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Abstract. This paper is a continuation of the authors’ pre-
vious paper (Part 1) on the feasibility of ensemble flood
forecasting for a small dam catchment (Kasahori dam; ap-
prox. 70km?) in Niigata, Japan, using a distributed rainfall-
runoff model and rainfall ensemble forecasts. The ensem-
ble forecasts were given by an advanced four-dimensional,
variational-ensemble assimilation system using the Japan
Meteorological Agency nonhydrostatic model (4D-EnVar-
NHM). A noteworthy feature of this system was the use of
a very large number of ensemble members (1600), which
yielded a significant improvement in the rainfall forecast
compared to Part 1. The ensemble flood forecasting using the
1600 rainfalls succeeded in indicating the necessity of emer-
gency flood operation with the occurrence probability and
enough lead time (e.g., 12 h) with regard to an extreme event.
A new method for dynamical selection of the best ensemble
member based on the Bayesian reasoning with different eval-
uation periods is proposed. As the result, it is recognized that
the selection based on Nash—Sutcliffe efficiency (NSE) does
not provide an exact discharge forecast with several hours
lead time, but it can provide some trend in the near future.

1 Introduction

Flood simulation driven by ensemble rainfalls has attracted
more attention in recent years, resulting in a lot of use-
ful information that ensemble flood forecasts can provide in
flood control, such as forecast uncertainty, probabilities of
rare events and potential flooding scenarios. In the Japanese
case, it is considered that the ensemble rainfall simulation
with a high resolution (2 km or below) is desirable, since ex-
treme rainfall often takes place due to mesoscale convective
systems and the river catchments are not as large as con-
tinental rivers; even the largest Tone River basin is around
17000 km?.

A good review of ensemble flood forecasting using
medium-term global and European ensemble weather fore-
casts (2—15 d ahead) by numerical weather prediction (NWP)
models can be found in Cloke and Pappenberger (2009).
In much of their review, the resolution of NWP model is
relatively coarse (over 10km), the number of ensembles is
moderate (10-50) and the target catchment size is often
large (e.g., Danube River Basin). They basically reviewed
global and European ensemble prediction systems (EPSs)
but also introduced some research on regional EPSs nested
into global EPSs (e.g., Marsigli et al., 2001). They stated
that “One of the biggest challenges therefore in improving
weather forecasts remain to increase the resolution and iden-
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tify the adequate physical representations on the respective
scale, but this is a source hungry task”.

Short-term flood forecasting (1-3d) based on ensemble
NWPs is gaining more attention in Japan. Kobayashi et
al. (2016) dealt with an ensemble flood (rainfall-runoff) sim-
ulation of a heavy-rainfall event that occurred in 2011 over a
small dam catchment (Kasahori dam; approx. 70 km?) in Ni-
igata, central Japan, using a rainfall-runoff model with a res-
olution of 250 m. Eleven-member ensemble rainfalls by the
Japan Meteorological Agency nonhydrostatic model (JMA-
NHM; Saito et al., 2006) with horizontal resolutions of 2 and
10km were employed. The results showed that, although
the 2km EPS reproduced the observed rainfall much bet-
ter than the 10 km EPS, the resultant cumulative and hourly
maximum rainfalls still underestimated the observed rainfall.
Thus, the ensemble flood simulations with the 2 km rainfalls
were still not sufficiently valid, and a positional lag correc-
tion of the rainfall fields was applied. Using this translation
method, the magnitude of the ensemble rainfalls and likewise
the inflows to the Kasahori dam became comparable with the
observed inflows.

Other applications of the 2km EPS, which permit deep
convection on some level, can be found in studies, for ex-
ample that of Xuan et al. (2009). They carried out an en-
semble flood forecasting at the Brue catchment, with an area
of 135 kmz, in southwestern England, UK. The resolution of
their grid-based distributed rainfall-runoff model (GBDM)
was 500 m, and the resolution of their NWP forecast by the
PSU/NCAR (Pennsylvania State University—National Cen-
ter for Atmospheric Research) mesoscale model (MMS5) was
2km. The NWP forecast was the result of downscaling of
the global forecast datasets from the European Centre for
Medium-Range Weather Forecasts (ECMWF). Fifty mem-
bers of the ECMWF EPS and one deterministic forecast were
downscaled. Since the original NWP rainfall of a grid av-
erage still underestimates the intensity compared with rain
gauges, they introduced a best-match approach (location cor-
rection) and a bias-correction approach (scale-up) on the
downscaled rainfall field. The results showed that the en-
semble flood forecasting of some rainfall events is in good
agreement with observations within the confidence intervals,
while that of other rainfall events failed to capture the basic
flow patterns.

Likewise in Europe, Hohenegger et al. (2008) carried out
the cloud-resolving ensemble weather simulations of the Au-
gust 2005 Alpine flood. Their cloud-resolving EPS of 2.2 km
grid space included the explicit treatment of deep convec-
tion and was the result of downscaling of COSMO-LEPS
(10km resolution driven by ECMWF EPS). Their conclu-
sion was that despite the overall small differences, the 2.2 km
cloud-resolving ensemble produces results as good as and
even better than its 10 km EPS, though the paper did not deal
with the hydrological forecasting. Another paper which dealt
with cloud-resolving ensemble simulations can be found in
Vie et al. (2011) for a Mediterranean heavy-precipitation
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event. Their ensemble weather simulation model resolution
was 2.5 km by AROME from Météo-France, which uses AL-
ADIN forecasts for lateral boundary conditions (10 km res-
olution); thus the deep convection was explicitly resolved.
We can recognize from this research that the European re-
searchers especially around mountain regions have been far-
sighted from early days for the importance of these cloud-
resolving ensemble simulations.

On the other hand, in Japan, Yu et al. (2018) have also
used a post-processing method using the spatial shift of NWP
rainfall fields for correcting the misplaced rain distribution.
Their study areas are the Futatsuno (356.1 km?) and Nanairo
(182.1km?) dam catchments of the Shingu river basin, lo-
cated on the Kii Peninsula, Japan. The resolutions of the
ensemble weather simulations were 10 and 2km by JMA-
NHM, which is similar to the downscaling EPS in Kobayashi
et al. (2016) but for a different heavy-rainfall event in western
central Japan caused by a typhoon. The results showed that
the ensemble forecasts produced better results than the de-
terministic control run forecast, although the peak discharge
was underestimated. Thus, they also carried out a spatial shift
of the ensemble rainfall field. The results showed that the
flood forecasting with the spatial shift of the ensemble rain-
fall members was better than the original one; likewise the
peak discharges more closely approached the observations.

Recently, as a further improvement upon the 2 km down-
scale ensemble rainfall simulations used by Kobayashi et
al. (2016), Duc and Saito (2017) developed an advanced
data assimilation system with the ensemble variational
method (EnVar) and increased the number of ensemble
members to 1600. This new data assimilation system was
aimed to improve the rainfall forecasts of the 2011 Niigata—
Fukushima heavy-rainfall event (JMA, 2013; Niigata Prefec-
ture, 2011). The torrential rain of this event occurred over the
small area along the synoptic-scale stationary front (for sur-
face weather map, see Fig. 1 of Kobayashi et al., 2016). Saito
et al. (2013) found that the location where intense rain con-
centrates varied in small changes of the model setting; thus
the position of the heavy rain was likely controlled by hori-
zontal convergence along the front rather than the orographic
forcing.

Since the new EPS produced better forecasts of the rainfall
fields, in this study, Part 2 of Kobayashi et al. (2016), we ap-
plied those 1600-member ensemble rainfalls to the ensemble
inflow simulations of Kasahori dam. In this series, consist-
ing of Part 1 and 2, we intentionally chose a rainfall-runoff
model whose specification is quite close to those runoff mod-
els used in many governmental practices of Japanese flood
forecasting to see the usefulness of 1600-member ensemble
rainfalls. Our objective is to assess impact of the improve-
ment of the rainfall forecast over the large area around Kasa-
hori dam on the streamflow forecast for the Kasahori dam. In
Part 1 the technique of positional lag correction was applied
to match the rainfall forecasts with the observations to have a
better hydrological forecast. This technique is hard to apply
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in real-time flood forecasting, since rainfall observations are
unknown and there are a lot of potential positional lag vectors
to choose from. Statistically the positional lag vector should
respond to the local orographic features, but it may vary de-
pending on the synoptic condition on the day and model fore-
cast errors in a specific event. Thus the positional lag vector
for one extreme rainfall event basically cannot be applied to
other extreme event as is. The new EPS is expected to remove
the use of such a technique.

In addition, the very large number of ensemble members,
which is 10 to 20 times larger than the typical number of
ensemble members currently run in operational forecast cen-
ters, poses new issues needed to solve in computation and
interpretation. First, regional forecast centers may not af-
ford running 1600 hydrological forecasts in real time, and a
method to choose the most important members may be help-
ful. Such a method is known as ensemble reduction in en-
semble forecasts (Molteni et al., 2001; Montani et al., 2011;
Hacker et al., 2011; Weidle et al., 2013; Serafin et al., 2019),
which is built upon cluster analysis when observations are
not used as guidance for selection. However, our problem is
more interesting when we can access the observations in the
first few hours, and ensemble reduction should make use of
these past observations in selecting important members. Sec-
ond, it is more challenging to interpret the result when tem-
poral and spatial uncertainties are realized to be more distinct
now. Without taking such uncertainties into account, the en-
semble forecasts are easily to be considered useless.

The organization of this paper is as follows. Section 2 de-
scribes the new mesoscale EPS and its forecast and rainfall
verification results. Section 3 describes the rainfall-runoff
model for explaining the changes in the model parameters.
Results are shown in Sect. 4. In Sect. 5, concluding remarks
and future aspects are presented.

2 Mesoscale ensemble forecast
2.1 Ensemble prediction system

An advanced mesoscale EPS was developed and employed
to prepare precipitation data for the rainfall-runoff model.
The EPS was built around the operational mesoscale model
JMA-NHM for its atmospheric model as the downscale EPS
conducted by Saito et al. (2013). In this study, a domain con-
sisting of 819 x 715 horizontal grid points and 60 vertical
levels was used for all ensemble members. This domain had
a grid spacing of 2km and covered the mainland of Japan.
With this high resolution, convective parameterization was
switched off. Boundary conditions were obtained from fore-
casts of the JMA’s global model. Boundary perturbations
were interpolated from forecast perturbations of the JIMA’s
operational 1-week EPS as in Saito et al. (2013).

To provide initial conditions and initial perturbations for
the EPS, a four-dimensional, variational-ensemble assimi-
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lation system using the Japan Meteorological Agency non-
hydrostatic model (4D-EnVar-NHM) was newly developed
in which background error covariances were estimated from
short-range ensemble forecasts by JMA-NHM before being
plugged into functions for minimization to obtain the analy-
ses (Duc and Saito, 2017). If the number of ensemble mem-
bers is limited, ensemble error covariances contain sampling
noises which manifest as spurious correlations between dis-
tant grid points. In data assimilation, the so-called localiza-
tion technique is usually applied to remove such noise, but
at the same time it removes significant correlations in er-
ror covariances. In this study, we chose 1600 members in
running the ensemble part of 4D-EnVar-NHM to retain sig-
nificant vertical correlations, which have a large impact on
heavy-rainfall events like the Niigata—Fukushima heavy rain-
fall. That means only horizontal localization is applied in
4D-EnVar-NHM. The horizontal localization length scales
were derived from the climatologically horizontal correla-
tion length scales of the JMA’s operational four-dimensional,
variational assimilation system JNoVA by dilation using a
factor of 2.0.

Another special aspect of 4D-EnVar-NHM is that a sepa-
rate ensemble Kalman filter was not needed to produce the
analysis ensemble. Instead, a cost function was derived for
each analysis perturbation, and minimization was then ap-
plied to obtain this perturbation, which is very similar to the
case of analyses. This helped to ensure consistency between
analyses and analysis perturbations in 4D-EnVar-NHM when
the same background error covariance, the same localization
and the same observations were used in both cases. To accel-
erate the running time, all analysis perturbations were calcu-
lated simultaneously using the block algorithm to solve the
linear equations with multiple right-hand-side vectors result-
ing from all minimization problems. The assimilation system
was started at 09:00JST on 24 July 2011 with a 3 h assimi-
lation cycle. All routine observations at the JMA’s database
were assimilated into 4D-EnVar-NHM. The assimilation do-
main was the same as the former operational system at the
JMA. To reduce the computational cost, a dual-resolution ap-
proach was adopted in 4D-EnVar-NHM where analyses had
a grid spacing of 5km, whereas analysis perturbations had
a grid spacing of 15 km. The analysis and analysis perturba-
tions were interpolated to the grid of the ensemble prediction
system to make the initial conditions for deterministic and
ensemble forecasts.

2.2 Rainfall verification

Due to limited computational resources, ensemble forecasts
with 1600 members were only employed for the target time
of 00:00JST on 29 July 2011. However, deterministic fore-
casts were run for all other initial times to examine the impact
of the number of ensemble members on analyses and the re-
sulting forecasts. Figure 1 shows the verification results for
the 3 h precipitation forecasts as measured by the fraction
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Figure 1. Fraction skill scores of 3h precipitation at Niigata—Fukushima from deterministic forecasts initialized by analyses from
JNoVA (a, b) and 4D-EnVar-NHM using 1600 (c, d) and 50 members (e, f). These scores are averaged over the period from 21:00JST
on 24 July to 21:00JST on 29 July 2011. To obtain robust statistics, precipitation is aggregated over the first 12 h forecasts (valid between 3
and 12 h forecast) and the next 12 h forecasts (valid between 12 and 24 h forecasts) as shown in the top and bottom rows, respectively. Note

that the first 3 h precipitation is discarded due to the spin-up problem.

skill score (FSS; Roberts and Lean, 2008). Given a rainfall
threshold and an area around a grid point, which is called a
neighborhood, the FSS measures the relative difference be-
tween observed and forecasted rainfall fractions in this area.
This verification score is used to mitigate difficulty in rainfall
verification at the grid scale with very high resolution fore-
casts in which high variability in rain fields usually makes
the traditional scores inadequate due to their requirement of
an exact match between observations and forecasts at grid
points. Thus the solution that the FSS follows is to consider
forecast quality at spatial scales coarser than the grid scale
by comparing forecasts and observations not at grid points
but at neighborhoods whose sizes are identified with spatial
scales. The FSS is normalized to range from O to 1, with the
value of 1 indicating a perfect forecast and the value of 0 be-
ing a no-skill forecast which can be obtained by a random
forecast.

In Fig. 1 we aggregate the 3 h precipitation in the first and
second 12 h forecasts to increase samples in calculating the
FSS. In this way, robust statistics are obtained, but at the
same time dependence of the FSS on the leading times can
still be shown. Note that an additional experiment with 4D-
EnVar-NHM using 50 ensemble members, which is called
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4DEnVar50 to differentiate it from the original one, 4DEn-
Var1600, was run. The main difference between 4DEnVar50
and 4DEnVar1600 is that vertical localization was applied
in the former case to generate its ensemble members. As
mentioned in the previous section, vertical localization can
potentially weaken vertical flows in convective areas by re-
moving physically vertical correlations. It is very clear from
Fig. 1 that 4DEnVar1600 outperforms 4DEnVar50 almost for
all precipitation thresholds, especially for intense rain. Also
for the high rain rate, compared to JNoVA, 4DEnVar1600
forecasts are worse than JNoVA forecasts for the first 12h
forecasts, which can be attributed to the fact that 4D-EnVar-
NHM did not assimilate satellite radiances and surface pre-
cipitation like JNoVA. However, it is interesting to see that
4D-EnVar-NHM produces forecasts better than JNoVA for
very intense rain for the next 12 h forecasts.

To check the reliability of the ensemble forecasts, reliabil-
ity diagrams are calculated and plotted in Fig. 2 for 4DEn-
Var1600 and 4DEnVar50. Since JNoVA only provided de-
terministic forecasts, the reliability diagram is irrelevant for
JNoVA. Note that we only performed ensemble forecasts
initialized at the target time of 00:00JST on 29 July 2001
due to lack of computational resource to run 1600-member
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Figure 2. As in Fig. 1 but for reliability diagrams of 3 h precipitation from ensemble forecasts initialized by analysis ensembles of 4D-EnVar-
NHM using 1600 and 50 members. Three precipitation thresholds of 1 mm (a, b), 10 mm (¢, d) and 50 mm (e, f) are chosen. Note that the
ensemble forecasts were only run for the time 00:00JST on 29 July 2011.

ensemble forecasts at different initial times. Therefore, the
same strategy of aggregating 3 h precipitation over the first
and second 12 h forecasts in calculating the FSS in Fig. 1 is
applied to obtain significant statistics. Clearly, Fig. 2 shows
that 4DEnVar1600 is distinctively more reliable than 4DEn-
Var50 in predicting intense rain. While 4DEnVar50 cannot
capture intense rain, 4DEnVar1600 tends to overestimate ar-
eas of intense rain. The tendency of overestimation of 4DEn-
Var1600 becomes clearer if we consider the forecast ranges
between 12 and 24 h. However, for the first 12h, 4DEn-
Var1600 slightly underestimates areas of light rains. This
also explains why the FSSs of 4DEnVar1600 are smaller than
those of 4DEnVar50 for small rainfall thresholds in Fig. 1.
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As examples of the forecasts, Fig. 3 shows the accumu-
lated precipitation at the peak period (12:00-15:00JST on
29 July 2011) as observed and forecasted by the 4D-EnVar
prediction system. Here, the rainfall observations were ob-
tained from the operational precipitation analysis system of
JMA based on radar and rain-gauge observations, which is
called the radar—AMeDAS (RA) — Automated Meteorologi-
cal Data Acquisition System. For comparison, the determin-
istic forecast initialized by the analysis from JNoVA using
the same domain was also given. Note that the forecast range
corresponding to this peak period is from 12 to 15 h. Clearly,
the deterministic forecast initialized by 4D-EnVar-NHM out-
performed that by the JNoVA, especially in terms of the lo-
cation of the heavy rain, although the forecast by 4D-EnVar-
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NHM tended to slightly overestimate the rainfall amount, as
verified by the reliability diagrams in Fig. 2. This overestima-
tion can also be observed in the coastal area near the Sea of
Japan. Note that a significant improvement was also attained
against the former downscale EPS used in Part 1 (see Fig. 9
of Kobayashi et al., 2016).

Since it is not possible to examine all 1600 forecasts, the
ensemble mean forecast is only plotted in Fig. 3d. Again, the
location of the heavy rain corresponds well with the observed
location, as in the case of the deterministic forecast, but the
ensemble mean precipitation is smeared out as a side effect
of the averaging procedure. Therefore, the ensemble mean
should not be used in our hydrological model as a represen-
tative of the ensemble forecast. Instead, all ensemble precip-
itation forecasts should be fed into the hydrological model to
avoid rainfall distortion caused by averaging in addition to
a faithful description of rainfall uncertainty. Of course with
1600 members this causes a huge increase in computational
cost, and we try to reduce this burden by testing a suitable dy-
namical selection, described later in Sect. 4. To have a glance
to the performance of the ensemble forecast we plot 1 h ac-
cumulated precipitation over the Kasahori dam catchment in
time series in Fig. 4 (observed data are radar—AMeDAS). It
can be seen that while the deterministic forecast could some-
how reproduce the three-peak curve of the observed rainfall,
ensemble members tended to capture the first peak only. Note
that some members showed this three-peak curve, such as
the best member, but their number was much lower than the
number of ensemble members.

3 Distributed rainfall-runoff (DRR) model

The DRR model used in Part 1 was applied again in this
paper. See Kobayashi et al. (2016) for the details. The
DRR model applied was originally developed by Kojima et
al. (2007) and called CDRMV3. As described in the previ-
ous section, we intentionally chose a rainfall-runoff model
whose specification is close to those runoff models used by
national and local governments, since the purpose is more
to investigate the usefulness of 1600-member ensemble rain-
falls.

The parameters of the DRR model were recalibrated in this
study using hourly radar—AMeDAS, since the amount of to-
tal rainfall for the period (762.8 mm) is closer to ground rain
gauge (765.0 mm; Kobayashi et. al., 2016). The hourly radar
composite (RC; radar data) of JMA was also used for another
recalibration as a reference, since radar precipitation data
are in general the primary source for real-time flood fore-
casting. The total rainfall amount with RC was 568.5 mm,
which is smaller than the ground rain gauge (765.0 mm).
The recalibrated equivalent roughness coefficients of the for-
est, the Manning coefficients of the river and the identified
soil-related parameters are described in Table 1 with the pa-
rameters in Part 1. The simulated discharge hydrographs by
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Table 1. The equivalent roughness coefficient of the forest, the
Manning coefficient of the river, and identified soil-related parame-
ters of Part 2 (this paper) and Part 1 (Kobayashi et al., 2016).

Forest River D K
m~ 137 m71B3s7h m) msh
This paper (RA) 0.424 0.010 0.522  0.0010
This paper (RC) 0.170 0.005 0.234  0.0008
Part 1 0.150 0.004 0.320  0.0005

RA and RC and observations are shown in Fig. 5 with a
RA hyetograph. The duration of the calibration simulation
is from 01:00 JST on 28 July to 00:00 JST on 31 July 2011.

The Nash—Sutcliffe efficiency (hereinafter NSE: Nash and
Sutcliffe, 1970), which is used for the assessment of model
performance, is calculated as follows:

N 5
> {0, -0
NSE=1-= (1)
N 2
'_I{Ql_Qm}
1L
Qm=N;QO, )

where N is the total number of time steps (1 h interval), Qf) is
observed dam inflow (discharge) at time i, Qé is simulated
dam inflow (discharge) at time i, and Qy, is the average of
the observed dam inflows.

In the calibration simulations in Fig. 5, the NSEs with RA
and RC are 0.686 and 0.743, respectively. Although the NSE
with RA is worse than RC, the total rainfall amount with RA
is considered more accurate, and the second and third dis-
charge peaks seem to be captured better with RA; thus the
following discussion will be made basically with the pa-
rameters calibrated with RA. Some results with RC will be
added as references. The main difference of the parameters
between RA and RC is that the surface soil thickness D to
hold the rainfall at the initial stage is thicker in RA, which
yields the lower discharge in the river.

4 Results

In this section, the results of the ensemble flood simulations
are shown, focusing on two aspects:

1. We examined whether the ensemble inflow simulations
can show the necessity of the flood control operation
and emergency operation with the probability and suffi-
cient lead time (e.g. 12 h).

2. We also examined if we could obtain high accuracy en-
semble inflow predictions several hours (1-3 h) before
the occurrence, which could contribute to the decision
for optimal dam operation.
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Figure 3. Three-hour accumulated precipitation from 12:00 to 15:00JST on 29 July 2011 at Niigata—Fukushima as observed by radar—
AMeDAS (RA) (a), forecasted by NHM initialized by the analysis of JNoVA (b), forecasted by NHM initialized by the analysis of 4D-
EnVar-NHM (c¢) and forecasted by the ensemble mean forecast of NHM initialized by the analysis ensemble of 4D-EnVar-NHM (d). All
forecasts were started at 00:00 JST on 29 July 2011.
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Figure 4. Time series of 1h accumulated rainfall over the catchment as forecasted by all ensemble members. The observation, control

forecast, ensemble mean forecast and best member forecast are also plotted for comparison. Here, the best member is defined as the member
that has the minimum distance between its time series and the observed time series.
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Figure 5. RA hyetograph, observed dam inflow, and simulated inflows with RA and RC.

Item (1) provides us with the scenario that we can prepare for
any dam operations with enough lead time. Likewise, it may
enable us to initiate early evacuation of the inhabitant living
downstream of the dam. Item (2) is the target that has been
attempted by researchers of flood forecasting. If we could
forecast the inflow almost correctly several hours before the
occurrence, it could help the dam administrator with the de-
cision for actual optimal dam operations.

4.1 Probabilistic forecast

Item (1) is considered first herein. Figure 6 shows the com-
parisons of the hydrographs of (a) 11 discharge simula-
tions in Part 1, (b) the same 11 members but with a posi-
tional shift in Part 1, (c) 50 discharge simulations with 4D-
EnVar-NHM and parameters by RA, (d) 1600 discharge sim-
ulations with 4D-EnVar-NHM and parameters by RA, and
(e) 1600 discharge simulations with 4D-EnVar-NHM and pa-
rameters by RC. Note that the duration of the 4D-EnVar-
NHM ensemble weather simulation is 30h from 00:00JST
on 29 July 2011 to 07:00JST on 30 July 2011, but the en-
semble flood simulation is carried out only for 24h from
03:00JST on 29 July 2011 to 03:00JST on 30 July 2011,
since we consider that JMA-NHM uses the first 3h to ad-
just its dynamics. The result in Fig. 6d and e shows that, ex-
cept for the third peak, the 1600-member ensemble inflows
can encompass the observed discharge within the 95 % confi-
dence bound, which was not realized in Part 1, with 11 down-
scale ensemble rainfalls of 2 km resolution (Fig. 6a). In other
words, the extreme rainfall intensity of the event can be re-
produced by the ensemble members with 1600 4D-EnVar-
NHM on some level. By comparing (d) with (e), it is recog-
nized that the 95 % confidence and interquartile bound of (d)
is narrower than (e); thus the prediction with the parameters
calibrated with RA, a physically more accurate rainfall, can
reduce the uncertainty of the prediction probably because of
the better physical meaning in the parameters. It is consid-
ered also that the ensemble mean and median values capture
the overall trend of the observations on some level.
Likewise, comparing Fig. 6¢ and d, we can recognize that
the simulated discharges by 50 ensemble rainfalls of 4D-
EnVar-NHM do not encompass the observation within the
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range unlike the 1600 ensembles; thus 50 ensemble dis-
charges cannot be used for the forecasting as they are.

Figure 7 shows the probability that the inflow discharge is
beyond 140 m> s~! (hereinafter expressed as g > 140, where
q is the discharge), the threshold value for starting the flood
control operations. The figure considers the temporal shift of
the ensemble rainfalls, i.e., temporal uncertainty due to the
imperfect rainfall simulation. In the figure, O h uncertainty
means that we only considered discharges at time ¢ to cal-
culate probability, while the 1h uncertainty means that we
considered the discharges at ¢ — 1, ¢,  + 1, to calculate prob-
ability, and the 2 h uncertainty means that we considered the
discharges at t —2, t — 1, ¢, t + 1, t 4+ 2, to calculate prob-
ability. The 3 and 4h uncertainties were calculated in the
same way. It becomes clear from the figure that the starting
time of ¢ > 140 is likely at around ¢t = 10:00 JST on 29 July,
where all curves cross, while the ending time is likely at
t =19:00 JST, where all curves cross again. Before and after
the cross points there are jumps in the probabilities. In other
words, the forecast can indicate that the situation of ¢ > 140
would take place after 10 h from the beginning of forecasting
with the probability of around 50 %.

On the other hand, the emergency operation was under-
taken in the actual flood event. In the emergency operation,
the dam outflow has to equal the inflow to avoid dam fail-
ure as the water level approaches the top of the dam body.
As written in Part 1, when the reservoir water level reaches
EL 206.6 m (EL - elevation level), an emergency operation is
undertaken, and the outflow is set to equal the inflow. As the
height—volume (H-V) relationship of the dam reservoir was
not known during the study, we judged the necessity of the
emergency operation by whether the cumulative dam inflow
was beyond the flood control capacity of 8 700 000 m?>. Actu-
ally, the flood control capacity had not been previously filled
during regular operations more than the estimation given
herein, since the dam can release the dam water by natural
regulation. However, again, since we do not know some of
the relationships to calculate the dam water level, the judg-
ment is made based on whether the cumulative dam inflow
exceeds the flood control capacity.

Figure 8 shows the cumulative dam inflows of all the en-
semble simulations starting from 03:00 JST on 29 July 2011

www.nat-hazards-earth-syst-sci.net/20/755/2020/
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Figure 6. Hydrographs of (a) 11 discharge simulations in Part 1 (Kobayashi et al., 2016), (b) the same 11 members but with a positional shift
in Part 1, (¢) 50 discharge simulations with 4D-EnVar-NHM and model parameters by RA, (d) 1600 discharge simulations with 4D-EnVar-

NHM and model parameters by RA, and (e) 1600 discharge simulations with 4D-EnVar-NHM and model parameters by RC.
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Figure 7. Probability that the simulated inflow is beyond 140 m3s

as well as the 95 % confidence and interquartile bound and
the mean, median and observed cumulative inflow with the
flood control capacity — (a) with parameters by RA and
(b) with parameters by RC. Figure 8a shows that the mean of
the cumulative dam inflows underestimates the observation,
while in Fig. 8b the mean was roughly similar to the observa-
tion. Thus, it is considered that many of the 1600-member en-
semble rainfalls still underestimate the total rainfall amount
compared with RA rainfall, though the observed cumulative
dam inflow is covered within the 95 % confidence interval of
the ensemble inflows with RA parameters. As a reference,
Fig. 8b shows that if the hydrological model parameters are
calibrated with less rainfall (this case RC), underestimated
ensemble rainfalls yield higher discharges, which resulted in
an almost equivalent mean of the ensembles compared with
the observation, though this is considered to be a bias cor-
rection from the hydrological model (see also Fig. 6d and e
for the comparison). Figure 9 shows the probability that the
cumulative dam inflow exceeds the flood control capacity
of 8700000 m3. The figure indicates that, for instance, the
cumulative inflow would exceed flood control capacity af-
ter 12h from the start of the forecast with the probability
of around 15 % (RA parameters) and 45 % (RC parameters).
In the actual event, the cumulative inflow based on obser-
vations, and assuming no dam water release, would exceed
the flood control capacity between 12:00 and 13:00JST on
29 July 2011. Around that interval, the exceedance probabil-
ity of the forecast is 15 %—30 % (RA parameters) and 35 %-—
55 % (RC parameters). Until around this time, the forecast
shows a delay in the estimate of the cumulative dam inflow.
In the end, the forecast shows that the flood control capacity

Nat. Hazards Earth Syst. Sci., 20, 755-770, 2020

-1

Forecast range: 24h

considering temporal uncertainty.

will be used up with the probability of more than 90 % with
regard to this flood event.

4.2 Selection of the best members

Figure 10 shows the 95 % confidence interval of all ensem-
ble members, the 50 best ensemble members out of 1600 en-
sembles selected based on NSE > 0.33 and observations. The
figure shows that the selected 50 members reproduce the ob-
servations well. In some of the selected members, even the
third peak is reproduced. In the case where the third peak is
reproduced, the inflow hydrographs are beyond the 95 % con-
fidence interval. Figure 11 shows the catchment average rain-
falls of the 50 best ensemble inflow simulations. The black
line is the observed gauge rainfall, the blue line is the radar—
AMeDAS and the green line is the radar composite, while
the grey lines are the 50 rainfalls for the best ensemble dis-
charges. The rainfalls from the best 50 ensemble inflow sim-
ulations resemble those of the radar—AMeDAS.

Clearly, the flood forecasting becomes very useful if we
could just select the best ensemble members in advance. Log-
ically, this is impossible, since we only know the best mem-
bers after knowing the observations which enable us to com-
pute verification scores like the NSE. This raises the question
of whether or not the best ensemble members can be inferred
from the partial information provided by the observations in
the first few hours. It is easy to see that the answer should be
negative due to nonlinearity of the model and the presence
of model error: the best matching in the first few hours is al-
most certainly not the best matching over all forecast ranges.
Howeyver, it is obvious that the observations at the first few
hours have a certain value which can help to reduce uncer-
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Figure 10. Hydrographs of all 1600 ensemble members, the 50 best ensemble members (NSE > 0.33) and observations.
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observations.

tainty in the ensemble forecast if we could incorporate this
information into the forecast.

This procedure has already been well-known under the
name “data assimilation”, in which we assimilate the obser-
vations at the first few hours to turn the prior probabilistic
density function (pdf) given by the short-range forecasts into
the posterior pdf given by the analysis ensemble (Kalnay,
2003; Reich and Cotter, 2015; Fletcher, 2017). Thus, if we
know the observations at the first few hours, we should as-
similate these data to replace the short-range ensemble fore-
casts by the ensemble analyses at these hours, then run the
model initialized by the new ensemble to issue a new ensem-
ble forecast. As a result, we should replace the definition of
the best members based on verification scores by a more ap-
propriate one based on the posterior pdf. Here, we identify
the best members with the most likely members. Clearly, if
we assume that the posterior pdf is unimodal, the best mem-
bers should be the members clustering around the mode of
this pdf, which is also the analysis. However, it is not clear
how to identify the best members if this pdf is multimodal.

To overcome this problem, we will use the mathemati-
cal framework set up by particle filter (Doucet et al., 2001;
Tachikawa et al., 2011). Let us denote the short-range fore-
casts by x1 to x g, where K is the number of ensemble mem-
bers. The short-range ensemble forecast therefore yields an
empirical pdf given by the sample (x;, w’* = 1/K), with

1
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wlpre denoting the equal weight for the ith member:

K

K
e 1
px() =) Wb —xi) =) 80 —x). 3)
i=1

i=1

Using this prior pdf as the proposal density, the posterior pdf
has the following form:

py (y1xi) @

K K
pxxl =) W™ —x)=) —
=1 =l 2 py (ylxj)8 (x —xi)
p=

Here, py(y|x;) denotes the likelihood of the observations y
conditioned on the forecast x;, and the weight waSt is the rel-
ative likelihood. Moreover, it can be shown that py (y|x;) is
the observation evidence for the ith member (Duc and Saito,
2018). Then applying the model M as the transition model,
the predictive pdf is given by

K
px(xly, M) =Y wl™s (x — M (x;)). )

i=1

This equation shows that the contribution of each member
to the predictive pdf is unequal, which differs from the prior
pdf (Eq. 3). While the members with large values of wlp ost
dominate the predictive pdf, those with very small values
of wf’OSt can be ignored. This suggests that the best members
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can be identified with the largest values of w}mt. Thus, if we

sort w}’ost in the descending order, the first N weights corre-

spond to the first N best ensemble members. In this case, the
predictive pdf (Eq. 5) is approximated by

py (ylxi)

. (©6)
py (¥1x;)8 (x — M (x))

N
px(xly. M)=Y"
i=1

=

1

J

Note that by introducing the notion of the best ensemble
members, a substantial change occurs — that is we now work
with a unequal weighted sample (x;, waSt). This should be
taken into account in computing statistics like the ensemble
mean from the best ensemble members.

If the likelihoods have the Gaussian form

1
py (ylx;) ocexp [—50 —h@x) R (y— h(x,-»} ,

where h is the observation operator, and R is the observa-
tion error covariance, it is easy to see that the largest weights
are corresponding to the smallest weighted root-mean-square
errors (WRMSEs):

WRMSE; = (y —h (x;) R~ (y = h (x:)). ®)

Therefore, if R is a multiple of the identity matrix I, the
WRMSEs become the RMSEs, which in turn are equivalent
to the NSEs. This shows that selection of the best members
based on verification scores over the first few hours is in fact
selection of the best members based on the relative likeli-
hoods in the posterior pdf. It can also be understood as model
selection based on observation evidence (Mackay, 2003).

To check the work of this method of dynamical selec-
tion, we attempted to select some of the best members out
of the 1600 members several hours in advance of the event
based only on NSEs for the discharges. Figure 12a shows
a result where we selected the best 50 ensemble members
(NSE > 0.24) for the first 9 h from the start of the forecast. In
this case, we had a 3 h lead time towards the observed peak
discharge, and the selected 50 members cover the observed
discharge after the first 9h on some level. The result shows
that the ensemble inflow simulations selected can indicate
the possibility of rapid increases in the discharge after the
first 9 h with a 3 h lead time.

Likewise Fig. 12b shows the selected best 50 members
(NSE > —0.04) for the first 10h (2 h ahead of the observed
peak discharge). It is apparent that the result is worse than the
previous first 9 h selection. The ensemble inflow simulations
after 10 h do not cover the observation well in this case. Fig-
ure 12c¢ shows the selected best 50 members (NSE > 0.92)
for the first 11 h (1 h ahead of the observed peak discharge).
In this case, the ensemble inflows after 11 h could cover the
observed peak discharge 1 h later on some level, although it
only has a 1 h lead time.
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It is very clear from Fig. 12 that the set of the best mem-
bers varies considerably with the time intervals of avail-
able observations. This is because the NSE index is sensitive
to the large difference between forecasts and observations.
This means that unless we simulate all the discharges of the
1600 members in advance, we may need to run many new
members to update this set every time when new observations
are available, and this makes management of the best mem-
bers more complicated. To see why this occurs, suppose that

N-1
we have a member where the sums > {Q f) — Qé}2 are almost
i=1

zero for the first 1,2,...,N — 1 h0111rs when we have no rain
or only light rain during this time. When we consider the next
hour to reselect the best members, if the term {QY — QN}?
becomes very large, this member will suddenly be out of fa-
vor despite the fact that it is always selected as one of the best
members in all previous selection rounds. However, this large
difference may come from spatial and temporal displacement
errors of rainfall forecasts and not necessary reflect an inac-
curate forecast. This shows that the use of the NSE in select-
ing the best members is quite sensitive to spatial and tempo-
ral displacement errors of rainfall. Part 1 of this study is an
illustration for impact of spatial displacement errors on fore-
cast performance, while Figs. 7 and 9 here show the case of
temporal displacement errors. On the other hand, the NSE of
rainfall cannot be used to select the best discharge members,
since rainfall NSEs of similar values can produce different
discharge hydrographs. For example, the catchment average
rainfall with an NSE of around 0 produces discharges with
an NSE close to 0.5 and —0.5. The spatial distribution of the
rainfall field causes these differences even though the num-
ber of the catchment average rainfalls is the same. Even if
the catchment area is small, different patterns in the rain-
fall field bring different discharge simulations with different
NSEs. Furthermore, the error model for rainfall does not fol-
low the Gaussian distribution, and a more appropriate dis-
tribution like a gamma or log-normal distribution should be
used. However, such distributions make NSEs irrelevant, and
new verification scores derived from these distributions are
needed, which can take a form that is like the FSS. Thus,
it is expected that if we can introduce spatial and temporal
uncertainty in modeling the likelihood py (y|x;), the predic-
tive pdf (Eq. 6) could yield a more useful ensemble forecast.
However, this requires a lengthy mathematical treatment that
is worth exploring in detail in a separate study.

5 Concluding remarks and future aspects

The study used 1600-member ensemble rainfalls produced
by 4D-EnVar which contain various rainfall fields with dif-
ferent rainfall intensities. No post-processing such as the lo-
cation correction of the rainfall field and/or rescaling of rain-
fall intensity was employed. The ensemble flood forecast us-
ing the 1600-member ensemble rainfalls in this study has
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Figure 12. (a) Best 50 ensemble members (NSE > 0.24) selected from first 9 h forecast, (b) best 50 ensemble members (NSE > —0.04)
selected from first 10 h forecast and (¢) best 50 ensemble members (NSE > 0.92) selected from first 11 h forecast.

shown that the extremely high amount of observed inflow
discharge can be reproduced within the confidence interval,
which was not possible by the 11-member downscale ensem-
ble rainfalls used in Part 1. The NSE of the best member out
of 1600 was 0.72. Likewise, we can calculate the probability
of occurrence (e.g. the necessity of emergency dam opera-
tions) with the 1600-member ensemble rainfalls. Thus, the
result of the study shows that the ensemble flood forecasting
can inform us that, after 12 h for example, emergency dam
operations would be required with the probability of around
15 %-30 %, the probability would be more than 90 % for the
entire flood event, etc. We consider that this kind of infor-
mation is very useful. For instance, a warning of dam water
release can be issued to the inhabitant in the downstream with
enough lead time if the result obtained in this study is further
applicable to other locations and events.

On the other hand, the discharge simulations with similar
NSEs until X hours produce different future forecasts after
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the Xth hour. In other word, we cannot select the best dis-
charge simulation from the NSE only until X hours. Herein
lies the problem that NSEs are quite sensitive to spatial and
temporal displacement errors in rainfall. In principle, it is
possible to introduce those errors into NSEs in a way similar
to FSSs. However, it should be cautious in introducing such
errors into NSEs before investigating well, although such an
approach has been used recently in the meteorology commu-
nity. How to incorporate them qualitatively is also a problem
to be addressed. Thus, in this sense, the dynamical selection
of the best rainfall field from rainfall simulations considering
both spatial and temporal displacement errors is required, al-
though this was not addressed here and remains for future
work.

Data availability. JMA-NHM is available under the collabora-
tive framework between the Meteorological Research Institute

www.nat-hazards-earth-syst-sci.net/20/755/2020/
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(MRI) and related institutes or universities. Likewise, the DRR
model is available under the collaborative framework between
Kobe and Kyoto universities and related institutes or universi-
ties. The JMA’s operational analyses and forecasts can be pur-
chased at http://www.jmbsc.or.jp/jp/online/file/f-online10200.html
(last access: 11 March 2020) (JMA, 2019). Likewise, radar
composite analyses and radar rain-gauge analyses can be pur-
chased at http://www.jmbsc.or.jp/jp/online/file/f-online30100.html
(last access: 11 March 2020) and http://www.jmbsc.or.jp/jp/online/
file/f-online30400.html (last access: 11 March 2020), respectively
(JMA, 2019). The rain-gauge data and hydrological data were pro-
vided by MLIT (personal communication, 2011), the Niigata Pre-
fecture (personal communication, 2011) or JMA at http://www.data.
jma.go.jp/gmd/risk/obsdl/index.php (last access: 11 March 2020)
(JMA, 2013). We will consider making other data available upon
request. Research cooperation is preferable for the data provision.
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