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Abstract. Droughts continue to affect ecosystems, commu-
nities and entire economies. Agriculture bears much of the
impact, and in many countries it is the most heavily affected
sector. Over the past decades, efforts have been made to as-
sess drought risk at different spatial scales. Here, we present
for the first time an integrated assessment of drought risk for
both irrigated and rainfed agricultural systems at the global
scale. Composite hazard indicators were calculated for irri-
gated and rainfed systems separately using different drought
indices based on historical climate conditions (1980–2016).
Exposure was analyzed for irrigated and non-irrigated crops.
Vulnerability was assessed through a socioecological-system
(SES) perspective, using socioecological susceptibility and
lack of coping-capacity indicators that were weighted by
drought experts from around the world. The analysis shows
that drought risk of rainfed and irrigated agricultural systems
displays a heterogeneous pattern at the global level, with
higher risk for southeastern Europe as well as northern and
southern Africa. By providing information on the drivers and
spatial patterns of drought risk in all dimensions of hazard,
exposure and vulnerability, the presented analysis can sup-
port the identification of tailored measures to reduce drought
risk and increase the resilience of agricultural systems.

1 Introduction

Droughts exceed all other natural hazards in terms of the
number of people affected and have contributed to some of
the world’s most severe famines (FAO, 2018; CRED and
UNISDR, 2018). Drought is conceived as an exceptional and
sustained lack of water caused by a deviation from normal
conditions over a certain region (Tallaksen and Van Lanen,
2004; Van Loon et al., 2016). It can have manifold impacts on
social, ecological and economic systems, for instance agri-
cultural losses, public water shortages, reduced hydropower
supply, and reduced labor or productivity. While many sec-
tors are affected by drought, agriculture’s high dependency
on water means it is often the first of the most heavily af-
fected sectors (Dilley et al., 2005; UNDRR, 2019). With
nearly 1.4 billion people (18 % of the global population) em-
ployed in agriculture, droughts threaten the livelihoods of
many and hamper the achievement of the Sustainable De-
velopment Goals (SDGs) – notably SDG 1 (no poverty),
SDG 2 (zero hunger), SDG 3 (good health and well-being)
and SDG 15 (life on land). While there is ambiguity regard-
ing global drought trends over the past century (Sheffield
et al., 2012; Trenberth et al., 2013; McCabe and Wolock,
2015), drought hazards will likely increase in many regions
in the coming decades (Sheffield and Wood, 2008; Dai, 2011;
Trenberth et al., 2013; Spinoni et al., 2017, 2019b; UNDRR,

Published by Copernicus Publications on behalf of the European Geosciences Union.



696 I. Meza et al.: Global-scale drought risk assessment for agricultural systems

2019). Identifying pathways towards more drought resilient
societies therefore remains a global priority.

Recent severe droughts in southeastern Brazil (2014–
2017), California (2011–2017), the Caribbean (2013–2016),
northern China (2010–2011), Europe (2011, 2015, 2018), In-
dia (2016, 2019), the Horn of Africa (2011–2012), South
Africa (2015–2016, 2018) and Vietnam (2016) have clearly
shown that the risk of negative impacts associated with
droughts is not only linked to the severity, frequency and du-
ration of drought events but also to the degree of exposure,
susceptibility and lack of coping capacity of a given socioe-
cological system (SES). Despite this, proactive management
of drought risk is still not a reality in many regions across the
world. Droughts and their impacts are still mostly addressed
through reactive crisis management approaches, for example,
by providing relief measures (Rojas, 2018). To improve the
monitoring, assessment, understanding and ultimately proac-
tive management of drought risk effectively, we need to ac-
knowledge that the root causes, patterns and dynamics of
exposure and vulnerability need to be considered alongside
climate variability in an integrated manner (Spinoni et al.,
2019a; Hagenlocher et al., 2019).

Over the past decades, major efforts have been made to
improve natural hazard risk assessments and their method-
ologies across scales, ranging from global risk assessments
to local-level assessments. At the global scale several stud-
ies have been published in recent years, focusing on the as-
sessment of flood risk (Hirabayashi et al., 2013; Ward et al.,
2013, 2014), seismic risk (Silva et al., 2018), cyclone risk
(Peduzzi et al., 2012) or multi-hazard risk (e.g., Dilley et
al., 2005; Peduzzi et al., 2009; Welle and Birkmann, 2015;
Garschagen et al., 2016; INFORM, 2019; Koks et al., 2019;
UNDRR, 2019). While major progress has been made re-
garding the mapping, prediction and monitoring of drought
events at the global scale (e.g., Yuan and Wood, 2013; Geng
et al., 2013; Spinoni et al., 2013, 2019b; Damberg and
AghaKouchak, 2014; Hao et al., 2014; Carrão et al., 2017),
very few studies have assessed either exposure to drought
hazards (Güneralp et al., 2015) or drought risk at the global
level (Carrão et al., 2016; Dilley et al., 2005; Li et al., 2009).
The study by Carrão et al. (2016) presents the first attempt
to map drought risk at the global scale while considering
drought hazard (based on precipitation deficits), exposure
(population, livestock, crops, water stress) and societal vul-
nerability (based on social, economic and infrastructural in-
dicators). While generic drought risk assessments are useful
for establishing an overview of the key patterns and hotspots
of drought risk, it is increasingly acknowledged that drought
risk assessment should be tailored to the needs of specific
users so that management plans can be developed to re-
duce impacts (Vogt et al., 2018; UNDRR, 2019). Impact or
sector-specific assessments of who (e.g., farmers) and what
(e.g., crops) are at risk as well as what they are at risk of
(e.g., abnormally low soil moisture, deficit in rainfall, be-
low average streamflow), where they are at risk and why are

needed to inform targeted drought risk reduction, resilience
and adaptation strategies (IPCC, 2014). Such analyses are
currently lacking. Furthermore, in their exposure analysis,
Carrão et al. (2016) do not distinguish between rainfed and
irrigated agriculture, although different hazard indicators are
relevant when assessing drought risk for these systems. In
addition, the vulnerability analysis presented by Carrão et
al. (2016) is based on a reduced set of social, economic and
infrastructure-related indicators and does not account for the
role of ecosystem-related indicators as a driver of drought
risk – a gap that was recently highlighted in a systematic re-
view of existing drought risk assessments across the globe
(Hagenlocher et al., 2019). A socioecological-system per-
spective, especially when assessing drought risk in the con-
text of agricultural systems, where livelihoods depend on
ecosystems and their services, can help to better understand
the role of ecosystems and their services not only as a driver
of drought risk but also as an opportunity for drought risk
reduction (Kloos and Renaud, 2016).

This paper addresses some of the above gaps by present-
ing, for the first time, an integrated drought risk assessment
that brings together data from different sources and disci-
plines for rainfed and irrigated agricultural systems consider-
ing relevant drought hazard indicators, exposure and vulner-
ability at the global scale. The spatial variability in drought
risk on global and regional scales might help to identify
leverage points for reducing impacts and properly anticipate,
adapt and move towards resilient agricultural systems.

2 Methods

Today, it is widely acknowledged that risk associated with
natural hazards, climate variability and change is a function
of hazard, exposure and vulnerability (IPCC, 2014; UNDRR,
2019). Following that logic, Fig. 1 shows the overall work-
flow of the assessment, while the subsequent sections de-
scribe in detail how drought risk for agricultural systems,
including both irrigated and rainfed systems, was assessed
at the global scale.

The composite drought hazard indicators were calculated
for irrigated and rainfed systems separately using drought
indices based on historical climate conditions (1980–2016),
which resulted in integrated hazard maps for both rainfed and
irrigated agricultural systems, respectively. The different ir-
rigated and non-irrigated crops by country were considered
to be the exposed element. Due to the lack of high-resolution
gridded data on an agricultural-dependent population at the
global scale, this exposure indicator was not considered. The
vulnerability component was assessed through a SES lens,
where socioecological susceptibility and a lack of coping-
capacity indicators were weighted by drought experts around
the world.
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Figure 1. Workflow for the overall global drought risk assessment for agricultural systems (including irrigated and rainfed systems).

2.1 Drought hazard and exposure indicators

The drought hazard indicators considered here represent the
average drought hazard during the period 1980 to 2016 in
each spatial unit for which it is computed. Drought hazard
is defined as a deviation of the situation in a specific year or
month from long-term mean conditions in the 30-year ref-
erence period from 1986 to 2015. To quantify drought haz-
ard for such a long period, we used the global water re-
sources and water use model WaterGAP (Müller Schmied
et al., 2014) and the global crop water model (GCWM;
Siebert and Döll, 2010). The models simulate terrestrial
hydrology (WaterGAP) and crop water use (GCWM) for
daily time steps on a spatial resolution of 30 arcmin (Wa-
terGAP) or 5 arcmin (GCWM). The most recent version,
WaterGAP 2.2d, was forced by the WFDEI-GPCC climate
data set (Weedon et al., 2014), which was developed by ap-
plying the forcing data methodology developed in the EU
project WATCH on ERA-Interim reanalysis data (Table 1).
The GCWM used the CRU-TS 3.25 climate data set (Har-
ris et al., 2014) as input. CRU-TS 3.25 was developed by
the Climate Research Unit of the University of East Anglia
by interpolation of weather station observations and is pro-
vided as a time series of monthly values. Pseudo-daily cli-
mate was generated by the GCWM as described in Siebert
and Döll (2010). Following the definitions of the Intergov-
ernmental Panel on Climate Change put forward in their Fifth
Assessment Report (IPCC, 2014), exposure is defined as the

elements located in areas that could be adversely affected by
drought hazard. The distinct exposure of irrigated and rainfed
agricultural systems to drought was considered by weighting
grid-cell-specific hazards with the harvested area of irrigated
and rainfed crops according to the monthly irrigated and
rainfed crop areas’ (MIRCA2000) data set (Portmann et al.,
2010) when aggregating grid-cell-specific hazards to expo-
sure at a national scale. MIRCA2000 was also used to inform
the models used in the hazard calculations about growing ar-
eas and growing periods of irrigated and rainfed crops. The
data set refers to the period centered around the year 2000;
time series information is not available at the global scale.
To maximize the representativeness of the land use, the ref-
erence period and evaluation period used in this study were
centered around the year 2000.

2.1.1 Irrigated agricultural systems

The composite drought hazard indicator is defined as the
product of mean severity and frequency of drought events.
For irrigated agriculture (CH_IrrigAg) it combines an indica-
tor for streamflow drought hazard (SH), i.e., for abnormally
low streamflow in rivers, with an indicator of an abnormally
high irrigation water requirement (IH; Fig. 1). It thus consid-
ers the deviations of both demand and supply of water from
normal conditions. SH and IH are computed with a spatial
resolution of 0.5◦ by 0.5◦ (55 km by 55 km at the Equator).
Greenland and Antarctica are excluded. As IH is not mean-
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Table 1. Hazard and exposure indicators used in the analysis and their processed data.

Risk Composite Indicator Processed data
component indicator

Drought hazard

CH_IrrigAg

Accumulated WaterGAP (1980–2016) with climate forcing WFDEI-GPCC.
streamflow deficit Streamflow monthly time series.
Accumulated Irrigation GCWM (1980–2016) with climate forcing CRU TS3.25. Monthly
surplus time series of net irrigation requirements.

CH_RfAg
AET / PET GCWM (1980–2016) with climate forcing CRU TS3.25. Annual
deviation ratio time series of the deviation of the ratio AET / PET from the

long-term (1986–2015) median of the ratio AET / PET.

Exposed Rainfed and Aggregation of MIRCA2000 data set was used to compute harvested area
elements irrigated pixel-level data to weighted averages of the indicators.

national scale

ingful in grid cells without irrigation, CH_IrrigAg is only
computed for grid cells in which irrigated crops are grown
according to MIRCA2000 (Portmann et al., 2010).

IH was calculated by using the GCWM based on a
monthly time series of net irrigation requirements from 1980
to 2016. The net irrigation requirement is the volume of wa-
ter needed to ensure that the AET of irrigated crops is sim-
ilar to their PET (Fig. 1). The calculations were performed
for 487 121 grid cells with a resolution of 5 arcmin, contain-
ing irrigated crop areas, and then aggregated to 26 478 grid
cells with a 30 arcmin resolution to be consistent with the
resolution used by WaterGAP. SH was calculated by using
WaterGAP based on a monthly time series of streamflow
from 1980 to 2016 in 66 896 grid cells with a 0.5◦× 0.5◦

resolution worldwide.
For both IH and SH, drought hazard per grid cell was

quantified as the product of the (scaled or transformed)
mean severity of all drought events during the evaluation pe-
riod 1980–2016 and the frequency of drought events during
this period. Drought events for IH and SH were determined
independently. In the case of IH computation, a drought event
starts as soon as the monthly irrigation requirement exceeds
the irrigation requirement threshold and ends when the sur-
plus reaches zero. In the case of SH computation, a drought
starts if the monthly streamflow drops below the stream-
flow threshold and ends as soon as the deficit reaches zero.
For each grid cell and each of the 12 calendar months, a
drought threshold was defined as the median of the vari-
able values in the respective calendar month during the ref-
erence period 1986–2015. To avoid spurious short droughts
and drought interruptions, it was defined that a drought event
starts (1) with at least 2 consecutive months with an IH sur-
plus or a SH deficit and (2) 1 month without an IH sur-
plus or if a SH deficit does not break the event (Spinoni
et al., 2019a). The accumulated surplus (IH) divided by the
deficit (SH) during each drought event is the severity of the
drought event. Mean severity is computed as the arithmetic
average of the severity of all drought events during the eval-

uation period. As in the case of SH, the deficit and thus
the severity of streamflow drought are strongly correlated
with the mean annual streamflow; mean severity is there-
fore scaled by dividing the accumulated streamflow deficit
by mean annual streamflow. In this way scaled mean stream-
flow drought severity is expressed as the fraction of the mean
annual flow volume that is on average missing during drought
events. In the case of IH, mean severity is transformed log-
arithmically before computation of IH, as in most grid cells
the volume of irrigation water needed additionally in drought
periods is relatively small (volume in 569 out of the 26 478 ir-
rigated grid cells is lower than 100 m3; in 1450 grids it is
lower than 1000 m3). However, there are also some grids
with extremely high values (95 grids where the additional
irrigation water requirement per drought event is larger than
100 000 000 m3). The logarithmic transformation accounted
for the specific value distribution.

CH_IrrigAg was then calculated for each grid cell by
combining SH and IH. To ensure that both indicators are
weighted equally, their native values were first scaled to a
range between 0 and 1 by dividing SH and IH in each grid
cell by the maximum SH or IH detected globally. The fre-
quency distribution of the SH values calculated that way
was shifted to the left, with a mean of 0.244, while the fre-
quency distribution of IH was shifted to the right, with a
mean of 0.664. Therefore, CH_IrrigAg was calculated for
each grid cell as

CH_IrrigAg= 0.5
(
SH/SH+ IH/IH

)
, (1)

with SH being the grid-cell-specific streamflow hazard,
IH being the grid-cell-specific irrigation requirement hazard,
and SH and IH being the mean of SH or IH calculated across
all grid cells.

The exposure of irrigated agricultural systems to drought
at the national scale was derived as the harvested-area
weighted mean of the CH_IrrigAg across all grid cells be-
longing to the respective aggregation units.
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2.1.2 Rainfed agricultural systems

The composite drought hazard indicator for rainfed agricul-
ture (CH_RfAg) was quantified based on the ratio of actual
crop evapotranspiration (AET in m3 d−1) to potential crop
evapotranspiration (PET in m3 d−1), calculated for the eval-
uation period 1980–2016 and compared to the reference pe-
riod 1986–2015 (Fig. 1). PET quantifies the water require-
ment of the crop without water limitation, while AET refers
to the evapotranspiration under actual soil moisture condi-
tions.

The GCWM was applied for 24 specific rainfed crops and
the two groups “others, annual” and “others, perennial” to
calculate crop-specific AET and PET on a daily time step.
Together, the 24 crops and two crop groups cover all crop
species distinguished by FAO in their database FAOSTAT.
The sum of daily crop-specific AET and PET was calcu-
lated for all crops and for each year in the period 1980–2016
for 927 857 grid cells containing rainfed cropland and aggre-
gated to 37 265 grid cells with the resolution 0.5◦× 0.5◦.

The mean ratio between AET and PET (AET/PET) for
the reference period 1986–2015 was then calculated for each
grid cell. AET/PET reflects long-term water limitations for
the geographic unit, with low values representing high arid-
ity and high values for low aridity. CH_RfAg was then de-
termined by calculating the ratio AET / PET for each year
from 1980–2016 and by deriving the percentile of a relative
difference of 10 % to the long-term mean ratio AET/PET
from the time series. Consequently, CH_RfAg reflects the
probability of occurrence of a drought year in which the ra-
tio between total AET and total PET across all rainfed crops
is 10 % lower than the long-term mean ratio AET/PET. We
also tested other percentage thresholds (20 %, 30 %, 50 %),
but for many parts of the world we never computed reduc-
tions of the ratio AET / PET by more than 10 % of the long-
term mean ratio (Table S5). Therefore, it was decided to use
the 10 % threshold consistently.

2.1.3 Integration of drought exposure of irrigated and
rainfed cropping systems

The combined drought exposure of rainfed and irrigated
cropping systems was evaluated at the country level by av-
eraging the harvested-area weighted drought exposure of ir-
rigated and rainfed cropping systems. As described before,
distinct methods were used to calculate hazard and expo-
sure of irrigated and rainfed systems so that a direct com-
parison of the exposure values is not meaningful. In addi-
tion, the frequency distributions differed considerably, with
a harvested-area weighted global mean of the drought ex-
posure of 0.455 for irrigated systems and 0.189 for rainfed
systems. To ensure a more similar weight of rainfed and irri-
gated drought exposure, country-specific exposures were di-
vided by the global mean, and then the integrated exposure
was calculated as harvested-area weighted mean:

Exptot =
((

AHrf ·Exprf/0.189
)

+
(
AHirr ·Expirr/0.455

))
/AHtot, (2)

with Exptot, Exprf and Expirr being the exposure of the whole,
rainfed and irrigated cropping systems to drought and AHtot,
AHrf and AHirr being the harvested area of all crops, rainfed
crops and irrigated crops.

2.2 Vulnerability and risk assessment

According to the Intergovernmental Panel on Climate
Change (IPCC, 2014), vulnerability is the predisposition to
be adversely affected as a result of the sensitivity or sus-
ceptibility of a system and its elements to harm, coupled
with a lack of coping and adaptive capacity. The assessment
of drought vulnerability is complex because it depends on
both biophysical and socioeconomic drivers (Naumann et al.,
2014). Due to this complexity, the most common method to
assess vulnerability in the context of natural hazards and cli-
mate change is using composite indicators or index-based
approaches (Beccari, 2016; de Sherbinin et al., 2019). Al-
though their usefulness for policy support has also been sub-
ject to criticism (Hinkel, 2011; Beccari, 2016), it is widely
acknowledged that composite indicators can identify generic
leverage points for reducing impacts at the regional to global
scale (De Sherbinin et al., 2017, 2019; UNDRR, 2019).

Following the workflow to calculate composite indi-
cators proposed by the Organisation for Economic Co-
operation and Development (OECD, 2008) and Hagenlocher
et al. (2018), the methodological key steps on which the vul-
nerability assessment is based are (1) the definition of the
conceptual framework, (2) identification of valid indicators,
(3) data acquisition and preprocessing, (4) analysis and im-
putation of missing data, (5) detection and treatment of out-
liers, (6) assessment of multicollinearities, (7) normalization,
(8) weighted aggregation, and (9) visualization.

An initial set of vulnerability indicators for agricultural
systems was identified based on a recent review of exist-
ing drought risk assessments (Hagenlocher et al., 2019). In
total 64 vulnerability indicators, including social, economic
and physical indicators; farming practices; and environmen-
tal, governance, and crime and conflict factors, were selected
and classified by socioecological susceptibility (SOC_SUS,
ENV_SUS), a lack of coping capacity (COP) and a lack of
adaptive capacity (AC) following the risk framework of the
IPCC (IPCC, 2014). Indicator weights, which express the rel-
evance of the identified indicators to characterizing and as-
sessing the vulnerability of agricultural systems to droughts,
were identified through a global survey of relevant experts
(n= 78), the majority of whom have worked in academia
and for governmental organizations with more than 5 years
of work experience (Meza et al., 2019). In total, 46 of the
64 indicators were considered relevant by the experts, com-
prising susceptibility, coping- and adaptive-capacity indica-
tors. However, since adaptive capacity is only relevant when
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Table 2. Vulnerability indicators used in the analysis and their related expert weights.

Indicator Data source Weight∗

Social susceptibility (SOC_SUS)

Share of GDP from agr., forestry and fishing in USD (%) FAO (2016a) 0.96
Rural population (% of total population) World Bank (2011–2017) 0.85
Prevalence of undernourishment (% of population) World Bank (2015e) 0.82
Literacy rate, adult total (% of people ages 15 and above) World Bank (2015d) 0.80
Prevalence of conflict and/or insecurity (crime and theft, index: 0–30) World Bank (2017a) 0.76
Proportion of population living below the national poverty line (%) SDG indicators (2015–2017) 0.75
Access to improved water sources (% of total population with access) World Bank/FAO (2015a) 0.66
DALYs (disability-adjusted life years; DALYs per 100 000; rate) GBD (2016) 0.65
GINI index World Bank (2017b) 0.64
Insecticides and pesticides used (t ha−1) FAO (2016b) 0.63
Gender inequality index UNDP (2018) 0.62
Electricity production from hydroelectric sources (% of total) World Bank (2015b) 0.62
Unemployment, total (% of total labor force; national estimate) World Bank (2017) 0.60
Dependency ratio (population ages 15–64 – % of total population) World Bank (2011–2016) 0.60
Population using at least basic sanitation services (%) WHO (2015) 0.60
Healthy life expectancy (HALE) at birth (years) WHO (2014) 0.56

Ecological susceptibility (ECO_SUS)

Average land degradation in GLASOD erosion degree FAO (1991a) 0.92
Fertilizer consumption (kilograms per hectare of arable land) World Bank (2015c) 0.74
Average soil erosion FAO (1991b) 0.72
Terrestrial and marine protected areas (% of total territorial area) World Bank (2016–2017) 0.63

Lack of coping capacity (COP)

Saved any money in the past year (% age 15+) Global FINDEX (2014–2017) 0.87
Government effectiveness: percentile rank World Bank (2017) 0.85
Total dam storage capacity per capita. Unit: m3 per inhab. FAO (2017) 0.82
Total renewable water resources per capita (m3 per inhab. per year) FAO (2014) 0.76
Corruption perception index (CPI) Transparency International (2017) 0.68
Travel time to cities ≤ 30 min (population; %) JRC (2015) 0.65

∗ Derived from a global expert survey (Meza et al., 2019).

assessing future risk scenarios and less relevant to current
risk, indicators related to adaptive capacity and indicators
that could be measured with the same data source due to the
similarity in what they represent were removed. For instance
agriculture (% of GDP) and dependency on agriculture for
livelihood (%) were averaged into one income indicator, and
the variables GDP per capita (PPP – purchasing-power par-
ity) and population below the national poverty line (%) both
refer to poverty and therefore were also averaged to a com-
bined indicator. This resulted in a set of 26 indicators as part
of the vulnerability assessment (Table 2).

Following data acquisition, the data were preprocessed
by transforming absolute to relative values and standardized
when necessary (e.g., travel time to cities≤ 30 min – popu-
lation, divided by the total population). Descriptive statistics
were used to evaluate the degree of missing data. The im-
putation of missing values was done with data from previ-
ous years and using secondary sources following Naumann

et al. (2014) in cases where the r value lay between −1.0
and −0.9 or 1.0 and 0.9 using a Spearman correlation ma-
trix and scatter diagram for visual interpretation. Following
suggestions by Roth et al. (1999), Peng et al. (2006) and En-
ders (2003), listwise and pairwise deletion thresholds were
selected when > 30 % of data were missing on a country
level and when > 20 % of data were missing on the indicator
level. After the deletion, 168 countries and 26 indicators were
considered for the final analysis. To detect potential outliers,
scatter plots and box plots for each indicator were created.
Potential outliers were further examined using triangulation
with other sources and past years. On this basis, outliers were
identified in only one indicator (i.e., fertilizer consumption –
kg ha−1 of arable land) and treated using winsorization fol-
lowing Field (2013). Multicollinearities were identified using
a Spearman correlation matrix for the different vulnerability
components (social susceptibility, environmental susceptibil-
ity and a lack of coping capacity). Following the rule pro-
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posed by Hinkle et al. (2003), any values higher than r > 0.9
or smaller than r <−0.9 were considered very highly corre-
lated. The correlation was considered only if it was signifi-
cant at the 0.05 level (two-tailed). Two indicators for the lack
of a coping-capacity component and two from social suscep-
tibility (e.g., healthy life expectancy at birth – years – and
disability-adjusted life) showed high and significant corre-
lations. However, no indicators were excluded on this basis
due to the difference in concepts they represented and their
relevance at the global level. In order to render the indicators
comparable, the final selected indicators were normalized to
a range from 0 to 1 using min–max normalization (Naumann
et al., 2014; Carrão et al., 2016):

Zi =Xi −Xmin/Xmax−Xmin, (3)

where Zi is the normalized score for each indicator score Xi .
For variables with negative cardinality to the overall vulner-
ability the normalization was defined as

Zi = 1− (Xi −Xmin/Xmax−Xmin) . (4)

Finally, the normalized indicator scores were aggregated into
vulnerability components (SOC_SUS, ENV_SUS, COP) us-
ing weighted arithmetic aggregation based on (using the ex-
ample of SOC_SUS)

SOC_SUS=
∑

WiZi, (5)

where Wi is the weights for each normalized data set, and
Zi is the weights as obtained from the global expert survey.
Therefore, weights were normalized to add up to 1. The final
indicators and their respective weights are listed in Table 2.
The vulnerability components of socioecological susceptibil-
ity (SE_SUS) were combined using an average, which was
then combined with COP to obtain a final vulnerability in-
dex (VI) score:

VI= V (SE_SUS)+V (COP)/2. (6)

The final drought risk index (DRI; Fig. 1) was calculated
by multiplying the indices for drought hazard and exposure
by vulnerability. At the pixel level, the presence of hazard
and vulnerability point to a certain drought risk, independent
of how much crop area is contained in the specific pixel. At
the aggregated level, the different crop areas in the specific
pixels must be considered; therefore exposure was calculated
as harvested-area weighted mean of the pixel-level hazard
and then multiplied by vulnerability to calculate drought risk
at the country level.

The total drought risk score for irrigated and rainfed sys-
tems combined (DRItot) is derived by multiplying the expo-
sure of the whole cropping system Exptot (Eq. 2) by the VI.

2.3 Comparison against drought impact data

The outcomes of the risk assessment for irrigated and
rainfed systems combined (DRItot) were compared against

impact data from the international Emergency Events
Database (EM-DAT) of the Centre for Research on the Epi-
demiology of Disasters (CRED) using visual correlation
(Fig. 6). EM-DAT systematically collects reports of drought
events and drought impacts from various sources, including
UN agencies, NGOs, insurance companies, research insti-
tutes and press agencies. Here, the number of drought events
within the period 1980–2016 was used as an input for the
comparison. Therefore, a drought event is registered in EM-
DAT when at least one of the following criteria applies: 10 or
more people are dead, 100 or more people are affected, or a
declaration of a state of emergency or a call for international
assistance is made.

3 Results

This section presents the results of the global drought risk
assessment for agricultural systems (irrigated and rainfed) at
the pixel level (Figs. 2 and 3) and for the total risk of both
systems combined at national resolution (Fig. 4). The dark-
red patterns show high levels of the different risk compo-
nents, while dark blue reflects low scores of the different risk
components.

3.1 Drought risk for irrigated agricultural systems

The drought risk for irrigated agricultural systems varies sig-
nificantly among continents and countries. Especially large
countries such as the USA, Brazil, China and Australia show
a high variation at the country level due to varying climatic
conditions. Drought hazard and exposure was highest in re-
gions with a high density of irrigated land and high irriga-
tion water requirements such as the western part of the USA,
central Asia, northern India, northern China and southern
Australia. Vulnerability was high particularly in sub-Saharan
Africa but also in some countries in central Asia and the
Middle East and low in general for industrialized and high-
income countries. The combination of hazard and vulnera-
bility to risk resulted in the highest values for large parts of
western, central and southern Asia; eastern Africa; and the
eastern part of Brazil. Low-risk areas include western Eu-
rope, the USA, Australia and most parts of China (Fig. 2).

3.2 Drought risk for rainfed agricultural systems

High levels of risk (dark yellow to red color scheme) for
rainfed agricultural systems are observed in southern Africa,
in southeastern Europe, in northern Mexico, in northeastern
Brazil, at the western coast of South America, in southern
Russia and in western Asia. The vulnerability to drought
highlights the relevance to increasing the coping capacity
of the countries in order to reduce their overall drought
risk. For instance, Australia, despite being highly exposed to
drought hazard, has low socio-ecological susceptibility and
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Figure 2. Drought risk (a), hazard and exposure (b), and vulnerability (c) for irrigated agricultural systems. The legends were defined
by assigning the median of the value distribution to the yellow color in the center, the 90th percentile to the deepest red color and the
10th percentile to the deepest blue color and by determining the class ranges of the other colors by linear interpolation. Risk was directly
calculated by multiplying hazard and exposure by vulnerability (pixel-level analysis).

high enough coping capacities to considerably reduce the
overall drought risk.

3.3 Drought risk for agricultural systems (irrigated
and rainfed combined)

The hazard and exposure maps shown in Fig. 4 are slightly
different to the ones shown in Figs. 2 and 3 due to the aggre-
gation at the country level. The analysis shows that regions
with low hazard and exposure of rainfed and irrigated crops
to drought tend to be tropical and subarctic regions following
the Köppen–Geiger climate classification (1980–2016; Beck
et al., 2018). There are significant regional differences when
comparing irrigated and rainfed drought hazard and expo-
sure. For instance, the northern parts of Latin America and
central Africa have low hazard and exposure levels, given
the humid climate conditions resulting in a low total risk,
even though those regions are characterized by high vulnera-
bility levels. Southern Africa, however, has a high amount of
drought-exposed rainfed crops but lower vulnerability com-
pared to other African countries. Despite this, risk scores in
that region are very high. Very high drought hazard and ex-
posure and vulnerability levels can be found in the Middle
East and northern Africa.

Although the drought hazard was computed differently for
the different agricultural systems, the countries with high risk

of drought to both farming systems are Botswana, Namibia
and Zimbabwe (Figs. 2 and 3). These countries share the
same relevant indicators that define their high vulnerability:
a high soil and land degradation rate, a low literacy rate and
low total renewable water (Fig. S3). Table 3 shows the top
and bottom 10 countries with the highest and lowest total
drought risk (DRItot) as well as their hazard and exposure
and vulnerability scores.

Seven out of the 10 countries with the highest overall
drought risk are located on the African continent. However,
Kosovo, East Timor and Kazakhstan also possess high risk
levels (Table 3). Zimbabwe ranks as the country with the
highest drought risk, mainly due to its high exposure com-
bined with its high vulnerability (Fig. S1 in the Supplement).

In general, the countries that present higher drought risk
have a high amount of exposed crops. Vulnerability varies
among them, with Zimbabwe being the country with the
highest vulnerability. The lack of coping capacity and socioe-
cological susceptibility were determinant factors for coun-
tries like Botswana and Zimbabwe (Fig. S1). There were
cases where countries such as Namibia presented high socio-
ecological susceptibility in contrast with high coping capac-
ity, reducing its overall vulnerability. The drought risk in
countries such as Lesotho and Mauritania that have, in con-
trast, limited coping capacities is notably higher (Fig. S1).
The analysis also reveals that, although risk is currently close
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Figure 3. Drought risk (a), hazard and exposure (b), and vulnerability (c) for rainfed agricultural systems. The legends were defined by
assigning the median of the value distribution to the yellow color in the center, the 90th percentile to the deepest red color and the 10th per-
centile to the deepest blue color and by determining the class ranges of the other colors by linear interpolation. Risk was calculated by
multiplying hazard and exposure by vulnerability (pixel-level analysis).

Figure 4. Drought risk (a), hazard and exposure of irrigated crops (b), rainfed crops (c) and the whole crop production sector (d). The legends
were defined by assigning the median of the value distribution to the yellow color in the center, the 90th percentile to the deepest red color
and the 10th percentile to the deepest blue color and by determining the class ranges of the other colors by linear interpolation. Risk was
calculated by multiplying hazard and exposure by vulnerability, as shown in Figs. 2c and 3c.
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Table 3. Rank of countries with the highest and lowest risk of drought for combined agricultural systems (rainfed and irrigated).

Country Drought Risk Hazard and exposure Vulnerability

risk score Haz. and exp. Haz. and exp. Haz. and exp. score
(country total irrigated rainfed total

rank)

Zimbabwe 1 0.871 0.967 1.885 1.804 0.483
Namibia 2 0.846 0.769 2.122 2.061 0.411
Botswana 3 0.811 0.466 2.095 2.076 0.391
Morocco 4 0.786 0.774 2.172 1.873 0.419
Kosovo 5 0.728 0.936 1.871 1.854 0.393
East Timor 6 0.701 0.971 1.882 1.854 0.378
Mauritania 7 0.692 0.886 1.670 1.580 0.438
Lesotho 8 0.692 0.840 1.562 1.556 0.445
Kazakhstan 9 0.670 0.974 1.573 1.499 0.447
Algeria 10 0.636 0.969 1.595 1.492 0.426

Guatemala 158 0.039 0.857 0.026 0.087 0.446
The Gambia 159 0.037 0.760 0.093 0.094 0.394
Belize 160 0.035 0.943 0.079 0.093 0.375
Sierra Leone 161 0.023 0.934 0.005 0.057 0.402
Brunei 162 0.020 0.741 0.000 0.077 0.254
Guinea 163 0.019 0.822 0.033 0.042 0.452
Switzerland 164 0.017 0.695 0.046 0.068 0.247
Guinea-Bissau 165 0.017 0.723 0.026 0.042 0.401
Fiji 166 0.011 0.833 0.017 0.033 0.329
Central African Republic 167 0.008 0.646 0.016 0.016 0.505

to zero in several countries (e.g., Fiji, Central African Re-
public, Guinea-Bissau, etc.), this could rapidly change once
these countries are affected by droughts given their very high
vulnerability.

The comparison of the drought risks of rainfed and irri-
gated cropping systems (Fig. 5) shows that several countries
such as Zimbabwe, Iraq and Algeria are exposed to high risk
for both cropping systems. These countries are frequently hit
by drought and similarly have a high vulnerability to drought
(Figs. 2 and 3). In contrast, countries such as Switzerland,
Finland and New Zealand are characterized by low drought
hazard and exposure of irrigated and rainfed systems and low
vulnerability to drought (Figs. 2 and 3). In countries such
as Botswana, Oman and the United Arab Emirates, drought
risk is high for rainfed cropping systems but low for irrigated
cropping systems (Fig. 5). These countries are defined by
arid climate conditions, exposing rainfed crops to high risk,
while the drought risk for irrigated cropping systems is low
because of relatively low interannual variability in climatic
conditions resulting in low variability in the irrigation wa-
ter requirement and streamflow. Their risk is also determined
by their different vulnerability dynamics (e.g., hydroelectric
sources, retaining renewable water). In contrast, drought risk
for irrigated cropping systems is high and drought risk of
rainfed cropping systems is small in countries such as Burk-
ina Faso, Madagascar and Côte d’Ivoire (Fig. 5). In these
three countries, there is a big variability in climatic condi-

tions, with irrigated crops being cultivated in the more arid
parts of the country and rainfed crops being cultivated in
more humid parts. In addition, aquatic crops with high water
demand, such as rice and sugarcane, are the most commonly
cultivated irrigated crops in these countries (Frenken, 2005).

3.4 Comparison

The comparison of drought risk (DRItot) with drought events
registered in EM-DAT shows good agreement in many coun-
tries. For countries which have low drought risk, such as the
countries in tropical Africa, northern and western Europe,
or the northern part of South America, there are either no
droughts or just one drought registered in EM-DAT (Fig. 6a
and b). There is also good agreement for countries in south-
ern Africa and some countries in the African transition zone
with very high drought risk and many registered drought
events and for countries with intermediate drought risk, such
as Canada, Australia or Italy. However, some disagreement
between calculated risk and the number of reported drought
events is acknowledged. For instance, Brazil does not show
high agreement between EM-DAT and the country risk level,
even though the eastern part of the country presents a high
risk for irrigated and rainfed systems (Figs. 2 and 3), and
the total drought risk level is affected by the other regions
with lower risk in the country. The same occurs in other
large countries such as the USA, Russia, China and India,
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Figure 5. Country profiles contrasting the drought risk of irrigated and rainfed agricultural systems. The size of the bubbles indicates the
crop growing area (sum of rainfed and irrigated areas per country in Mha.

Figure 6. Comparison of total risk against drought impact data.

where the calculated drought risk is low or intermediate, al-
though a large number of drought events have been regis-
tered in EM-DAT. The reason for this disagreement is that
the risk shown in Fig. 6a is representative of the whole coun-
try, while drought events which only have local or regional
impacts are also registered in EM-DAT (see Sect. 2.3). For all
these big countries, we detected considerable spatial hetero-
geneity with regard to drought risk, where regions with high

drought risk such as the central part of the USA, northeast-
ern Brazil, northern China and northwestern India are com-
plemented by other regions of low drought risk (Fig. 6a).
Therefore, the high number of registered drought events in
EM-DAT is corroborated by the presence of high regional
drought risk (Figs. 2 and 3).
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4 Discussion

The present study performs, for the first time, a separate
global drought risk analysis for irrigated and rainfed crop-
ping systems, including regions that indicate a high vulner-
ability to droughts and are particularly exposed. In previous
assessments, the share of irrigated cropland was either ig-
nored or considered to be a vulnerability indicator (Carrão
et al., 2016). The drought hazard analysis is based on three
indicators: SH, IH and CH_RfAg, which quantify drought as
a deviation from normal conditions consistent with common
definitions. In agreement with the results for drought hazard
obtained by Carrão et al. (2016), the largest drought hazard is
obtained for arid and semi-arid regions such as northern and
southern Africa, northern Mexico, along the coastline of Peru
and Chile, the Arabian Peninsula, and Mongolia for rain-
fed systems; Italy, Turkey and western Mexico for irrigated
systems; and the western USA, northeastern Brazil, west-
ern Argentina, central Asia, the Middle East, western India,
northern China and southern Australia for both irrigated and
rainfed systems. In contrast, previous studies based on stan-
dardized indices such as the standardized precipitation index
(SPI) have detected the highest drought hazard mainly in hu-
mid regions such as central Europe, southeastern Asia, south-
ern Brazil and tropical Africa (Geng et al., 2016). The reason
for this difference could be that deviations from normal con-
ditions should not be treated similarly for arid and humid
regions, as not every precipitation or streamflow deficit in
humid regions will automatically become a hazard for crop-
ping systems. In fact, in humid regions, crops often perform
better in relatively dry years (Holzkamper et al., 2015). We
account for these effects by normalizing streamflow deficits
with long-term mean annual river discharge (SH) or by cal-
culating the probability of reductions in the AET / PET ratio
of rainfed crops in relative terms (CH_RfAg).

In the present study, the rainfed hazard is computed as the
probability of a 10 % decline in the AET / PET ratio com-
pared to long-term mean conditions, whereas the irrigated
drought hazard represents the combination of severity and
frequency values derived from the streamflow or irrigation
water requirement (see Sect. 2). While the methodology re-
flects the common understanding of the factors most influ-
ential for drought hazard in the two cropping systems well,
a direct numerical comparison of the calculated hazard for
rainfed and irrigated systems is not meaningful. The hazards
and exposure calculated in this study should be used to rank
or compare countries within the rainfed or irrigated domain
but not in between. The reasoning for the calculation of the
total exposure and risk in this study was less to support com-
parisons across countries but more to account for the differ-
ent extent of irrigated and rainfed systems within the specific
countries. There are countries in which crop production is
completely rainfed and countries in which all crops are irri-
gated so that only the risk for the rainfed or irrigated systems
is relevant. Aside from these extremes, crop production in

most countries is either predominantly irrigated or predomi-
nantly rainfed. We account for this by calculating total crop
exposure to drought (Fig. 4d) as the harvested-area weighted
mean of the exposures of irrigated crops (Fig. 4b) and of the
rainfed crops (Fig. 4c). Our attempt to calculate hazard, ex-
posure and risk for the whole crop production sector by as-
signing a similar weight to the hazard exposures for rainfed
and irrigated systems must be viewed critically, and results
should be analyzed with care. A potential way to derive spe-
cific weights for rainfed and irrigated exposure could be val-
idating not only calculated hazard and exposure but also vul-
nerability and risk, with information about drought impacts
separately, for both irrigated and rainfed systems. A lack of
data for drought impacts distinguishing rainfed and irrigated
systems was the main reason why this approach was not im-
plemented for the current study.

The calculation of the drought hazard of irrigated crop-
ping systems in this study is based on the two components
SH and irrigation IH reflecting the water supply and water
demand, respectively, of irrigated systems. Therefore we do
not consider specifically in our approach the availability and
use of groundwater resources for irrigation. It is well known
that dynamics in streamflow are usually larger than dynamics
in groundwater storage so that groundwater is used by many
farmers to substitute temporary deficits in surface water sup-
ply for irrigation systems. In general, access to groundwa-
ter should therefore be considered to reduce drought hazard
and vulnerability of irrigated cropping systems. Considera-
tion of groundwater resources would, however, require dy-
namic quantification of groundwater storage and groundwa-
ter levels, which is challenging for global-scale analyses and
not possible with the models applied in this study. In addi-
tion, more conceptual work is needed to decide which de-
gree of temporal variability in groundwater levels constitutes
a hazard and how to treat long-term depletion of groundwater
resources (negative trends) in drought risk studies.

The multi-dimensional nature of vulnerability of agricul-
tural systems is represented by a set of 26 expert-weighted
indicators. One of the major limitations of this data-driven
approach is the spatial detail information for computing the
model; however, at a global level it is not feasible to get
a harmonized data set of all the proxy variables, but some
caution must be advised when zooming in at the subnational
level (Naumann et al., 2018). When interpreting the results,
it is necessary to consider that some highly correlated indi-
cators were maintained in the analysis, as they present differ-
ent drivers of vulnerability and hence different entry points
for vulnerability reduction. The selected indicators comprise
social, economic, environmental, physical and governance-
related factors contributing to socioecological susceptibility
and the lack of coping capacity. In doing so, the present study
goes beyond existing global drought risk assessments (Car-
rão et al., 2016), which are based on equal weights and do
not consider relevant environmental vulnerability indicators
to be a driver of drought risk. The latter, however, is relevant
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when assessing drought risk for agricultural systems, where
factors such as land degradation and soil erosion are shown
to exacerbate drought risk (Hagenlocher et al., 2019). In fu-
ture assessments an alternative to the expert-based weight-
ing of vulnerability indicators chosen here could be the use
of statistical approaches (e.g., principal component analysis
– PCA) to identify relevant indicators. However, given the
high number of experts who participated in the weighting ex-
ercise (n= 78) the expert-based approach seems more suit-
able for identifying relevant indicators when compared to an
approach that builds on statistical significance only. Further,
Hagenlocher et al. (2013) evaluated the outcomes of PCA-
based and expert-based indicator choice on a composite vul-
nerability index and did not find major differences.

The findings of the drought risk assessment presented here
correspond to a certain degree to the findings of Carrão et
al. (2016). Although the focus of the current paper is more
explicitly on agriculture, both studies present methodolog-
ical similarities. In Carrão et al. (2016) the percentage of
crop land per grid cell is one factor in the exposure analy-
sis, and the percentage of irrigated agricultural land is one
of the vulnerability factors. Although Carrão et al. (2016)
include other factors such as population density, livestock
density and baseline water stress in the analysis, the results
give a high weight to the risk for agriculture. In both studies
the regions less affected by droughts correspond to the re-
gions with little or no exposure of agriculture and population
(e.g., deserts and tropical forests). This is mainly the case
in Amazonia and central Africa. Also, similarities between
areas of high levels of risk are evident, including southern
and eastern Europe, the Eurasian steppe, northern Africa and
the Middle East, northeastern Brazil, and southeastern South
America.

Similarities are also found for the risk of irrigated agri-
cultural systems. Examples are irrigated croplands in India,
the US and Australia. Differences in the overall patterns are
due to the separation of irrigated and non-irrigated agricul-
ture in the current study and the aggregated exposure infor-
mation in Carrão et al. (2016). In an updated version of the
risk map from Carrão et al. (2016), using a higher-resolution
population database and grid-level exposure information, as
shown in Vogt et al. (2018, Fig. 7), similarities are even more
evident.

However, the present study includes a spatially explicit
model of AET for the main crop types of two different
agricultural systems (irrigated and rainfed agriculture) and
includes a specialized vulnerability index for this sector
according to expert judgment. These differences revealed
the importance of focusing more clearly on distinct im-
pacts (e.g., on irrigated vs. rainfed systems) when conduct-
ing drought risk assessments, even within the same sector.
For instance, irrigated agricultural systems in Latin Amer-
ica are highly exposed to droughts, whereas the probability
of droughts occurring in rainfed agricultural systems in that
region is comparably low.

Despite these advancements, the presented analysis does
have limitations. First, due to the lack of up-to-date land use
data on irrigated vs. rainfed agriculture at the global scale,
the exposure analysis is based on MIRCA data from the
year 2000 (Portmann et al., 2010). Given that cropping sys-
tems are subject to change, this adds uncertainty to the re-
sults. Second, data used for the vulnerability analysis stem
from different sources, which makes it difficult to evaluate
the inherent uncertainties in the data. Third, the data are not
consistently available for all countries for the same years (Ta-
ble 2). Fourth, the vulnerability analysis is based on nation–
state-resolution data, which do not allow for mapping spa-
tial variability in vulnerability at the subnational level. Fifth,
applying expert opinions to weight drought vulnerability in-
dicators according to their relevance brings subjectivity to
the assessment, which necessitates a strong network of rele-
vant experts. Sixth, preventive or adaptive planning requires
going beyond evaluating drivers of risk and mapping current
patterns of risk. Future scenarios of drought risk, considering
both changing environmental and climate conditions as well
as possible future socioeconomic development pathways, are
needed in order to anticipate future challenges.

Future research should address these challenges by also in-
vestigating subnational patterns in vulnerability and develop-
ing future drought risk scenarios in all dimensions of drought
hazards, exposure and vulnerability. In addition, attempts to
investigate changes and trends in drought risk and risk com-
ponents are highly needed to better understand trajectories of
drought risk in different countries and for the whole world.
Further, inherent uncertainties, as well as the sensitivity of
the risk assessment outcomes towards changes in the input
parameters (e.g., indicator choice and weighting), should be
investigated and validated statistically. This gap has also been
highlighted in a recent review of climate vulnerability assess-
ments (de Sherbinin et al., 2019) in general as well as in a re-
cent review of drought risk assessments (Hagenlocher et al.,
2019) in particular.

The comparison conducted in this study has shown that
there are limited data available on agricultural losses and im-
pacts caused by droughts at the global level. Furthermore,
impacts are not always direct, as droughts can have cascad-
ing indirect impacts (Freire-Gonzáles et al., 2017; Van La-
nen et al., 2017) which are difficult to assess. In addition, for
countries where we find high drought risk (e.g., Mongolia,
Iran, Kazakhstan and the countries in southeastern Europe),
no or very few drought events are registered in EM-DAT.
The reason for this mismatch could be that drought events
in these countries were not registered in EM-DAT. For exam-
ple, in Romania, EM-DAT reports two drought events, while
according to other reports, 12 years between 1980 and 2012
were classified as drought years, with 48 % of the agricultural
land affected (Lupu et al., 2010; Mateescu et al., 2013). On
top of this, in Iran, EM-DAT reports one drought event while
other sources recounted several droughts during 1980–2005,
with the most extreme drought lasting for 4 years, from 1999
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to 2002 (Javanmard et al., 2017; Zoljoodi and Didevarasl,
2013). These examples suggest that it cannot be concluded
from missing drought records in EM-DAT that specific coun-
tries were not affected by drought. Once improved and re-
liable impact data are available at the global scale, future
research should also focus on the statistical validation of
drought risk assessments with drought events and impact
data. Ongoing efforts of countries to report their losses and
impacts due to natural hazards (e.g., as part of the Sendai
monitoring) are considered to be a first important step to-
wards that direction.

Lastly, while this study presents the first attempt to assess
drought risk for agricultural systems, more work is needed to
analyze drought risk for other sectors, such as public water
supply, tourism, energy production and waterborne transport,
among others.

5 Conclusions

This paper presents, for the first time, a global-scale drought
risk assessment for both irrigated and rainfed agricultural
systems from a socioecological perspective by integrating
drought indicators for hazard, exposure and vulnerability. It
goes beyond previous studies by including a separated and
spatially explicit analysis of the drought hazard and expo-
sure of irrigated and rainfed agricultural systems as well as an
empirically based weighting of vulnerability indicators. The
latter is based on the judgment of drought experts around the
globe. The presented methodology can serve as a blueprint
for the analysis of other affected sectors, such as water or
energy. Findings from this study underscore the relevance of
analyzing drought risk from a holistic perspective (i.e., in-
cluding the sector-specific hazard, exposure and vulnerabil-
ity) and are based on a spatially explicit approach. By pro-
viding information on high-risk areas and underlying drivers,
this approach helps to identify priority regions as well as
entry points for targeted drought risk reduction and adapta-
tion options. While this first attempt provides valuable infor-
mation at the global level, improvements could be achieved
with the availability of more spatially explicit vulnerability
information (i.e., at subnational levels) and the availability
of standardized drought impact information that can serve as
a quantitative validation of risk levels.
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