An ROC curve is then obtained by computing hit
rates versus false alarm rates (FARs; Wilks, 2006), and con-
sidering these different minimum fraction of ensemble mem-
bers above the 95th percentile. The area under the ROC curve
above 0.5 denotes skillful forecasts in respect to climatology.
In Fig. 1, the ROC curves and areas for forecasts at different
lead times are presented.

The ROC curve analysis (Fig. 1a) clearly shows that lead
time is crucial for the performance of both IVT and precipita-
tion forecasts. For both variables, the forecast skill becomes
negligible beyond 10d lead time. While this is not unex-
pected, our results show that IVT can add potential value to
extreme precipitation forecasts during ARs in the medium-
range time frame. As shown in Fig. 1b, around day 4-5,
ROC areas are higher for IVT than for precipitation, which
is also confirmed by the corresponding confidence intervals.
These intervals were computed using a bootstrap process
(with 1000 repetitions). This result is in line with the work
of Lavers et al. (2018a), which highlighted the potential of
probabilistic forecasts for IVT (over precipitation forecasts)
in western Iberia for two winters over longer lead times.
Furthermore, as shown in Fig. 1c, when considering those
days with extreme precipitation associated with ARs in Por-
tugal, the number of ensemble members forecasting above
the 95th percentile is higher for IVT than for precipitation,
for all lead times. Those where the precipitation ROC areas
are above the IVT (< 5d) likely reflect a higher number of
false alarms using the IVT. In summary, it is clear that be-
tween day 5 and 10 the use of probabilistic IVT forecasts
can give a significant added value to warnings for extreme
precipitation forecasts.

Based on the results presented in Fig. 1, we show that the
IVT can provide added value for medium-range operational
forecasting of extreme precipitation events. Therefore, from
this point onward we will focus our analysis on the perfor-
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Figure 1. Receiver operating characteristic (ROC) curves for
the IVT and precipitation ensemble forecasts during atmospheric
river (AR) days from the ECMWF model are shown using Por-
tuguese surface meteorological stations during the extended winters
(October—March) of 2012-2016 as a benchmark, and considering
events above the 95th percentile (a). The solid lines are for the IVT
and dashed lines for precipitation. Different curve colors represent
different lead times for the forecasts (1, 5, 9, and 13 d). Area under
the ROC curves are shown for lead times up to 14 d (b), where the
confidence intervals are also shown. The mean percentage of en-
semble members forecasting IVT (pink) and precipitation (purple)
above the 95th percentile for lead times up to 14 d during extreme
rainfall events associated with ARs (observed precipitation above
the 95th percentile associated with an AR over western Iberia) is
shown in (c).

mance of the ECMWF probabilistic forecasts for IVT and
the AR-related IVT forecasts over Portugal, exploring poten-
tial systematic biases, and trying to access model behavior
and accuracy metrics at different forecast lead times.

4 Model bias during extreme AR landfall events
We have defined six regional boxes (Fig. 2) over western

Iberia, three of them covering the area where IPMA surface
stations are located (north Portugal, central Portugal, and
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Figure 2. The six regional boxes considered for the verification of
IVT probabilistic forecasts in western Iberia at lead times up to 14d
are shown: (i) sea north; (ii) Galicia; (iii) north Portugal; (iv) central
Portugal; (v) south Portugal; (vi) sea south.

south Portugal), and also extending further north and south
(sea north, Galicia, and sea south), in order to define met-
rics for the accuracy of the location of AR landfall, including
“hits” and “misses” in forecasts.

4.1 Example case study (4 January 2016)

To check the model performance for the IVT forecast
over the domain during AR events, we considered only
cases where the analysis (zero-hour forecast) exceeded the
450kgm~!s~! threshold for IVT (as defined in Ramos et
al., 2015 as where the ERA-Interim dataset was used). These
cases were considered as the “benchmark” for model fore-
cast verification, being performed for 00:00 and 12:00 UTC
analysis during the four winters spanning 2012-2016. Af-
terwards, forecasts up to 14d in advance from the control
and ensemble members were compared against the analyses,
through the computation of the following metrics that con-
sider the landfall IVT error sensitivity to both intensity and
displacement errors:

1. Landfall distance: the meridional distance (in kilome-
ters) between the landfall locations (location of max-
imum IVT) in the forecast and in the analysis. This
value can be positive (negative), indicating a northward
(southward) forecast landfall location error.

2. Landfall IVT error: the difference (forecast minus anal-
ysis) between the IVT values (in kg m~!s™1) at the cor-
rect location of the landfall, i.e., where the maximum
IVT was actually observed in the analysis.

3. AR axis IVT error: the difference (forecast minus anal-
ysis) between the IVT values (in kgm~! s~!) at the spe-
cific individual locations of the landfall in the analysis
and forecast. It considers the difference in the maximum
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Figure 3. Shown is an example of the evolution of operational forecasting of the IVT in an event affecting western Iberia: (a) analysis of the
IVT fields on 4 January 2016 at 12:00 UTC; (b) control forecasts for that date issued with different lead times, from 1 to 14 d.

IVT values in the forecast and the analysis, regardless of “mean” angle is computed, using a west—east direction
where they occur. as the 0° reference. As for other metrics, this is com-
puted for analysis and forecasts, providing the error in
the angle. Positive (negative) errors denote a counter-

4. AR axis angle error: the difference (forecast minus anal- . i
clockwise (clockwise) error.

ysis) between the incidence angles (in degrees, respec-

tive to west to east) at the specific locations of the land- The relevance of these metrics can be easily understood look-
fall (Fig. 2) in the analysis and forecast. The latitude ing at a case study. In Fig. 3a (analysis), an example of an AR
of the maximum IVT is detected for each longitude affecting the north Portugal box is presented. The 14 small

within the target area. Then, using those latitudes, the panels (Fig. 3b) show how the control forecast changed with
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Figure 4. Example of the evolution with lead time for the accuracy of IVT probabilistic forecasts is shown for the event presented in Fig. 3. In
(a) the black line represents the error in the location of the maximum IVT (i.e., landfall distance) in the control run (in kilometers), while the
solid blue line represents the landfall distance for the ensemble forecasts. The shaded blue envelope shows the ensemble spread, considering
the 25th and 75th percentiles. In addition, the black arrows represent the errors in the angle (in degrees) of the AR axis for each forecast.
Panel (b) shows the error in the IVT intensity (kg m~! s_l) for each forecast at the observed landfall location. The solid black line, solid red
line, and shaded red envelope are as in (a). Panel (c) shows the error in the maximum IVT at the specific locations where it has been observed
and forecasted for each lead time, regardless of the landfall distance. The dashed black line, dashed red line, and shaded red envelop as
and (b). The open circles represented in some lead times represent forecasts where the maximum IVT did not surpass a minimum threshold
of 450 kg m~ 1 s~! within the target domain (i.e., regional boxes over western Iberia).

increasing forecast daily lead time. While at short lead times
the location, intensity, and angle are quite similar to the anal-
ysis, at longer lead times the control forecast becomes less
accurate, and some of them predict an IVT magnitude, axis
orientation, and landfall totally disconnected from reality.
This example highlights the importance of considering en-
semble forecasts for long lead times, as discussed below.
The evolution of the forecasts is depicted in Fig. 4, where
the metrics for each lead time are summarized using both
control and ensemble. As lead time increases, it is notable
how the AR was predicted further north by the control fore-
cast (Fig. 4a, black line). In fact, for lead times of 9, 11,
and 14 d, there was no predictive skill of an AR affecting
the defined boxes (either forecasted much further north, or
not forecasted at all, as depicted by the open circles), and
in accordance with the corresponding subplot observed in
Fig. 3. Consequently, as the landfall distance error increases,
the IVT error at that location also increases (black line in
Fig. 4b). When considering the AR axis IVT error (Fig. 4c,
dashed black line), the decrease with longer lead times is
smaller, showing that despite the error in the actual posi-
tion of the AR, its maximum intensity was well forecasted
for most of the period. Regarding the angle of incidence of
the AR, it was mostly zonal, both in the analysis and most
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forecasts, thus with small error. Nevertheless, and as seen in
Fig. 3, during medium-range lead times (around 7-10 d) fore-
casts tended to tilt the AR NW — SE over western Iberia, as
depicted by the arrows in Fig. 4a.

Moreover, we computed the same metrics described above
for each of the 50 ensemble members of ENS; these results
are also presented in Fig. 4. The errors of the ensemble mean
are presented for landfall distances (solid blue line) and land-
fall IVT error (solid red line) and AR axis IVT error (dashed
black line) as well as the spread in the ensemble forecast
(shaded areas), shown here as the 25th and 75th percentiles
of the ensemble computed metrics distribution. The control
forecast errors and the ensemble mean are in good agreement
with the dispersion of the ensemble forecast increasing with
lead time. Regarding the landfall distance, it was found that
the error increases with lead time, and in this case the control
forecast error at a lead time of 12 d is greater than the ensem-
ble mean and even the ensemble dispersion. The 50 members
of the ensemble for lead time 5 d (Fig. S1 in the Supplement)
and for 12d (Fig. S2) are shown in Fig. S1 where it can be
compared with the control IVT forecast shown in Fig. 3b.
One can see that the ensemble members for the shorter lead
time are in better agreement and closer to reality. When look-
ing at 12 d lead time (Fig. S2), the dispersion of AR location

www.nat-hazards-earth-syst-sci.net/20/877/2020/



A. M. Ramos et al.: Predictive skill for atmospheric rivers in the western Iberian Peninsula

(a) Mean errors in AR landfall (control)

883

1000 T T T T T

Landfall distance
Landfall IVT error
600 [ == = AR-axis IVT error

800 [

T T T T T T T 1000

400 —)AR-axis angle error

200 —

ﬁ — —
—1200
ﬁ ’—O

=<L800
~600
=4 — 400

-200

Distance (km)

-400 —

-600 —

_______________________ —{-200

—-400
—-600
—-800

IVT difference (kg/m/s)

1000 L 1 | | 1 1 |
Day -1 Day -2 Day -3 Day -4 Day -5 Day -6 Day -7

(b)

Mean absolute errors in AR landfall (control)

-1000

Day -8 Day -9 Day -10 Day -11 Day -12 Day -13 Day -14

1200

I I T T T T
Landfall distance
Landfall IVT error
= = AR-axis IVT error

%AR-axis angle error

1000

800 [—

Distance (km)
fo2}
8
T

e = —-—
—_— =

T T T T 1200

—1 1000

—1400

I
(2]
3

IVT difference (kg/m/s)

—1200

0
Day -1 Day -2 Day -3 Day -4 Day -5 Day -6 Day -7

Day -8 Day -9 Day -10

Figure 5. Verification of the accuracy of the control forecast of IVT for all events affecting western Iberia during the extended winters
between 2012 and 2016 relative to mean errors (a) and absolute errors (b) is shown. The solid blue line represents the error in the location
of the maximum IVT between the observation and each forecast (in kilometers). The solid red line shows the error in the IVT (kg m~! s_l)
for each forecast at the real landfall location (where the maximum IVT was observed), while the dashed red curve represents the error in
the maximum IVT between the observed values and each lead time forecast, independent of the location in each forecast. The black arrows

represent the errors in the angle (in degrees) of the AR axis.

is much higher when compared with reality and even with
the control forecast shown in Fig. 3b. In addition, both land-
fall IVT error and AR axis error (Fig. 4), for both control and
ensemble members, show a decrease in the forecasted IVT as
we consider longer lead times.

4.2 Mean performance of the ECMWF forecasts
during 2012-2016

In the previous section we analyzed one case study, evalu-
ating both control and ensemble forecasts against analysis.
We extended the evaluation of the IVT forecast metrics for
all events occurring during the extended winters of the study
period (from 2012-2013 to 2015-2016). Similarly to the case
study presented in Fig. 4., the same metrics have been com-
puted for all AR landfall cases (207), and the average error
is obtained as presented for the control forecast in Fig. 5 and
for the ensemble forecast in Fig. 6.

When analyzing the control forecast of ARs over western
Iberia (Fig. 5), it is possible to identify some systematic er-
rors and biases. Regarding the mean errors (Fig. 5a) a north-
ward landfall bias is systematically found for longer lead
times, especially for those longer than 5 d, which can reach
up to 800km at +14 d. In addition, regarding the AR axis
angle error, the results show a slightly negative bias in re-
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spect to those actually observed. Since we consider the 0°
angle as west—east oriented and as AR events over Portu-
gal tend to present a southwest—northeast orientation (Ramos
et al., 2015), this systematic bias reflects a lower tilt in the
AR orientation at longer time forecasts, or in other words, a
tendency for more zonal forecasts (Fig. 5a). When analyz-
ing the IVT magnitude, both landfall IVT error and AR axis
IVT error have a negative bias as a result of (i) the error in
the landfall location and (ii) an underestimation of the AR
intensity. Comparing both metrics in more detail, it can be
noted that the AR axis IVT bias is lower than the landfall
IVT error, showing that while the IFS forecasts the inten-
sity of the ARs quite well (with just a small underestimation
in intensity associated with lead times), the landfall location
bias leads to significant IVT forecast errors at the location
where the AR actual landfall is observed. The mean absolute
errors were also computed for the same metrics (Fig. 5b),
unsurprisingly presenting higher errors for landfall distance;
location biases occur both northwards and southwards, thus
partially canceling themselves, as shown in Fig. 5a. Never-
theless, this difference is not that large, thus reinforcing the
systematic tendency for a bias towards the north in longer
lead time forecasts. A similar rationale is applicable to the
incidence angle, where errors in the tilt of the ARs in dif-
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Figure 6. Verification of the accuracy of the ensemble forecast of IVT

for all events affecting western Iberia during the extended winters

between 2012 and 2016 is shown: (a) mean landfall distance errors (in kilometers) for the mean of the ensemble forecast (solid line) and the
spread of the ensemble (shading); (b) as in (a), but for the mean IVT error (in kg m! s_l) at the location of observed landfall; (c) as in (b),

but at the location of the maximum IVT in each forecast.

ferent directions tend to cancel out. As such, mean absolute
errors tend to be around 45° at longer lead times (Fig. 5b).
Overall it is possible to affirm that the case study evaluated
in Fig. 4 presents similar biases to those obtain here with the
average of the entire set of ARs considered.

The mean weighted errors/biases of the ensemble fore-
casts (i.e., all the 50 ensemble members) for all events are
presented in Fig. 6. The same methodology as in Fig. 4 is
followed here, and the ensemble mean is presented, along
with the spread in the ensemble forecast (shown here as the
25th and 75th percentiles of the forecast distribution). The
results are very similar to the ones found for the control fore-
cast (Fig. 5) with a positive bias (northwards) in the position
of the AR landfall as we move to greater lead times, along
with a negative bias (less AR intensity) in the landfall IVT er-
ror and AR axis IVT error. However, the dispersion in the en-
semble forecast is higher in the landfall distance than that in
the other IVT error metrics, reinforcing that the model fore-
casts the ARs but lacks skill in forecasting the right location
of their landfall.

It is vital to stress the use of the ensemble forecast in these
kinds of conditions. In Figs. 4 and 6, we compare the con-
trol forecast with the ensemble mean and the ensemble error
metrics. Both control forecast and ensemble forecast landfall
and IVT error shows a northerly bias and a negative IVT bias
on the landfall location, respectively. Ramos et al. (2016),
showed that the number of ARs affecting Iberia is relatively
low when compared with the contiguous western France or
even the UK using the ERA-Interim reanalysis. This means
that on average most of the AR go further north, and the ones
hitting Iberia are not that frequent. Taking this into account,
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one can hypothesize that the northerly bias and respective
negative bias in IVT intensity in the AR forecasts at longer
lead times can reflect that the model tends to its climatol-
ogy, which is to have ARs further north, as shown in Ramos
et al. (2016). A similar behavior occurs for the blocking fre-
quency (Euro-Atlantic sector and the Pacific sector) using the
NCEP Climate Forecast System version 2 (CFSv2), in which
for longer lead time the model tends to reach its climatology
(Jia et al., 2014).

5 Objective verification of the IVT forecasts

In the previous section we proposed some metrics to ana-
lyze control and probabilistic IVT/AR forecast errors in the
IFS for the Iberian Peninsula. In this section, we provide an
objective verification of the IVT forecast, but considering in
greater detail the landfall location and how to use it for a pos-
sible application in terms of control forecast for AR landfall.
Firstly, and bearing in mind the regional boxes presented in
Fig. 2 and the case study presented in Fig. 3, the percent-
age of ensemble members providing correct/incorrect fore-
casts regarding the regional boxes is summarized in Fig. 7.
As can be seen, the forecast issued the day before the event
was almost perfect, with most members predicting the loca-
tion correctly in the north Portugal box (green bar). As lead
time increases, the percentage of correct forecast decreases
until day 5, but still a large fraction of members predicts that
the AR will make landfall in one of the adjacent boxes (yel-
low bars), until around day 7. At longer lead times, the per-
centage of members predicting landfall in boxes further away
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Figure 7. Shown is the percentage of ensemble members forecasting IVT above 450 kg m~!s~1 in each of the regional boxes and for each

lead time for the case study presented in Fig. 3 (4 January 2016). Green bars represent a spatially accurate forecast (in the box where the
maximum IVT was observed). Yellow bars represent a forecast in a box adjacent to where it was actually observed. Red bars represent a
forecast in one of the remaining boxes. The bars in the bottom row represent a completely missed forecast, by either (i) no AR forecast or
(ii) an AR forecast outside of the six considered boxes in western Iberia.

Predicted
Contingency tables for Iberian ARs
O 52 { X 1 1 1
[ 52 X x| @ x| @ @ @ @
2 24 | | ® | | @ x| @ I | @ ® ®
Q 25 X X @ X @ X @ X @ @
8 309 ® ® ® ® ® (%)
(o) 17Q X ® ® 100
11240 | X [ X [ X | X | x X [ X | X[ | X | > I | [ X [ | | X | X | [ [ | < [ | [ [ < | x| > X | < | [ [ < | > [l | [ X | [ X [ % 80
Day -1 Day -2 Day -3 Day -4 Day -5 Day -6 Day -7 60
@ 40
@ @ @ @ @ ©) @ 20
©)] ® ©) ©)] ® € ® 0
@ @ @ @ @ @ @
® ® ® ® ® ® ®
® ® ® ® ® ®)
XXX XXX XX X [ [ X XX T [ | Il [ X [ X [ X [ X XXX XX X X X [ X [ [ Il [ X[ X[ XXX
Day -8 Day -9 Day-10 Day -11 Day-12 Day-13 Day-14

Figure 8. Contingency tables for the accuracy of AR-related IVT forecasts by the ECMWF ensemble system, for lead times ranging between
1 and 14 d, during the winters spanning 2012-2016 are presented. The red shading represents the percentage of observations versus forecasts.
Note that a perfect forecast system would only present shadings in the diagonal, as the y axis represents observed events in each box (as
presented in Fig. 2) and the x axis represents forecasts in each box. The number of events in each box is shown in the y axis by the blue
arrow. The last row and column represent (i) observations/forecasts outside of the six considered boxes and (ii) no AR observed/predicted,
respectively.

(red bars) and predicting no landfall or no AR (brown bar) represent the number of observed events in each box. A per-

increases significantly. fect forecasting model would only present values in the diag-
We now present the contingency table for the ensemble onal (N x N).

forecasts of IVT for all the events (> 450kgm™!s~!) dur- Results confirm what was partly shown in Fig. 6, as the er-

ing the four winters considered in this study (Fig. 8). Each ror in the landfall locations increases with lead time, and an

different box corresponds to a lead time (from 1 to 14 d) and increasing fraction of the ensemble members forecast land-

the different boxes correspond to the observed vs. predicted fall outside the Iberian Peninsula (further north of Galicia
landfall location corresponding the bluish colors correspond or further south of Algarve) or do not even forecast an AR.

to the location of each landfall box shown in Fig. 2. The box However, for shorter lead times (day 1 to day 3) the forecast
for the lead time of 1d presents additional information to error is quite low, with the AR landfall being predicted very
help read the contingency tables: (i) the x axis represents yes well, considering the small size of the regional boxes (less
forecasts for each box; (ii) the y axis represents yes observa- than 1° latitude each). In addition, the contingency table also

tions for each box; (iii) the color code presented for lead time confirms the northward landfall bias of most forecasts, with
of 1 day corresponds to the boxes presented in Fig. 2); (iv) the the left side of the table being more populated, meaning that

last column and row, with the white circle and crosses, rep- forecasted location is more frequent in the northern boxes
resent events that have been observed but not predicted and when compared to observations. It is also shown that a few
vice versa, respectively. Note that the numbers in the left axis ensemble members pick up the AR; therefore, it can be ar-
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Figure 9. Forecast verification metrics for IVT exceedances (> 450kg m~ s 1) using the ECMWF ensemble forecast system during the
extended winters of 2012-2016 in western Iberia, and for lead times between 1 and 14 d are presented. Colored bars represent metrics for
individual regional boxes, where the darkest blue bar represents the northernmost box and the yellow bars the southernmost box (as depicted

in Fig. 2).

gued that system IFS is skillful, although with low probabil-
ity of occurrence in the right location.

Finally, different widely used forecast verification metrics
are also computed for the different AR landfall cases, and
for each box (as in Fig. 2). The metrics used are the prob-
ability of detection (POD), success rate (SR), false alarm
rate (FAR), and bias (Wilks, 2006) and their formulation is
shown in Fig. S3. As mentioned before, and due to the in-
crease in landfall error with lead time, these systematic er-
rors are also expected to be reflected in the forecast verifi-
cation metrics. Both POD and RS decrease as lead times in-
crease, getting closer to zero from a lead time greater than
5d (Fig. 9). Conversely, the FAR is expected to increase with
lead time, staying above 0.5 in all boxes from lead times of
5 d or more. The relatively fast decline with lead time in these
metrics is not surprising, as they are computed for very small
target areas, and this just reflects that a very accurate forecast
of landfall location becomes difficult at lead times of greater
than 5 d, i.e., when considering the mesoscale. Still, as shown
before at a synoptic scale, the model is able to forecast high
probabilities of an AR affecting western Iberia at longer lead
times. This suggests that an effective warning system can be
developed with reasonable lead times, although very detailed
local forecasts of AR activity can only be achieved at short
timescales.

6 Conclusions

The occurrence (or not) of extreme precipitation days in dif-
ferent river basins is highly sensitive to the latitudinal loca-
tion of the AR landfall as shown for the Iberian Peninsula
(Ramos et al., 2015). This is due to ARs being relatively
narrow corridors of strong horizontal water vapor transport;
therefore, their landfall position has influence on the occur-

Nat. Hazards Earth Syst. Sci., 20, 877-888, 2020

rence of a possible extreme precipitation event and its spe-
cific location. With this in mind, we assessed the forecast
accuracy at different lead times regarding AR landfall po-
sition, intensity, and incidence angle by using the IVT. To
achieve this goal, we used the ECMWF operational ensem-
ble forecasts up to 15 d, for extended winter seasons between
the winters of 2012-2013 and 2015-2016, and assessed the
skill (or accuracy) of IVT probabilistic forecasts through a
probabilistic verification procedure.
The main conclusions are as follows.

— The IVT forecasts show higher predictive skill than
precipitation forecasts for lead times greater than 5d,
when considering extreme precipitation events associ-
ated with ARs over Portugal. In addition, we show that
there is a higher agreement amongst the IVT ensemble
members for early awareness at such lead times, than
that found for the precipitation ensemble.

— We identified the systematic errors in AR forecasts
using an objective verification scheme designed for
IVT/ARs applied to the ECMWF ensemble. There is a
good predictive skill of the model in terms of AR land-
fall over the domain for short-term forecasts. However,
at longer lead times, the location of the landfall is less
reliable, and AR landfall tends to be predicted too far
north in the western Iberian Peninsula, and its intensity
tends to be underestimated.

— In addition, when using the ensemble members to check
the forecast skill for the specific AR landfall locations
(using six regional boxes), it becomes clear that the pre-
dictive skill at larger spatial scales (the entire domain)
tends to be reasonable, while the predictive skill at re-
gional scales tends to be considerably smaller.
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— These results show the potential added value to forecast
medium-range AR-related precipitation events using the
IVT, as well as the possibility to develop warning sys-
tems based on IVT ensemble forecasts.

Accordingly, we presented a methodology that can be used in
an operational context, consisting of the probabilities of ARs
striking different regional boxes. This probability is based on
the fraction of ensemble members providing IVT forecasts
above a threshold in each box, thus providing an estimate of
the probabilities of occurrence and of the expected landfall
location. As our analysis for increasing lead times shows,
confidence in control forecasts should quickly rise for lead
times shorter than a week, but early awareness can be ex-
pected at longer lead times. This methodology can be easily
replicated using different forecast systems (e.g., the Global
Forecast System, GFS) and applied to different regions of
the globe after a similar verification as we proposed is per-
formed.

Data availability. ECMWF integrated forecasting Sys-
tem (IFS) data are available through the ECMWF Me-
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