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Abstract. Landslides triggered by rainfall are very common
phenomena in complex tropical environments such as the
Colombian Andes, one of the regions of South America most
affected by landslides every year. Currently in Colombia,
physically based methods for landslide hazard mapping are
mandatory for land use planning in urban areas. In this work,
we perform probabilistic analyses with r.slope.stability, a
spatially distributed, physically based model for landslide
susceptibility analysis, available as an open-source tool cou-
pled to GRASS GIS. This model considers alternatively
the infinite slope stability model or the 2.5-D geometry
of shallow planar and deep-seated landslides with ellip-
soidal or truncated failure surfaces. We test the model in the
La Arenosa catchment, northern Colombian Andes. The re-
sults are compared to those yielded with the corresponding
deterministic analyses and with other physically based mod-
els applied in the same catchment. Finally, the model results
are evaluated against a landslide inventory using a confusion
matrix and receiver operating characteristic (ROC) analysis.
The model performs reasonably well, the infinite slope sta-
bility model showing a better performance. The outcomes
are, however, rather conservative, pointing to possible chal-
lenges with regard to the geotechnical and geo-hydraulic pa-
rameterization. The results also highlight the importance to

perform probabilistic instead of – or in addition to – deter-
ministic slope stability analyses.

1 Introduction

Landslides cause substantial human and economic losses ev-
ery year (Kjekstad and Highland, 2009; Petley, 2012; Schus-
ter and Highland, 2001). According to Dilley et al. (2005),
the worldwide area exposed to landslides is around 3.7 mil-
lion km2, within which 66 million people live in 820 000 km2

identified as the high-risk zone. Petley (2008) mentioned that
in 2007, 89.6 % of the fatalities due to landslides worldwide
were related to rainfall-triggered landslides. Although eco-
nomic losses tend to concentrate in industrialized and de-
veloped countries, the numbers of human fatalities and af-
fected persons are highest in densely populated, less devel-
oped countries (Petley, 2012; Sepúlveda and Petley, 2015).

Landslides triggered by rainfall are a frequent phe-
nomenon in mountainous terrain (Keefer et al., 1987;
Van Westen et al., 2008; Varnes, 1978). In tropical environ-
ments and complex terrain such as the Colombian Andes
a high percentage of landslides are triggered by heavy or
prolonged rainfall (Van Westen and Terlien, 1996; Terlien,
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1998). Specially the shallow landslides triggered by rain-
fall are very common phenomena in Colombia, where hill-
slopes are characterized by deep weathering profiles and are
subjected to periods of intense tropical rainfall (Aristizábal,
2013). Colombia, due to its location in the northwestern cor-
ner of South America, exhibits complex geographical and
hydro-climatological features arising from its tectonic setting
and equatorial location. The mountainous configuration is
the result of the Caribbean Plate moving southwestward rel-
ative to the South American Plate and the eastward subduc-
tion of the Nazca Plate beneath the northern Andes along the
western margin of Colombia (Kellogg et al., 1995; Taboada
et al., 2000; Trenkamp et al., 2002). Rainfall in Colombia
is highly intermittent in space and time, due to the link be-
tween the hydro-climatological conditions and equatorial lo-
cation; rainfall is influenced by the atmospheric circulation
patterns over the neighboring tropical Pacific Ocean and the
Caribbean Sea and the combined hydro-climatic and ecolog-
ical dynamics of the Amazon and Orinoco basins (Poveda et
al., 2007).

In Colombia, landslide-prone regions are densely popu-
lated. As a consequence, hundreds of fatalities are associated
with landslides triggered by rainfall every year (Sanchez and
Aristizábal, 2018). Being one of the countries most affected
by landslides in South America, there is a strong social and
economic need to include landslide susceptibility and hazard
zoning in land use planning to reduce landslide fatalities and
economic losses.

According to the Emergency Events Database (EM-DAT,
2011), Colombia is one of the South American countries
with most landslides. In the period between 1901 and 2017,
45 landslide disasters were registered with 3619 fatalities,
78 395 people affected, and economic losses of USD 2.4 mil-
lion. In the Global Landslide Catalog, Colombia has 87 en-
tries with a total of 464 deaths (Kirschbaum et al., 2015)
from 2007 to 2013. The Latin America and Caribbean land-
slide database has compiled a record of 110 fatal landslides
in Colombia between the years 2004 and 2013 with a to-
tal of 880 deaths; Colombia is the country with the sec-
ond highest number of fatal landslides in Latin America and
Caribbean, only Brazil shows a slightly higher number (119;
Sepúlveda and Petley, 2015). Mergili et al. (2015) show that
Colombia, according to EM-DAT, presents a victim / event
ratio of 77.34 (3171/41) and is only exceeded by Peru and
Ecuador in this respect. However, the EM-DAT database only
considers events with high numbers of fatalities: actually, the
real number of fatal landslides is much higher (Aristizábal
and Gómez, 2007; Mergili et al., 2015).

Landslide susceptibility assessment can be determined by
qualitative or by quantitative methods (Corominas et al.,
2014). Qualitative methods correspond to knowledge-driven
approaches based entirely on the judgment of experts us-
ing geomorphological criteria in the field (Van Westen et
al., 2000). Quantitative approaches are subdivided into data-
driven methods and physically based models. Statistical or

data-driven methods evaluate the relationship between land-
slides and causative factors to predict the landslide spatial
probability (Carrara, 1983; Gorsevski et al., 2000; Lee, 2005;
Lee and Pradhan, 2007; Süzen and Doyuran, 2004). Phys-
ically based models for landslide susceptibility and hazard
assessment of detailed areas include the interaction between
hydrology, topography, soil properties, and in some cases,
vegetation in order to understand and predict the location and
timing of landslide occurrence. Such models generally com-
pute slope stability, using the factor of safety (FoS). FoS is
given by the dimensionless ratio between the resisting forces
and the driving forces (Lam and Fredlund, 1993). Most of
the physically based models available in the literature build
on the limit equilibrium concept and the assumption of a
planar slope of infinite length with a potential failure sur-
face parallel to the topographic surface (Chen and Chameau,
1983; Lam and Fredlund, 1993). However, the infinite slope
stability approach is proposed only for shallow, planar slid-
ing surfaces in friction-dominated soils and fails to capture
the complexity of deep-seated landslide phenomena (Bishop,
1954; Carson and Kirkby, 1972; Crozier, 1986; Duncan and
Wright, 2005).

Limit equilibrium models have been extended to three-
dimensional (3-D) failure surfaces: geometric shapes such
as spheres or ellipsoids represent non-planar slip surfaces
in a much better way and are important to consider in ar-
eas of complex lithological conditions or for soils with high
cohesion values. The first 3-D slope stability model was
presented by Baligh and Azzouz (1975). Later, Chen and
Chameau (1983) developed a method to analyze cohesive
and frictional slopes with different pore water conditions.
Dennhardt and Forster (1985) proposed a method using an
ellipsoidal slip surface. Kalatehjari and Ali (2013) carried
out a review of different 3-D analysis models in which they
demonstrated the fact that many of the methods consid-
ered the slope and slip surface as symmetrical shapes in or-
der to determinate the static condition of equilibrium. Hov-
land (1997) presented a method for cohesive and frictional
soils based on the Fellenius method (Fellenius, 1927). In
this approach, the forces that act between columns are disre-
garded and FoS is determined by normal and shear forces that
act at the bases of the columns (Lam and Fredlund, 1993).

Although FoS represents a quantitative – and seemingly
objective – approach to evaluate slope stability, it has to be
used carefully. Authors such a Kirsten (1983) mention that
different values of FoS could be obtained from slopes with
equal probability of failure. Several software packages use
this concept for 3-D slope stability analysis, e.g., STAB3D
(Baligh and Azzouz, 1975), 3D-PCSTABL (Thomaz, 1986),
CLARA (Hungr, 1988) and TSLOPE3 (Pyke, 1991). Most
of these models include some limitations reducing the accu-
racy of FoS obtained (Stark and Eid, 1998). One of the most
important limitations is that they were designed to analyses
individual landslides or slopes; they are not appropriate for
regional or catchment-scale slope stability analyses (Mergili
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et al., 2014b). A few 3-D (or, strictly speaking, 2.5-D) slope
stability models in geographic information systems (GIS)
have been used for landslide susceptibility mapping (Carrara
and Pike, 2008; Qiu et al., 2007; Xie et al., 2003). In terms
of scale or spatial resolution, physically based models have
been suggested to be applied to finer-scale study areas, and
their results are strongly influenced by the level of detail in
the input data (Zizioli et al., 2013), whereas data-driven ap-
proaches are recommended for broader-scale landslide sus-
ceptibility analyses (Van Westen et al., 2006; Corominas et
al., 2014). In fact, the implementation of data-driven methods
or physically based models for the incorporation of landslide
hazard mapping into land use planning has been regulated in
several countries. Recently, the r.slope.stability model, a C-
and Python-based raster module in the open-source software
GRASS GIS (GRASS Team, 2019) has been proposed. The
r.slope.stability model considers the 2.5-D geometry of the
sliding surface for analyzing a number of randomly selected
potential sliding surfaces that are ellipsoidal or truncated in
shape (Mergili et al., 2014a, b), and also offers an implemen-
tation of the infinite slope stability model.

In Colombia, according to Decree 1807/2014, the imple-
mentation of deterministic or probabilistic physically based
methods are obligatory in urban and urban expansion areas,
whereas statistical- and knowledge-driven models are only
permitted for rural areas.

In order to meet this requirement, we have to obtain more
detailed knowledge on the suitability of the available phys-
ically based landslide susceptibility models, with the final
goal of using model ensembles in order to obtain a broader,
more robust picture of landslide susceptibility conditions. We
think that r.slope.stability is a suitable tool for calculation of
unstable areas in tropical environments, considering shallow
planar and deep-seated ellipsoidal failure surfaces. Conse-
quently, the scientific aims of the present study are (i) to eval-
uate the suitability of r.slope.stability for physically based
landslide susceptibility mapping in tropical mountainous ter-
rain, and (ii) to identify its fit with other potentially suitable
models, helping to learn about strengths, limitations and un-
certainties.

Following these aims, we present a probabilistic analy-
sis of slope stability in GIS for modeling landslide sus-
ceptibility in a tropical and mountainous environment us-
ing the r.slope.stability model. This model is evaluated us-
ing a landslide inventory prepared after a major and destruc-
tive rainfall-triggered multi-landslide event in the La Arenosa
catchment on 21 September 1990. A quantitative perfor-
mance evaluation of the model by receiver operating charac-
teristic (ROC) analysis is carried out. The results are com-
pared with those obtained through the corresponding de-
terministic analyses with r.slope.stability, with SHALSTAB
(Dietrich and Montgomery, 1998) and with SHIA_Landslide
(Aristizábal et al., 2016), which represents a new model de-
veloped for tropical mountainous terrain.

2 Study area

The La Arenosa catchment, with an area of 9.9 km2, is lo-
cated on the northwestern side of the Colombian Andes, at
1000–1900 m a.s.l. (above sea level; Velásquez and Mejía,
1991; Aristizábal et al., 2016). The climate is tropical hu-
mid with a mean annual temperature of 23 ◦C and a mean
annual precipitation of 4300 mm. However, precipitation is
highly variable between the different seasons and between
years. The annual cycle of precipitation shows a bimodal pe-
riod of rainfall (interannual scale) with rainfall peaks in the
months of April (450 mm) and October (600 mm; IDEAM,
2010). Rainfall often occurs in the afternoon and at night in
the form of heavy rainstorms or cloudbursts of short duration
(Aristizábal et al., 2015; Garcia, 1995). Most of the land-
slides in the catchment are triggered by such events and by
the variation of groundwater level due to antecedent rainfall
conditions, which is decisive for the occurrence of landslides
(Fressard et al., 2016).

Although the natural vegetation of the La Arenosa catch-
ment would normally be very humid premontane forest, all
primary forest has been removed, and the land is exclusively
dedicated to agricultural use. In the highest and steepest parts
of the basin, the predominance of coffee crops, sugar cane,
pastures and very small areas of secondary forest is main-
tained; this situation is considered a factor that influences the
stability of the slopes in the catchment (Aristizábal, 2013).

Residual soils which have evolved from granodiorite rocks
covered by slope deposits and fluvio-torrential deposits are
characteristic for the area. Slope deposits cover approx. 15 %
of the catchment. Strong in situ weathering occurs due
to chemical decomposition in the humid tropical climate
(Velásquez and Mejía, 1991). Indicators of rapid, extensive
and progressive spheroidal decomposition of the granite are
observed down to an average depth of 30 m. The saprolite
is fairly well graded. Its texture is described as sandy silt
or silty sand with some gravel and a small fraction of clay.
Relict joints in the parent rock are preserved in the saprolite.
They facilitate preferential flow and therefore strongly influ-
ence the observed hydraulic conductivity of the surrounding
soil matrix (INTEGRAL, 1990; Aristizábal et al., 2015). The
matrix-supported slope deposits are formed by boulders of
granite, residual soils and vegetation debris (Aristizábal et
al., 2015). Slope deposits generally accumulate at foot slopes
or in gullies. Those usually poorly consolidated deposits are
the consequence of past landslides. Their content in cob-
bles and boulders is high, and natural soil pipes are common
(Velásquez and Mejía, 1991).

On 21 September 1990, the La Arenosa catchment was
strongly affected by a rainfall event of high intensity and
short duration. In less than 3 h, 208 mm of precipitation, with
a maximum intensity of 90 mm h−1, was recorded within the
study area, triggering approximately 800 landslides. Based
on the intensity–duration–frequency (IDF) curve, a return pe-
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Figure 1. Landslides scars inventory database according to land-
slide inventory. The area with a red line does not have a landslide
inventory. Source: adapted from INTEGRAL (1990) and Velásquez
and Mejía (1991).

riod of 200 years was estimated for this event (Velásquez and
Mejía, 1991).

The strong rainfall in the catchment, imposed upon general
saturation of the soils in rugged topography, triggered a se-
ries of almost simultaneous rotational and translational land-
slides in the catchment (Hermelin et al., 1992; Garcia, 1995).
A total of 699 landslides were identified and mapped in the
La Arenosa catchment. However, although the inventory map
is very precise on the locations of events, there is no informa-
tion available which permits differentiation between transla-
tional and rotational landslides. According to Velásquez and
Mejía (1991), most of the landslides started as shallow trans-
lational slides and transformed into debris flows, from very
rapid to extremely rapid, with high water content (Fig. 1).
The landslide bodies were small with respect to the flow
length, and the slip surfaces were parallel to the slope sur-
face. The majority of the landslides initiated within residual
soils in hollows and open slopes with a slope steepness rang-
ing from 35 to 42◦ (Velásquez and Mejía, 1991). The same
authors described that the depth of failure surface was less
than 3 m and corresponded to the contact of the residual soil
with the saprolite.

The population was strongly affected: 20 fatalities were
counted and 260 people had to be evacuated, 27 houses
were destroyed and 30 damaged and several bridges were
also damaged or destroyed (Hermelin et al., 1992; Aris-

tizábal et al., 2016). Total loss was estimated to be more than
USD 6 million.

INTEGRAL (1990) with Velásquez and Mejía (1991) an-
alyzed a set of aerial images and conducted a detailed field
survey to produce a detailed landslide inventory for the event.
However, it was not feasible to generate a complete inventory
of landslides for the entire catchment as aerial photographs
and topographic maps were not available for an area of ap-
prox. 2 km2. Only the area covered by the landslide inven-
tory was considered for this study, corresponding to an area
of 7.6 km2.

3 The r.slope.stability model

The r.slope.stability model is a GIS-based, free and
open-source slope stability modeling software (http://www.
slopestability.org/, last access: 31 May 2018) developed by
Mergili et al. (2014a, b) as a C- and Python-based raster
module of the GRASS GIS software package (GRASS Team,
2019). The tool is able to take into account planar failure with
an infinite slope stability module and a slip surface module.

For shallow and planar landslides, r.slope.stability in-
cludes a classic infinite slope stability approach. For the infi-
nite slope stability analysis, S acts parallel to the shear plane
and seepage is considered parallel to the slope. For ellipsoid-
shaped slip surfaces, in contrast, S is generally not parallel
to the shear plane of the columns, even if it is parallel to
the slope (Mergili et al., 2014b). The infinite slope stability
model is run independently from the ellipsoidal failure sur-
face analysis: FoSinf for each raster cell is calculated accord-
ing to Eq. (1).

FoSinf =
c′ ·A+G′ cosβ tanϕ′

G′ cosβ + S
, (1)

where β is the slope angle of the slip surface (corresponding
to the inclination of the terrain).

The slip surface model considers the 2.5-D geometry of
the sliding surface and evaluates FoS or the probability of
slope failure (Pf) for many randomly selected potential ellip-
soidal or truncated slip surfaces (Fig. 2). Each raster cell can
be affected by various slip surfaces and is characterized by
a unique value of FoS or Pf for each raster cell of the study
area. Thereby, the most relevant values for each cell analyzed
are the lowest value of FoS and the highest value of Pf. The
model permits users to impose restrictions with respect to
the width, length and depth of the ellipsoids (Mergili et al.,
2014a, b).

The slip surface model used in r.slope.stability represents
a revision and extension of the 2.5-D sliding surface model
of Hovland (1997; Xie et al., 2003). The calculation of FoS
is based on the basic principle of equilibrium (Eq. 2).

FoS=

∑(
c′ ·A+

(
G′ cosβc+Ns

)
tanϕ′

)
cosβm∑

(G′ sinβm+ Ts)cosβm
, (2)
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Figure 2. The typical ellipsoid used, slip surface with a model column in r.slope.stability and a typical weathering profile of tropical envi-
ronments and complex terrains. Source: adapted from Aristizábal et al. (2016) and Qiu et al. (2007).

where c′ is the effective cohesion (N m−2), G′ is the weight
of the moist soil (N), βc is the inclination of the slip surface,
ϕ′ is the effective internal friction angle, βm is the apparent
dip of the sliding surface in direction of the aspect α, Ns and
Ts (N) are the contributions of the seepage force to the nor-
mal force and the shear force, respectively, and A (m2) is
the slip surface area assigned to each column. Inter-column
forces and external forces (e.g seismic loading) are neglected
(Mergili et al., 2014a, b). The slip surface model is further
based on the model of King (1989), in which the direction of
the seepage force (S) corresponds with the direction of the
hydraulic gradient, approximated by slope and aspect of the
groundwater table.

Both the infinite slope stability model and the slip sur-
face model can be used for a probabilistic analysis, apply-
ing a range of geotechnical parameters (c’, ϕ′) and the depth
of the failure surface. Rectangular, normal, log-normal or
exponential probability density functions can be used with
r.slope.stability. The result is a probability of failure (Pf),
representing the fraction of tested parameter combinations
yielding FoS< 1 (Mergili et al., 2014a).

Note that, in the present work, with probabilistic model,
we always refer to the random variation of the geotechnical
parameters. The slip surface model includes a probabilistic
component where the dimensions of the ellipsoids are ran-
domly varied for the computation of FoS.

4 Data and procedure

The input of the r.slope.stability model consists of a digital
terrain model (DTM), spatial datasets of the mechanic and
hydraulic characteristics of the study area, and finally the
restraints imposed to the model by the user, based on the
knowledge of the study area. A DTM with a spatial reso-
lution of 10× 10 m was provided by the Instituto Geográ-
fico Agustín Codazzi. A soil thickness map was built using

interpolation, employing an empirical relationship between
soil thickness and slope angle in the study area (Aristizábal,
2013; Catani et al., 2010; Thiery et al., 2019). The computed
residual soil depth ranges from 1 to 2.8 m.

The La Arenosa catchment is basically composed of two
soil types, alluvial and residual, with properties strongly re-
lated to the parental material (IGAC, 2007). Alluvial soils
cover 6.7 % of the total area; they correspond to quaternary
deposits composed of alluvial sediments of moderate depth,
limited by the presence of fragments of rock and gravel.
Residual soils cover 93.3 % of the total area; they are derived
from igneous rocks such as granites and quartz-diorites. The
residual soils are medium-to-fine textured, well-drained and
in some cases characterized by gravel or stones in the pro-
file. These soils have deep weathering profiles depending on
parent rock lithology and local conditions, partly reaching
down to a depth of 100 m (Aristizábal et al., 2005; Suarez,
1998). The geotechnical parameters were obtained based on
studies and laboratory tests carried out in La Arenosa by
Velásquez and Mejía (1991). For the residual soils, cohesion
values range between 5 and 12.5 kPa, whereas the internal
friction angle of the soil ranges from 16 to 24◦. The dry
unit weight ranges from 14.3 to 14.9 kN m−3. No geotech-
nical laboratory tests are available for the alluvial deposits;
however, they show very gentle slopes generally not prone to
landslides; the cohesion and friction angle values were there-
fore assumed based on literature values (Ameratunga et al.,
2016; Aristizábal, 2013; Aristizábal et al., 2015; Geotech-
data, 2013).

The r.slope.stability model is applied with the probabilis-
tic approach and deterministic approach for comparison with
other models tested in the catchment. Both are used in com-
bination with the infinite slope stability model and the slip
surface model, resulting in a total of four model runs. Rect-
angular probability density functions for c′, ϕ′, and the soil
depth d (m) are considered for the probabilistic analysis. The
rectangular distribution is suitable for representing random
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Table 1. Geotechnical parameters of La Arenosa catchment from
laboratory tests. γd= specific weight dry of soil, c′= effective co-
hesion, ϕ′= effective angle of internal friction and θs= saturated
water content minimum and maximum values for c′ and ϕ′ are pre-
sented.

Alluvial Residual
soil soil

θs (%) 25 40
γd (kN m−3) 17 14.9
c′ (kN m−2) 1 (0.6–1.4) 5 (3–7)
ϕ′ (◦) 34 (30–38) 24 (21–27)
Depth (m) 2.5–2.8 1.2–2.8

Adapted from Aristizábal (2013) and Aristizábal et
al. (2016).

variables, which have known upper and lower bounds and
an equal likelihood of occurring anywhere between these
bounds (Fenton and Griffiths, 2008). For each parameter (c′,
ϕ′, and d) we use a sample size of 10 values, which are ran-
domly selected from the ranges in Table 1.

With the infinite slope stability model, FoS for each raster
cell is calculated with respect to the bottom of the soil. The
analysis with truncated ellipsoidal failure surfaces is per-
formed in a procedure with 1000 simulated surfaces touch-
ing each cell. Preliminary tests have indicated that this value
represents a good compromise between computational effi-
ciency and accuracy of the results. Each ellipsoidal slip sur-
face is defined by the coordinates of the center and the vari-
able lengths of the three half-axes, the aspect, the inclination
and the offset center above the terrain; the failure surfaces
include widths between 10 and 100 m and lengths between
10 and 200 m, with a maximum truncated depth of 2.8 m.

Quantitative evaluation of the empirical adequacy of the
r.slope.stability model results are accomplished through a
confusion matrix and an ROC analysis for the continuous
output. Each raster cell of both the observed data (inven-
tory) and the predicted data (model result) is assigned to one
of two classes: stable (no landslide mapped or FoS≥ 1, re-
spectively) or unstable (landslide mapped or FoS< 1, respec-
tively; Fawcett, 2005). The overlay of the classes is known
as the confusion matrix, where each raster cell is assigned
to one of four classes: true positive (observed unstable cell
is predicted as unstable), true negative (observed stable cell
is predicted as stable), false positive (observed stable cell is
predicted as unstable) and false negative (observed unstable
cell is predicted as stable).

The statistical indexes measuring the performance (Ta-
ble 4) are the true positive rate or hit rate (TPr), defined as
the ratio between the true positives and the observed posi-
tives. The true negative rate or specificity (TNr) is the ratio
between the true negatives and the observed negatives. The
false positive rate or false alarm rate (FPr) is defined as the
ratio between the false positives and the observed negatives;

the positive predictive value, also called the precision, is the
ratio between the true positives and the total predicted pos-
itives (Aristizábal et al., 2015, 2016). Evaluation only con-
siders the area covered by the landslide inventory. The ROC
analysis plots TPr against FPr for various threshold levels
of Pf.

r.slope.stability is compared with the SHALSTAB and
SHIA_Landslide models to evaluate the consistency of the
results. The SHALSTAB model, developed by Montgomery
and Dietrich (1994), applies a topographic index to estimate
the saturation of the soil as a function of rainfall infiltra-
tion. This procedure builds on the assumption that surface
topography can be used as a main indicator of landslide sus-
ceptibility (Aristizábal et al., 2015). The model employs the
hydrological model TOPOG which uses steady-state rainfall
and an infinite slope approach for the geotechnical compo-
nent (O’Loughlin, 1986). SHIA_Landslide is a physically
based and conceptual model, developed by Aristizábal et
al. (2016), for computing positive pore pressure changes as
well as the resulting changes in FoS due to rainfall infiltra-
tion, coupling a distributed hydrological model with a classi-
cal infinite slope stability model.

5 Results

The results using the deterministic analysis with the infinite
slope stability model in r.slope.stability are shown in Fig. 3a,
whereas the results obtained with the slip surface model are
shown in Fig. 3b, both of them in terms of FoS. Table 2 shows
the confusion matrix calculated by comparing the determin-
istic analysis results with the scars in the landslide inventory
map. For the infinite slope stability model, unstable condi-
tions with FoS< 1 are shown for 79.2 % of the catchment
area, whereas only 10.5 % show acceptably stable conditions
with FoS values > 1.5; these areas correspond to the lower
parts of the catchment formed by alluvial sediments with
very gentle slopes. With regard to the slip surface model,
84 % of the catchment area show FoS< 1, and only 5.8 %
show acceptable stability conditions with FoS> 1.5.

Figure 4 illustrates the results of the probabilistic compo-
nent of r.slope.stability used with the infinite slope stability
model (Fig. 4a) and with the slip surface model (Fig. 4b) in
terms of Pf. This probability is computed as the proportion
of parameter combinations predicting FoS< 1.0 at a specific
raster cell. Table 3 shows the confusion matrix calculated by
comparing the probabilistic analysis results with the scars in
the landslide inventory map. To define the critical Pf thresh-
olds, the distance to perfect classification parameter (r) pro-
posed by Medina-cetina and Cepeda (2010) is used:

r =
√
(FPr)2+ (1−TPr)2. (3)

The threshold values yielding the lowest value of r , indicat-
ing the best model performance, are used to discriminate be-
tween predicted positive and predicted negative cells. We are
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Figure 3. Landslide susceptibility map computed with r.slope.stability. (a) Infinite slope stability model. (b) Ellipsoid-based model.

Table 2. The confusion matrix for the deterministic analysis. TP:
true positive, FN: false negative, TN: true negative FP: false posi-
tive.

Classifier r.slope.stability (ellipsoid-based model)

Pixel Area Total Partial
(m2) percentage percentage

Observed landslide areas

TP 2089 208 900 2.7 % 95 %
FN 100 10 000 0.1 % 5 %

Observed non-landslide areas

TN 17 314 1 731 400 22.7 % 23 %
FP 56 838 5 683 800 74.5 % 77 %

Classifier r.slope.stability (infinite slope stability model)

Pixel Area Total Partial
(m2) percentage percentage

Observed landslide areas

TP 2154 215 400 2.8 % 98 %
FN 35 3500 0.05 % 2 %

Observed non-landslide areas

TN 17 326 1 732 600 22.7 % 23 %
FP 56 826 5 682 600 74.4 % 77 %

fully aware that this is a purely statistical optimization ap-
proach, not necessarily meaningful from a geotechnical point
of view – an issue that will be further elaborated in Sect. 6.

For the infinite slope stability model a minimum value
of r = 0.31 is obtained for Pf = 0.96, whereas for the slip
surface model a minimum value of r = 0.46 is obtained

Table 3. The confusion matrix for the probabilistic analysis.

Classifier r.slope.stability (ellipsoid-based model)

Pixel Area Total Partial
(m2) percentage percentage

Observed landslide areas

TP 1416 141 600 1.9 % 65 %
FN 773 77 300 1.0 % 35 %

Observed non-landslide areas

TN 51 623 5 162 300 67.6 % 70 %
FP 22 529 2 252 900 29.5 % 30 %

Classifier r.slope.stability (infinite slope stability model)

Pixel Area Total Partial
(m2) percentage percentage

Observed landslide areas

TP 1812 181 200 2.4 % 83 %
FN 377 37 700 0.5 % 17 %

Observed non-landslide areas

TN 54 890 5 489 000 71.9 % 74 %
FP 19 262 1 926 200 25.2 % 26 %

for Pf = 0.99. For the infinite slope stability model, unsta-
ble conditions with Pf > 0.96 are shown just for 30.5 % of
the catchment area, whereas 69.5 % show stable conditions
(FoS≥ 1.0). 36.4 % of the catchment display values of Pf >

0.99 according to the slip surface model, whereas 63.6 % dis-
play stable conditions. Unstable hillslopes, according to this
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Figure 4. Probability of failure map computed with r.slope.stability. (a) Infinite slope stability model. (b) Ellipsoid-based model.

criterion, are located mostly in the southern portion of the
catchment, where no landslide inventory is available.

According to the confusion matrix, the deterministic anal-
ysis of r.slope.stability correctly predicts 98 % and 95 % of
the observed landslide areas with the infinite slope stabil-
ity model and the slip surface model, respectively. The other
2 % and 5 % are predicted as stable but did in reality experi-
ence landslides according to the inventory. However, for the
observed non-landslide areas, only 23 % are correctly pre-
dicted as stable by the infinite slope model and slip surface
model, whereas the other 77 %, which are predicted as unsta-
ble, did not fail according to the inventory. The deterministic
model is more efficient in correctly classifying slopes where
landslides occurred and less efficient at classifying slopes on
which landslides did not occur. With the thresholds of r ap-
plied in this study, the confusion matrix for the probabilis-
tic analysis shows a correct prediction of 83 % and 65 % of
the observed landslide areas with the infinite slope stability
model and the slip surface model, respectively. The other
17 % and 35 % are erroneously predicted as stable accord-
ing to the inventory. For the observed non-landslide areas
74 % and 70 % are correctly predicted as stable by the infinite
slope model and slip surface model, respectively, whereas
only 26 % and 30 % are predicted as unstable, but did not
fail.

The values of the area under the ROC curve (AUC) indi-
cate a good ability of the probabilistic results to distinguish
between susceptible and less susceptible areas (Fig. 5). The
infinite slope stability model yields AUCs of 0.82 and 0.83
for the deterministic and probabilistic analyses, respectively,
whereas the slip surface model performs worse, but still fair
(0.73 and 0.71).

Table 4 summarizes the statistical indices measuring the
performance and prediction of the r.slope.stability model

Figure 5. ROC curve models, r.slope.stability (infinite slope
stability model) deterministic curve (0.83) and Pf (0.82) for
r.slope.stability (ellipsoid-based model) deterministic curve (0.73)
and Pf (0.71), SHIA_Landslide model (0.77).

compared to SHALSTAB and SHIA_Landslide for the
La Arenosa catchment. Figure 5 focuses on the perfor-
mance of AUC for the r.slope.stability model compared to
SHIA_Landslide in the La Arenosa catchment, the better
yield corresponds to the infinite slope stability model.

Figure 6 compares the results of r.slope.stability with
SHALSTAB and SHIA_Landslide for a specific area of
the catchment. SHALSTAB shows more areas classified
as unconditionally unstable and unstable, displaying sim-
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Figure 6. Comparison of results. (a) Analysis area. (b) FoS obtained with r.slope.stability (infinite slope stability model). (c) FoS obtained
with r.slope.stability (slip surface model). (d) Analysis with SHALSTAB (Aristizábal et al., 2015). (e) FoS obtained with SHIA_Landslide
(Aristizábal et al., 2016). (f) Pf obtained with r.slope.stability (ellipsoid-based model). (g) Pf obtained with r.slope.stability (infinite slope
stability model).
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Table 4. Statistical indexes measuring the performance of r.slope.stability and the other models.

Hit rate False Specificity Precision
(0–100) alarm (0–100)

rate
(0–100)

r.slope.stability (Pf ellipsoid-based model) 65 30 70 0.06
r.slope.stability (Pf infinite slope stability model) 83 26 74 0.08
r.slope.stability (FoS infinite slope stability model) 98 77 23 0.04
r.slope.stability (FoS ellipsoid-based model) 95 77 23 0.04
SHIA_Landslide 77 24 76 0.07
SHALSTAB 91 42 58 0.05

Adapted from Aristizábal et al. (2015, 2017).

ilarities to the deterministic analysis of r.slope.stability,
whereas SHIA_Landslide and the probabilistic analysis of
r.slope.stability tend to show fewer areas with FoS< 1
or with high values of Pf. In summary, the determinis-
tic analysis of the r.slope.stability model shows consider-
ably higher hit rates compared to the probabilistic analysis
of r.slope.stability, SHALSTAB and SHIA_Landslide. How-
ever, both deterministic analyses of r.slope.stability show the
highest false alarm rates. The major reasons for this result –
and for the similar patterns yielded with SHIA_Landslide –
are most likely an underestimate of the geotechnical stability
of the material, the neglect of the effects of vegetation, and/or
the overestimate of water saturation. Geotechnical testing is
often performed on material which is disturbed in one or the
other way, so that the resulting parameters do not necessarily
represent natural conditions over larger areas. Roots could
lead to some degree of stabilization, and it could also be that
vegetation retains sufficient water to avoid full saturation of
the soil throughout the catchment.

6 Discussion

In this work, the r.slope.stability tool was applied to the
La Arenosa catchment, where the models SHALSTAB and
SHIA_Landslide were tested before (Aristizábal et al., 2015,
2016). An ideal model performance simultaneously maxi-
mizes TPr and minimizes FPr. In the La Arenosa catchment,
the failure area associated with the rainfall event under in-
vestigation corresponds just to 2.2 % of the whole catch-
ment. Considering this situation, SHALSTAB tends to pre-
dict more unstable areas for this specific rainstorm, increas-
ing the prediction capacity of the model but at the same
time increasing the false positive error. Related to this as-
pect, Cervi et al. (2010) show the limitations of SHALSTAB
due to the hydrological assumptions (flow in steady-state
conditions). By contrast, the SHIA_Landslide model shows
a strong capacity for prediction and a very low FPr. In the
case of r.slope.stability, the probabilistic analysis with the in-
finite slope stability model replicates the 21 September 1990

event with very good reliability, in a much more successful
way compared to SHALSTAB and compared to the deter-
ministic r.slope.stability approach, and showing similar per-
formance to that of SHIA_Landslide, with a higher hit rate
and a slightly higher value of FPr.

An important advantage of r.slope.stability compared to
SHALSTAB and SHIA_Landslide is the possibility of carry-
ing out a probabilistic analysis in terms of considering ranges
of the key model parameters. Besides r.slope.stability, there
are several physically based models which provide a prob-
abilistic module, such as TRIGRS (Baum et al., 2010) and
ALICE (Thiery et al., 2017). Much more work has to be de-
veloped in the direction of including probabilistic analysis
and improving the predictive capacity of models. Measur-
ing geotechnical and hydraulic parameters for large areas is
difficult, time-consuming and expensive, and there is an in-
herent variability in parameters associated with lithology and
soil formation processes (Canli et al., 2017). Similarly, soil
thickness shows very high variability and uncertainty. This
means there is much uncertainty related to the horizontal and
vertical natural variations of soil hydraulic and geotechni-
cal parameters (Christian and Baecher, 2001). In general, soil
properties show a pseudo-random pattern rather than a con-
stant value. Additionally, landslides are more complex than
their representation in the physically based models adopted,
and the geometrical and mechanical parameters that control
slope stability are not known with sufficient accuracy (Grif-
fiths et al., 2012; Guzzetti, 2016).

The conventional deterministic approach neglects uncer-
tainties in the slope stability analysis. Although the FoS com-
putation is more likely to identify areas prone to slope fail-
ure during a given hydro-meteorological event rather than to
predict the exact locations of specific landslides (Baum et
al., 2010), FoS is often not a reliable indicator of the slope
stability conditions because it is – in terms of interpretation
– a binary value derived from several uncertain parameters
(Chowdhury et al., 2009). Thus, considering that physically
based models are very sensitive to soil properties and soil
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depth, the probability distribution of failure is a much better
indicator of the slope stability conditions.

Probabilistic analyses permit the inclusion of natural soil
variations in the analysis, but the mechanism of failure is also
fundamental for obtaining adequate results. In the case of
the 21 September 1990 rainstorm, the infinite slope stability
analysis of the r.slope.stability model using planar shallow
failure surfaces shows a better performance than the analy-
sis using an ellipsoidal failure surface. The results obtained
show that the failure geometry is most appropriately approxi-
mated by shallow planar surfaces, which is confirmed by the
reference information: Even though Hermelin et al. (1992)
and Garcia (1995) mentioned that both shallow and deep-
seated landslides were observed after the studied rainfall
event, Velásquez and Mejía (1991) underlined the dominance
of shallow landslides. This also agrees with the type of land-
slides often triggered by short, heavy rainfall events causing
a rapid increase in pore pressure (Crosta, 1998). Such land-
slides are characterized by small and shallow, slope-parallel
failure planes (depth of 0.3–2 m; Anderson and Sitar, 1995).
The displaced material, by means of processes of static liq-
uefaction and rapid reduction of shear strength in undrained
conditions, develops into flows that spread downward (An-
derson and Sitar, 1995; Wang and Sassa, 2003). This type
of landslide is described by Hungr et al. (2014) as a de-
bris avalanche. In cases where failures occur on slip sur-
faces with curved shapes, the assumption of ellipsoid-shaped
slip surfaces would be expected to provide better results.
This indicates the necessity of evaluating a priori the mech-
anism of failure and then employing the most appropriate
model, or – if both mechanisms are relevant – evaluating the
model results with different sub-datasets of the inventory. In
the present study, due to the lacking distinction of landslide
mechanisms in the inventory at the level of individual land-
slides, we applied both the infinite slope stability model and
the slip surface model in order to cover a broad range of
mechanisms. The result of the evaluation against the entire
landslide inventory was in line with the generally reported
dominance of shallow translational landslides.

The current version of r.slope.stability does not permit
variation of the saturation level, meaning that the analysis
has to be carried out in either dry or saturated conditions. In
the r.slope.stability model, including the role of the infiltra-
tion process under saturated conditions in particular could
strongly improve the model performance in terms of be-
ing more effective in considering local hydrological condi-
tions which govern slope instability processes (Mergili et al.,
2014a, b), given that the required data are available.

7 Conclusions

In this work, we have presented the results of r.slope.stability
for the La Arenosa catchment in the Colombian Andes.
r.slope.stability is a 2.5-D slope stability model capable of

dealing with shallow and deep-seated landslides triggered
by rainfall. The model was evaluated with a set of observed
landslides triggered by the 21 September 1990 rainstorm, for
which different slope stability models had been previously
applied. Considering the probabilistic analyses performed,
r.slope.stability shows a high hit rate, suggesting an accept-
able prediction capacity for failure areas (65 %–83 %) for the
infinite slope stability model and the slip surface model, re-
spectively. The false alarm rate is relatively low for the in-
finite slope stability model (26 %) and for the slip surface
model (30 %). The AUCs yielded by the probabilistic ap-
proach are 0.83 for the infinite slope stability model and
0.71 for the slip surface model. These results clearly suggest
a higher performance for the assumption of the shallow, pla-
nar failure surface (infinite slope stability) model than for the
deep-seated slip surface model, a finding which is in line with
the physical characteristics of the observed landslides. De-
spite the generally good model performance, the results were
far too conservative compared to the observations, meaning
that either (1) the assumption of the saturation patterns was
inappropriate; or (2) the geotechnical parameters fed into the
model are not representative of the study area. The same
challenges were identified for the SHALSTAB model. Fu-
ture studies shall further elaborate on this issue.

Compared to many other models, r.slope.stability has the
advantage that it supports the derivation of a failure probabil-
ity in terms of considering ranges of the key model parame-
ters, instead of fixed values. Since in any landslide suscepti-
bility analysis it is necessary to consider that soil parameters
and their spatial variability are highly uncertain, the com-
putation of failure probabilities in addition to FoS is highly
recommended. In Colombia, hazard mapping is mandatory
for use land planning in urban areas. Results like the slope
failure probability (Fig. 6f and g) are considered suitable for
this purpose. However, they only represent one step on the
long way to a more reliable landslide susceptibility and haz-
ard mapping.

i. Much of the landslide risk in the Arenosa catchment is
not so much related to the failure of unstable slopes, but
rather to the downslope propagation of the mobilized
material as debris flows (Velásquez and Mejía, 1991).
Therefore, coupling of the slope stability model results
with mass flow simulation tools is absolutely necessary
(Mergili et al., 2017; Bout et al., 2018).

ii. Slope failure probabilities – or impact indicator indices
Mergili et al., 2017) – take into account neither the
dimension of time nor the fine-scale patterns of the
geotechnical characteristics of the catchment. Conse-
quently, those results have to be interpreted in a rela-
tive, qualitative sense rather than an absolute, quantita-
tive sense. The combination of these maps with expert
judgment is therefore essential to define suitable thresh-
olds separating the study area into different zones with
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their individual hazard levels and recommendations for
action.
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