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Abstract. Avalanche problems are used in avalanche fore-
casting to describe snowpack, weather, and terrain factors
that require distinct risk management techniques. Although
they have become an effective tool for assessing and commu-
nicating avalanche hazard, their definitions leave room for in-
terpretation and inconsistencies. This study uses conditional
inference trees to explore the application of avalanche prob-
lems over eight winters in Glacier National Park, Canada.
The influences of weather and snowpack variables on each
avalanche problem type were explored by analysing a contin-
uous set of weather and snowpack variables produced with
a numerical weather prediction model and a physical snow
cover model. The decision trees suggest forecasters’ assess-
ments are based on not only a physical analysis of weather
and snowpack conditions but also contextual information
about the time of season, the location, and interactions with
other avalanche problems. The decision trees showed clearer
patterns when new avalanche problems were added to haz-
ard assessments compared to when problems were removed.
Despite discrepancies between modelled variables and field
observations, the model-generated variables produced intu-
itive explanations for conditions influencing most avalanche
problem types. For example, snowfall in the past 72 h was the
most significant variable for storm slab avalanche problems,
skier penetration depth was the most significant variable for
dry loose avalanche problems, and slab density was the most
significant variable for persistent-slab avalanche problems.
The explanations for wind slab and cornice avalanche prob-
lems were less intuitive, suggesting potential inconsistencies
in their application as well as shortcomings of the model-
generated data. The decision trees illustrate how forecasters
apply avalanche problems and can inform discussions about

improved operational practices and the development of data-
driven decision aids.

1 Introduction

Avalanche problems have become a fundamental tool for
assessing and communicating avalanche hazard. Avalanche
problems are defined as a “set of factors that describe the
avalanche hazard”, where each problem describes a set of
snowpack, weather, and terrain factors that require distinct
risk management techniques (Statham et al., 2018a). For
example, the risk management techniques for a storm slab
avalanche problem caused by freshly deposited snow are dis-
tinct from a wet loose avalanche problem caused by cohe-
sionless wet snow. Although different sets of problems are
used in North America and Europe (European Avalanche
Warning Services, 2017; Statham et al., 2018a), the concept
has been widely adopted into professional avalanche risk
management and backcountry recreation.

In North America, avalanche problems are applied using
a standardized workflow known as the conceptual model of
avalanche hazard (Statham et al., 2018a). Avalanche haz-
ard is assessed by answering four questions: what type
of problem exists, where are problems located in the ter-
rain, how likely are avalanches, and how big are the ex-
pected avalanches? Avalanche forecasters use expert judge-
ment to answer these questions based on their synthesis of
weather, snowpack, and avalanche observations over time
(LaChapelle, 1980). By providing a structured workflow, the
conceptual model of avalanche hazard intends to stream-
line this process and avoid issues in human judgement and
decision-making. However, recent evidence has shown in-
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consistencies remain between individual forecasters and dif-
ferent organizations when it comes to applying avalanche
danger ratings and avalanche problems (Clark, 2019; Lazar
et al., 2016; Statham et al., 2018b; Techel et al., 2018). Sev-
eral publications provide descriptions of avalanche problems
and how they fit into operational workflows (Klassen, 2014;
Lazar et al., 2012; Müller et al., 2016, 2018), but no publi-
cations have directly provided decision aids or guidelines for
applying avalanche problems. In operational settings the di-
versity of data sources, forecasting contexts, and individual
interpretations makes avalanche problems difficult to apply
consistently.

Data-driven decision aids are a potential tool for im-
proving the accuracy and consistency of hazard assessments
(Canadian Avalanche Association, 2016b). Decision aids can
include both statistical models that interpret available data
and physical models that generate new data that would oth-
erwise not be available from field observations. Statisti-
cal approaches to avalanche forecasting have been devel-
oped using weather and avalanche observations for a long
time. Popular methods include nearest-neighbour analysis
(Brabec and Meister, 2001; Obled and Good, 1980; Zeidler
and Jamieson, 2004), discriminant analysis (Floyer and Mc-
Clung, 2003; McClung and Tweedy, 1994), support vector
machines (Pozdnoukhov et al., 2011), and classification trees
(Blattenberger and Fowles, 2016; Yokley et al., 2014). These
statistical models typically predict avalanche activity or an
avalanche danger level. Since snowpack conditions are more
difficult to characterize with numeric variables, statistical
models have typically relied on simple variables describing
the snowpack (e.g. snow height) or used expert systems that
emulate human decision-making processes (Giraud, 1992;
Schweizer and Föhn, 1996).

Physical models offer additional data to supplement field
observations, most notably weather data from numerical
weather prediction models and snowpack data from snow
cover models. Weather models have been shown to add value
to avalanche forecasts (Roeger et al., 2001; Schirmer and
Jamieson, 2015), especially because of their capability to
make predictions about future conditions. Snowpack models
such as SNOWPACK and Crocus can provide detailed sim-
ulations of snowpack structure but have had limited adop-
tion into operational forecasting. While a major barrier has
been the quality and representativeness of the input weather
data, the output of these models is also complex and diffi-
cult to interpret (Morin et al., 2020). Giraud (1992) devel-
oped an expert-based system MEPRA to interpret the output
of snowpack models with prescribed decision rules that em-
ulate forecaster decision-making. Following the tradition of
the statistical models described above, Schirmer et al. (2009)
explored a variety of machine learning techniques (i.e. classi-
fication trees, neural networks, support vector machines, and
nearest-neighbour analysis) to statistically link the output of
snowpack models to regional avalanche danger. Bellaire and
Jamieson (2013) used classification trees to predict avalanche

danger using four variables from simulated snow profiles –
new snow over the past 24 and 72 h, the skier stability index,
and critical layer depth.

While existing statistical studies have provided insights
into the conditions influencing avalanche hazard, they have
had limited adoption in operational practices. We attribute
this to two main barriers: first, the relatively moderate predic-
tive performance of these models as discussed by Schirmer
et al. (2009) and, second, the fact that their predictions of
avalanche danger level or an avalanche activity index only
provide limited direct guidance on risk treatment measures.
Given the broad adoption of avalanche problems for describ-
ing avalanche hazard among practitioners, developing data-
driven decision aids that support the assessment of avalanche
problems could be a valuable next step. Haladuick (2014)
developed separate classification trees for avalanche dan-
ger based on each avalanche problem type, showing distinct
weather, snowpack, and avalanche variables that were rel-
evant to each problem. Similarly, Müller et al. (2018) pro-
posed automated approaches to assigning avalanche prob-
lems based on available weather and snowpack data. Design-
ing decision aids around avalanche problems in ways that
emulate the hazard assessment of human forecasters holds
promise to produce results that are more accessible, more rel-
evant, and easier to interpret.

The objective of this study is to contribute to this body
of research by examining how avalanche problems are ap-
plied by avalanche forecasters. We use decision trees to ex-
plore links between avalanche problems identified in hazard
assessments with weather and snowpack variables generated
by physical models. Numerical weather prediction and snow
cover models provide a continuous and consistent stream of
data that represents the type of information considered by
forecasters in a way that facilitates statistical analyses that
would not be possible with irregular field observations. The
decision trees provide insights into how forecasters apply dif-
ferent avalanche problem types and show the potential bene-
fits and limitations of incorporating data-driven decision aids
into hazard assessments.

2 Methods

2.1 Study area and period

The study covers eight winter seasons at Glacier National
Park, Canada, where Parks Canada produces daily avalanche
forecasts to inform backcountry recreationists and protect the
highway and railway that cross through the park (Fig. 1).
The region is characterized by a transitional snow climate
that favours heavy snowfall and the formation of multiple
persistent weak layers each season (Haegeli and McClung,
2007; Shandro and Haegeli, 2018). The park is located at ap-
proximately 51.3◦ N, 117.5◦W. Elevations range from 805
to 3377 m, with the typical treeline vegetation band around
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Figure 1. Location of Glacier National Park in western Canada.
Weather and snowpack data were generated with numerical weather
prediction and physical snow cover models for each elevation band.
The locations of the grid points used for each elevation band are
marked with circles for the 2012–2013 to 2015–2016 seasons and
with squares for the 2017–2018 to 2019–2020 seasons.

1800 to 2100 m. The park is a relatively small forecast region
(1354 km2) with a high density of field observations, result-
ing in avalanche forecasts that are produced with higher con-
fidence than in other larger Canadian forecast regions. Our
study only focuses on winter months (i.e. December, Jan-
uary, February, and March) when we have complete sets of
weather, snowpack, and hazard assessment data. As a result,
our study period is dominated by dry-snow avalanche condi-
tions, with a total of 980 d over the 2012–2013 to 2019–2020
winter seasons.

2.2 Avalanche hazard assessments

Avalanche hazard assessments for Glacier National Park
were compiled for each day of the study period (Table 1).
Forecasters assessed avalanche problems at approximately
08:00 LT each morning to describe the current avalanche
hazard conditions (i.e. nowcast) as part of the conceptual
model of avalanche hazard workflow (Statham et al., 2018a).
Our study focuses on the presence or absence of each prob-
lem type in the morning hazard assessment at each of the
three elevation bands in the park (i.e. below treeline, treeline,
and alpine). Problem types were grouped into surface prob-
lem types (storm slab, wind slab, dry loose avalanche, wet
loose avalanche, and cornice) and persistent problem types
(persistent slab and deep persistent slab) based on the type
of information needed for their assessment (Table 1). Over
the study period the three most common avalanche problem
types were persistent slab (present on 61 % of the days), wind
slab (50 %), and storm slab (46 %). Wet-slab and glide slab
avalanche problems were absent in the analysis because the
study period was limited to 1 December to 31 March when
complete sets of weather and snowpack data were available.

To provide a meaningful analysis of persistent problem
types, information about specific weak layers was also ex-
tracted from the hazard assessments. A list of relevant weak
layers was produced for each season by reading the problem
description and snowpack summary sections of the public
avalanche forecast. This method identified 54 distinct weak
layers that were associated with persistent problem types
over the study period. Each weak layer was identified by
a burial date and assigned a status that changed over time
based on its role in persistent problem types. Once buried
by new snow, layers were initially assigned a status of sur-
face in which case they may have been associated with a
surface avalanche problem type (e.g. storm slab avalanche
problem). The status changed to active when layers became
attributed to a persistent avalanche problem type and then
changed to dormant after they were no longer attributed to
a persistent problem (either the problem was removed from
the forecast or the problem became attributed to a different
weak layer). Fifteen of the weak layers were attributed to
a persistent problem at least one more time after a period
of dormancy. However, since the reawakening of persistent
weak layers is likely driven by a different set of factors than
the initial activation, we only considered the initial period of
a layer contributing to a persistent-slab problem in our anal-
ysis. Another 41 potential weak layers were described in the
hazard assessments but never became attributed to persistent
problems. These layers were also documented to compare
them with the layers that were attributed to persistent prob-
lems.

2.3 Weather and snowpack data

Weather and snowpack variables were produced for each day
of the study period using data from a numerical weather
prediction model and a physical snow cover model. Vari-
ables were selected to be similar to the types of informa-
tion forecasters routinely consider in their hazard assess-
ments. Model-generated data have a decisive advantage for
our study as their continuity and consistency facilitate statis-
tical analyses that would not be possible with the irregular
field observations commonly used by avalanche forecasters.

2.3.1 Weather variables

Weather variables were compiled for each day of the study
period using hourly data from a numerical weather predic-
tion model. Data were compiled from the High Resolution
Deterministic Prediction System (HRDPS) produced by the
Meteorological Service of Canada (Milbrandt et al., 2016).
The HRDPS has 2.5 km grid spacing with initial and bound-
ary conditions produced by a coarser regional-scale deter-
ministic model.

A single representative grid point was chosen for each el-
evation band in Glacier National Park (Fig. 1). Preliminary
analyses revealed that the gridded weather data were rela-
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Table 1. Avalanche problem types and their prevalence in Glacier National Park between 1 December and 31 March for the 2012–2013 to
2019–2020 winters.

Avalanche
problem
group

Avalanche problem
type

Description (edited from Statham et al., 2018a) Percentage
of days with
problem

Percentage of days with prob-
lem by elevation band (below
treeline/treeline/alpine)

Surface Storm slab (STORM) Cohesive slab of soft new snow (also called a
direct-action avalanche)

46 32/44/45

Wind slab (WIND) Cohesive slab of locally deep, wind-deposited
snow

50 3/40/50

Dry loose avalanche
(DRYL)

Cohesionless dry snow starting from a point
(also called a sluff or point release)

19 13/17/16

Wet loose avalanche
(WETL)

Cohesionless wet snow starting from a point
(also called a sluff or point release)

10 9/8/5

Cornice (CORN) Overhanging mass of dense, wind-deposited
snow jutting out over a drop-off in the terrain

9 0/1/9

Persistent Persistent slab Cohesive slab of old and/or new snow that is
poorly bonded to a persistent weak layer and
does not strengthen or strengthens slowly over
time

61 35/60/53

Deep persistent slab Thick hard cohesive slab of old snow overlying
an early-season persistent weak layer located in
the lower snowpack or near the ground. Typi-
cally characterized by low likelihood and large
destructive size

3 1/3/3

tively homogenous across the park, which is mainly due to
the 2.5 km horizontal resolution. This means the selection of
grid points should not have a strong influence on our analysis.
The main source of variability amongst the 236 grid points
in the park was their elevation. Accordingly, grid points were
chosen primarily based on their elevation with a secondary
consideration being locations where the forecasted precip-
itation amounts were average relative to all grid points. It
is important to note that the HRDPS underwent two major
changes over the study period: an upgrade prior to the 2015
winter that improved the overall quality of the forecasts and
a switch to a new grid prior to the 2018 winter that required
a new set of grid points for subsequent winters (Faucher,
2016).

To account for the evolutionary nature of avalanche condi-
tions and provide a meaningful summary of the weather con-
ditions contributing to avalanche problems, hourly weather
data were aggregated into summary statistics covering the
24 and 72 h periods prior to the hazard assessment (Ta-
ble 2). Previous studies have consistently found weather con-
ditions over these time periods to be strong predictors of
avalanche hazard (e.g. Schirmer et al., 2009; Yokley et al.,
2014). Hourly surface weather data were extracted from
the most up-to-date HRDPS forecast, which was reinitial-
ized every 6 h. Precipitation was accumulated over the pre-
vious 24 and 72 h periods and partitioned into solid, liquid,

and total components (using an air temperature threshold of
+0.5 ◦C). Minimum, maximum, and average air temperature
(2 m above surface) and hourly wind speed (10 m above sur-
face) were calculated over the same time periods. Accumu-
lated incoming shortwave and longwave radiation were cal-
culated over the 24 and 72 h periods, as well as the maximum
intensity of incoming shortwave radiation.

2.3.2 Snowpack variables

Snowpack conditions were simulated with the SNOWPACK
snow cover model (Lehning et al., 1999). The snowpack
structure at each elevation band in Glacier National Park was
simulated using the hourly weather data extracted from the
representative HRDPS grid points (Fig. 1). Default SNOW-
PACK settings were used with wind transport disabled to
produce flat-field snow profiles representative of conditions
in sheltered terrain. Daily snow profiles were produced at
08:00 LT to align with the hazard assessments.

To mimic existing forecaster practices, three interfaces
were identified in the upper snowpack to produce variables
relevant to surface avalanche problem types: a 24 h interface,
a 72 h interface, and a storm interface (Fig. 2). The 24 and
72 h interfaces were identified by searching for all snow de-
posited in the past 24 and 72 h. The storm interface was iden-
tified by selecting all snow deposited since the last full day
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Table 2. Weather variables calculated from hourly data from the HRDPS numerical weather prediction model.

Variable name Description

QPF SNOW/RAIN/TOTAL Precipitation over last 24 and 72 h partitioned into solid/liquid/total amounts (mm)
TA MIN/MAX/AVG Minimum/maximum/average hourly temperature over last 24 and 72 h (◦C)
VW MIN/MAX/AVG Minimum/maximum/average hourly wind speed over last 24 and 72 h (m s−1)
ISWR MAX/SUM Maximum (W m−2)/total (MJ m−2) incoming shortwave radiation over last 24 and 72 h
ILWR SUM Total incoming longwave radiation over last 24 and 72 h (MJ m−2)

without snow, similarly to how accumulated snowfall is mea-
sured in the field on storm boards that are cleared in between
stormy periods (Canadian Avalanche Association, 2016a).

Interfaces corresponding to the weak layers described in
the hazard assessments were also identified to produce vari-
ables relevant to persistent avalanche problem types (Fig. 3).
Since discrepancies arise between the burial date of layers
used by forecasters and the deposition dates used by SNOW-
PACK, a method to search for the most likely weak layer
was developed. First, a range of possible deposition dates
were identified for each weak layer by searching for clear-
weather days prior to the burial date. Once buried, weak
layers were identified by searching for the weakest layer
that fell within the range of potential deposition dates us-
ing SNOWPACK’s structural stability index to identify the
weakest layer (Schweizer et al., 2006).

Snowpack variables were extracted from the simulated
profiles to summarize slab and weak-layer properties for each
of the identified interfaces (Table 3). Variables characterizing
slabs included slab thickness, average and maximum density,
average and maximum temperature, average and maximum
hardness, and total liquid water content. Slab-averaged val-
ues were calculated using a product sum with layer thick-
ness. Variables characterizing weak layers included grain
type, grain size, density, temperature, liquid water content,
hardness, age (days since deposition), and whether there was
a melt–freeze crust less than 5 cm below the weak layer. Four
generic snowpack variables that did not depend on any inter-
faces were also calculated: height of snowpack, skier pene-
tration depth, snow surface temperature, and the size of any
surface hoar on the surface.

2.3.3 Verification of modelled data

Modelled snow heights and daily snowfall amounts were
compared to assess the overall agreement between modelled
variables and field observations. While an in-depth model
validation was outside the scope of this study, sensitivity
studies have shown physical snowpack models to be most
sensitive to precipitation inputs (Raleigh et al., 2015; Richter
et al., 2020). Thus, the accuracy of modelled snow heights
provides insights into the accuracy and reliability of the mod-
elled data used in this study. Parks Canada manually ob-
serves snow height and daily snowfall amounts every day

at its below-treeline study plot (Rogers Pass at 1315 m) and
several times per week at their treeline study plot (Fidelity
at 1905 m). These observations were compared to the cor-
responding modelled snow heights at the below-treeline and
treeline grid points using Spearman correlation coefficients,
percent differences, hit rates, and false alarm rates.

2.4 Decision tree analysis

Decision trees are a class of machine learning methods
that provide simple and interpretable visualizations of com-
plex non-linear relationships. Unlike other machine learning
methods that focus on predictive performance (e.g. neutral
networks, random forests), decision trees present relation-
ships in ways that more closely resemble human decision-
making processes and are thus a helpful tool to understand
the avalanche problem identification and assessment process.
While the classification and regression tree (CART) method
by Breiman et al. (1984) has been widely used, the method
has issues with overfitting data and producing biased splits
when the dependent variable is unevenly distributed. An al-
ternate method that overcomes these weaknesses is condi-
tional inference trees (Hothorn et al., 2006), a method that
uses statistical hypothesis testing to recursively split datasets
until no more statistically significant splits exist in the data.
When visualized in a tree diagram, the most significant splits
in independent variables are presented higher on the tree, and
the terminal nodes at the bottom of the tree show the resulting
distribution of the dependent variable.

In the present study, we employed conditional inference
trees to explore relationships between weather variables,
snowpack variables, and avalanche problem types using the
partykit implementation in R (Hothorn and Zeileis, 2015).
Since the focus of the analysis was to explore relationships
rather than construct predictive models, the trees were made
to be relatively simple by only including variable splits that
had p values smaller than 0.0001, except in analyses with
smaller datasets where we kept the threshold p value at 0.05.
To compare various decision tree models, contingency tables
were produced by comparing the original observations with
the classifications produced by each decision tree model (us-
ing the most common value in each terminal node). The ac-
curacy, hit rate, and false alarm rate were calculated from
the contingency table to describe the ability of each decision
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Figure 2. Daily snowfall amounts and snowpack interfaces identified in the upper snowpack for the 2019–2020 treeline profiles. Interfaces
include all snow deposited in the past 24 h and 72 h and since the last day without snow. Bars show the modelled height of new snow every
24 h.

Figure 3. Weak layers identified in the 2019–2020 treeline profiles. Five weak layers were listed in the hazard assessments, and the heights
of modelled layers most likely associated with these weak layers are shown with black and grey lines. The status of the 27 December weak
layer over time is highlighted. The layer was attributed to a persistent-slab avalanche problem between 2 and 19 January and thus assigned
the status active. The layer was assigned the status surface prior to this period and dormant after this period.
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Table 3. Snowpack variables calculated from simulated snow profiles.

Variable type Variable name Description

Generic HS Height of snowpack (cm)
SKI PEN Ski penetration depth (cm)
TSS Snow surface temperature (◦C)
HOAR Grain size of any surface hoar on the surface (mm)

Slab HN24/HN72/HST Height of snow above 24 h/72 h/storm interfaces (cm)
SLAB DENSITY MAX/AVG Maximum/average density of slab (kg m−3)
SLAB TEMP MAX/AVG Maximum/average temperature of slab (◦C)
SLAB LWC Total liquid water content of slab (kg m−2)
SLAB HARDNESS MAX/AVG Maximum/average slab hardness

Weak layer AGE Weak-layer age (days since deposition)
WL DENSITY Weak-layer density (kg m−3)
WL TEMP Weak-layer temperature (◦C)
WL LWC Weak-layer liquid water content (% volume)
WL GSIZE Weak-layer grain size (mm)
WL GTYPE Weak-layer grain type
WL HARDNESS Weak-layer hardness
WL ABOVE CRUST Crust exists below weak layer (true or false)

tree model to represent the original data (see Appendix A for
definitions of these statistics).

2.4.1 Surface problem types

Decision trees were computed to determine the presence or
absence of each surface avalanche problem type. The pres-
ence or absence of a surface problem at each elevation band
for each day of the study period was fit to the relevant
weather and snowpack variables for that elevation band and
day (960 d which is equivalent to 2880 elevation band days).
Weather variables included those listed in Table 2 for the past
24 and 72 h periods. Snowpack variables included the four
generic snowpack variables in Table 3 and the slab and weak-
layer variables for the three types of surface interfaces (24 h,
72 h, and since the last day without snow).

To offer a better understanding of how avalanche problems
were applied, two decision trees were computed for each sur-
face problem type: one using only weather and snowpack
variables and a second using an additional set of contex-
tual variables (Table 4). The contextual variables provided in-
formation about the hazard assessment and included tempo-
ral information (e.g. specific seasons, number of days since
1 October), the elevation band, and the presence or absence
of other surface problems on the same day and the previous
day. This information further strengthened the representation
of the evolutionary character of avalanche hazard in our anal-
ysis.

2.4.2 Persistent problems

Instead of analysing whether persistent-slab problems ex-
isted on a specific day, decision trees were computed to ex-

plore how persistent problem types related to specific weak
layers. This approach reflects the more complex process of
assessing persistent problems, where forecasters track the
evolution of multiple weak layers over time rather than
simply considering the upper snowpack. For simplicity the
analysis was limited to the treeline elevation band where
persistent-slab problems were most prevalent (Table 1). The
analysis included the same weather variables as the surface
problem analysis, but the snowpack variables were restricted
to the slab and weak-layer variables pertinent to the specific
weak layer being tracked, plus the four generic snowpack
variables shown in Table 3.

Several decision trees models were fit to compare condi-
tions when weak layers were associated with persistent prob-
lems (active status) and with conditions before (surface sta-
tus) and after (dormant status). First, a large decision tree
with a three-level dependent variable was used to examine
the statuses of all 54 weak layers in a dataset that included
714 cases (i.e. weak-layer days) of surface conditions, 866
cases of active conditions, and 280 cases of dormant condi-
tions. The dormant cases were restricted to the first 7 d after
layers became dormant to focus on times when the problem
was most relevant and avoid skewing the dataset with large
numbers of cases with deeply buried dormant weak layers.
Additional decision trees with binary dependent variables
were fit to focus on the onset and the end of persistent prob-
lem types in more detail. Onset was analysed by narrowing
the focus to the final 3 d of layers having a surface status and
the first 3 d of having an active status. A similar decision tree
was fit to focus on the transition from active to dormant; how-
ever the number of days before and after the transition was
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Table 4. Contextual variables describing the time, location, and other problems in the hazard assessment.

Variable type Variable name Description

Time SEASON Individual season
SEASON ORDER Before or after a specific season
SEASON DAY Day of the season (starting 1 October)

Location ELEV BAND Elevation band

Problems STATUS STORM/WIND/DRYL/WETL/CORN Problem status the same day (present or absent)
STATUS STORM/WIND/DRYL/WETL/CORN PREV Problem status the previous day (present or absent)

expanded to 14 since no significant variables were found for
shorter time periods.

2.4.3 Variable selection

The weather and snowpack variables included in our dataset
exhibit natural correlations, which can negatively affect sta-
tistical analyses and make the interpretation of decision trees
more challenging. To avoid the problem, highly correlated
weather and snowpack variables were removed from the
analysis. Variables with pairwise Spearman rank correlations
above 0.9 were identified, and the variable with the largest
mean absolute correlation in the dataset was removed. A
total of 23 highly correlated variables were removed from
the surface problem dataset leaving 15 weather variables,
36 snowpack variables, and 20 contextual variables. For the
persistent-problem dataset a total of 15 highly correlated
variables were removed leaving 12 weather variables, 19
snowpack variables, and 1 contextual variable (layer age).
Appendix B provides a complete list of variable names and
a correlation matrix showing the omitted variables (in bold
font).

3 Results

3.1 Snow height verification

Modelled snow heights and daily snowfall amounts were
strongly correlated with field observations over the study
period in Glacier National Park (Table 5). Whereas snow
heights were consistently underestimated at the treeline grid
points (Fig. 4), they were overestimated, were underesti-
mated, or closely agreed at the below-treeline grid points
depending on the season. Over the entire study period the
modelled snow heights were an average of 36 % and 5 %
lower than the observed snow heights at the treeline and be-
low the treeline, respectively. The overall accuracy of pre-
dicting days with more than a trace of new snow was 86 %
(i.e. HN24 >0.1 cm). Days with more than a trace amount of
snowfall were predicted with a hit rate of 91 % and a false
alarm rate of 10 %, while days with no snowfall or a trace

amount were predicted with a hit rate of 77 % and a false
alarm rate of 21 %.

The quality of precipitation inputs in snow cover models
has a major impact on both weak-layer and slab properties.
Richter et al. (2020) show weak-layer formation in SNOW-
PACK is most sensitive to precipitation and air temperature
inputs, while slab properties are most sensitive to precipita-
tion inputs. Since the quantity and timing of modelled pre-
cipitation generally align with field observation (Fig. 4), a
majority of weak-layer and slab formation periods are cap-
tured in the model-generated data. However, errors and bi-
ases in the weather inputs likely resulted in inaccuracies in
the detailed properties of the slabs and weak layers. Hence,
the model-generated data should capture the main themes in
the weather and snowpack conditions over the course of the
season but not necessarily the correct details.

3.2 Storm slab avalanche problems

When only considering weather and snowpack variables, the
most significant variable to explain the presence of storm
slab avalanche problems was the height of new snow over
the past 72 h (Fig. 5). Storm slab problems were present
62 % of the time when the height was more than 7 cm and
77 % of the time when the height was more than 16 cm. The
next most significant variable was the maximum hourly wind
speed over the past 24 h, with storm slabs becoming more
common when small amounts of new snow coincided with
higher wind speeds. Other variables appearing lower in the
decision tree included the grain type beneath the last 72 h of
new snow (storm slab problems were more common when
this was rounded grains), the average slab density of snow
from the past 72 h (storm slab problems were more common
when the density was greater than 113 kg m−3), the maxi-
mum intensity of incoming shortwave radiation in the past
72 h (storm slab problems were more common when short-
wave radiation was weaker), and the snow surface tempera-
ture (storm slabs were more common when the snow surface
was warmer).

When adding contextual variables, the first and most sig-
nificant variable was whether a storm slab problem was
present the previous day (Fig. 6), with the problem persist-
ing 81 % of the time. The subsequent splits describe when
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Figure 4. Modelled snow height (HS) at treeline and below-treeline grid points in Glacier National Park compared to field observations from
study plots at similar elevations.

Table 5. Verification of modelled snow height and snowfall with field observations.

Spearman correlation Percent difference
coefficient (model relative to observed)

Treeline Below treeline Treeline Below treeline

Snow height 0.89 0.89 −36 % −5 %
72 h snowfall 0.82 0.86 −14 % +40 %
24 h snowfall 0.78 0.82 −5 % +28 %

storm slab problems were newly added to a hazard assess-
ment (i.e. left branch of the tree) or when storm slab prob-
lems were removed (i.e. right branch of the tree). The most
significant rule for adding a new storm slab problem was the
height of new snow over the past 24 h, with a problem be-
ing added 35 % of the time when there was more than 5 cm
of new snow. The most significant rule for removing a storm
slab problem was the amount of incoming longwave radi-
ation over the past 24 h, with the problem more frequently
removed after a period of clear skies (i.e. lower values of in-
coming longwave radiation). When adding a new storm slab

problem, the second most important variable after a threshold
amount of new snow was whether there was already a wind
slab problem in the hazard assessment, with very few cases
of both storm and wind slab problems present on the same
day. Wind slab problem variables on the right branch of the
decision tree show a similar theme of wind slab problems
replacing storm slab problems after a period of clear skies.

When using the decision trees for classification, the addi-
tion of contextual variables increased the percentage of cor-
rect classifications from 78 % to 88 % (Table 6), increased
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Figure 5. Decision tree for the presence or absence (Pres/Abs) of storm slab avalanche problems based on weather and snowpack variables.
Variables appearing in the tree include the height of snow in the past 72 h in cm (HN72), the maximum hourly wind speed over the past 24 h
in m s−1 (VW MAX 24), the grain type beneath snow deposited in the past 72 h (WL GTYPE 72), the average density of all snow deposited
in the past 24 h in kg m−3 (SLAB DENSITY AVG 72), the maximum intensity of incoming shortwave radiation in the past 72 h in MJ m−2

(ISWR MAX 72), and the snow surface temperature in ◦C (TSS). Terminal nodes show the proportion of cases with storm slab problems
present (green) and absent (yellow).

Table 6. Contingency table statistics when classifying the presence of surface avalanche problem types with decision tree models.

Problem type Percent of cases
with problem
present

Accuracy Hit rate False alarm rate

Weather and Additional Weather and Additional Weather and Additional
snowpack contextual snowpack contextual snowpack contextual
variables variables variables variables variables variables

only included only included only included

Storm slab 41 % 77 88 76 84 35 13
Wind slab 31 % 74 92 59 85 50 12
Dry loose 15 % 85 89 – 64 – 35
Wet loose 7 % 94 96 90 69 83 35
Cornice 3 % 97 98 – 74 – 29
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Figure 6. Decision tree for the presence or absence (Pres/Abs) of storm slab avalanche problems based on weather, snowpack, and contextual
variables about the hazard assessment. Variables appearing in the tree include the presence or absence of a storm slab problem the previous
day (STATUS STORM PREV), the height of snow in the past 24 h in cm (HN24), minimum hourly wind speed over the past 24 h in m s−1

(VW MIN 24), the total amount of precipitation in the past 24 h in mm (QPF TOTAL 24), the maximum hourly wind speed over the past
24 h in m s−1 (VW MAX 24), the presence or absence of a wind slab problem the same or previous day (STATUS WIND and STATUS
WIND PREV), elevation band (ELEV BAND) relative to below the treeline (BTL), the total incoming longwave radiation accumulated over
the past 24 h in MJ m−2 (ILWR SUM 24), and the total amount of solid precipitation over the past 72 h in mm (QPF SNOW 72). Terminal
nodes show the proportion of cases with storm slab problems present (green) and absent (yellow).

the hit rate from 76 % to 84 %, and decreased the false alarm
rate from 35 % to 13 %.

3.3 Wind slab avalanche problems

When only considering weather and snowpack variables,
the most significant variable for wind slab avalanche prob-
lems was the maximum air temperature over the past 24 h
(Fig. C1). Wind slab problems were more common when
the maximum air temperature was less than −9 ◦C. Snow-
pack variables in the decision tree included the grain type
beneath the last 72 h of new snow (wind slab problems were
more common when the grain type was precipitation parti-
cles, rounded grains, or faceted crystals), the size of any sur-
face hoar on the surface (wind slab problems were less com-
mon when there was large surface hoar on the surface), the
height of new snow since the last snow-free day, the grain

type that formed before the last snow-free day, and the total
height of the snowpack.

When adding contextual variables, the first and most sig-
nificant split was whether a wind slab problem was present
the previous day (Fig. C1), with the problem persisting 82 %
of the time. The variables that contributed to adding a new
wind slab problem included the elevation band (wind slab
problems were uncommon at the below-treeline band), the
presence or absence of a storm slab problem the same or pre-
vious day, the particular season, and the time of year (wind
slab problems were more common before 7 January). The
variables that contributed to removing a wind slab problem
were the presence or absence of a storm slab problem the
same or previous day and the size of any surface hoar on
the surface (wind slabs were removed more frequently when
surface hoar had grown larger than 1.9 mm).
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When using the decision trees for classification, the addi-
tion of contextual variables increased the percentage of cor-
rect classifications from 74 % to 92 % (Table 6), increased
the hit rate from 59 % to 85 %, and decreased the false alarm
rate from 50 % to 12 %.

3.4 Dry loose avalanche problems

The most significant variable impacting dry loose avalanche
problems in the decision trees with only weather and snow-
pack variables was the skier penetration depth (Fig. C2).
Dry loose problems were present 19 % of the time when
the skier penetration depth was greater than 18 cm. The only
other significant variable was the average density of snow
deposited since the last snow-free day, with dry loose prob-
lems more common when the average slab density was less
than 139 kg m−3. When contextual variables were included
in the analysis, dry loose problems persisted 64 % of time
when they were present the previous day. The variables that
influenced adding a new dry loose problem included skier
penetration depth, the maximum air temperature over the past
72 h, and the size any of surface hoar on the surface. The de-
cision tree algorithm did not identify any variables signifi-
cantly associated with the removal of a dry loose problem.

Using the decision tree with only weather and snowpack
variables for classification would never predict a dry loose
avalanche problem, because all terminal nodes had a small
proportion of cases with the problem present. Accordingly,
since dry loose problems were absent in 85 % of the cases the
tree had an accuracy of 85 % (Table 6). The decision tree with
contextual variables would only classify a dry loose problem
if the problem was present the previous day, which increased
the accuracy to 89 %. However, since dry loose problems
were rare events, the hit rate and false alarm rate were rel-
atively poor.

3.5 Wet loose avalanche problems

When only considering weather and snowpack variables, wet
loose avalanche problems were primarily influenced by air
temperature, with the problem becoming present more fre-
quently at warmer temperatures (Fig. C3). In this analysis,
almost all splits were threshold amounts for the maximum
air temperature over the past 24 or 72 h. One snowpack vari-
able appearing in the decision tree was whether there was a
melt–freeze crust beneath the snow deposited in the past 72 h.
In the decision tree with the contextual variables, wet loose
problems persisted 69 % of the time and, like dry loose prob-
lems, had no significant variables impacting the removal of
the problem. The variables for adding a new wet loose prob-
lem included the maximum air temperature over the past 72 h
and whether it was before or after 16 March (wet loose prob-
lems were more likely added in the late winter).

Similar to dry loose problems, the decision trees for wet
loose problems also had a relatively high classification accu-

racy because the problem was absent the majority of the time
(Table 6). The tree using temperature thresholds had a better
hit rate than the tree using the status of wet loose problems
the previous day (90 % versus 69 %) but also resulted in a
very high false alarm rate (85 %).

3.6 Cornice avalanche problems

The analysis of only weather and snowpack variables found
significant variables for cornice avalanche problems were the
total height of the snowpack (Fig. C4), maximum of short-
wave radiation over the past 24 h, maximum hourly wind
speed over the past 24 h, the height of new snow since the
last snow-free day, and the snow surface temperature. When
including contextual variables, persistence played a domi-
nant role in the presence of cornice problems, with cornice
problems persisting 74 % of the time and no significant vari-
ables for removing a cornice problem. The most significant
variable influencing when to add a new cornice problem was
the elevation band (cornices were primarily present in the
alpine elevation band), and then a secondary split was based
on the maximum shortwave radiation over the past 24 h (cor-
nice problems were added with large amounts of incoming
shortwave radiation).

The decision tree with weather and snowpack variables
never resulted in situations when cornice problems would
be classified, but the decision tree with contextual variables
would predict a cornice problem if it was present the previous
day. Since cornice problems were very rare, these decision
trees had high accuracies (97 % and 98 %).

3.7 Persistent avalanche problem types

The 54 weak layers attributed to persistent avalanche prob-
lem types were found to have significantly larger grain sizes
than another 41 potential weak layers that were also de-
scribed in the hazard assessments but did not result in per-
sistent problems. A decision tree model comparing these two
sets of layers found layers with grain sizes larger than 1.1 mm
were more likely to become attributed to persistent problems
(not shown).

The most significant variable influencing a known weak
layer’s association with persistent avalanche problems was
the density of the slab above the weak layer. Weak layers
were associated with persistent problems 66 % of the time
when the maximum slab density was greater than 214 kg m−3

for all cases between their time of burial and 1 week after
they were no longer associated with a persistent problem.
They were only associated with persistent problems 15 %
of the time when the slab density was below that threshold
(Fig. 7). Weak-layer age was the second most influential vari-
able, appearing several places in the decision tree. The situ-
ations when these weak layers were most often associated
with persistent problems were when the slab density was rel-
atively high and when the weak layer was between 6 and
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26 d old. The most common situations when these weak lay-
ers had not yet developed into persistent problems (i.e. sur-
face status) were when the slab density was low and when
weak layers were young (with threshold ages of 6, 8, and
18 d appearing in the tree). Two additional situations delayed
the onset of persistent problems: periods of low incoming
solar radiation and when there was a low-density weak layer
with more than 21 cm of snow over the past 72 h. Both these
situations describe conditions that would be expected dur-
ing storms, suggesting the weak layer would more likely be
associated with a surface problem type. The most common
situations when these weak layers were no longer associated
with persistent problems (i.e. dormant status) were when they
were older (with threshold ages of 18 and 26 d appearing
in the tree) and after periods of sustained wind (minimum
hourly wind speed greater than 0.4 m s−1 over the past 72 h).

The dominant conditions related to forecasters’ decisions
to add or remove persistent problems become clearer when
narrowing the focus to the actual start and end of persis-
tent problems. Due to the smaller size of the data sam-
ple, these analyses revealed fewer significant variables at
the p = 0.0001 level, so the maximum p value for variables
shown in the decision trees was increased to 0.05. Maximum
slab density was again the most significant difference be-
tween the 3 d before layers became associated with persistent
problems and the first 3 d of their being associated with per-
sistent problems (Fig. 8). Exceeding a maximum slab den-
sity of 193 kg m−3 increased the frequency of the layer being
a problem from 32 % to 57 %. Snow surface temperatures
colder than −18 ◦C further increased the frequency of weak
layers becoming associated with persistent problems.

Comparing conditions before and after weak layers be-
came dormant revealed no significant difference for time pe-
riods of 3 or 7 d before and after the transition. Expanding
the window to compare conditions 2 weeks before and after
the transition revealed several significant differences (Fig. 9).
First, weak layers were more commonly associated with a
persistent problem when the maximum slab density was less
than 292 kg m−3. Additional factors that contributed to weak
layers persisting were an age of less than 16 d and air tem-
peratures above −8 ◦C. The slab density above weak layers
was the most significant variable for both the onset and the
end of persistent problems, with weak layers most often as-
sociated with persistent problems when the maximum slab
density was between 193 and 292 kg m−3.

4 Discussion

4.1 Lessons about application of avalanche problems

The decision tree analyses with contextual information and
those with only weather and snowpack information offer
two different perspectives of how avalanche problems are
applied. The weather and snowpack variables offer a snow

science perspective on what conditions favoured the forma-
tion of different avalanche problem types, while the contex-
tual variables show how forecasters integrated weather and
snowpack information into their hazard assessment process.
The decision trees with contextual variables always started
by asking whether the problem was present the previous day,
illustrating an iterative Bayesian process where each assess-
ment starts with the prior assessment and then considers new
information (LaChapelle, 1980).

The addition of contextual variables resulted in decision
tree models that better represented the original data, largely
due to the prominent role of persistence. The improvement
was indicated by a higher accuracy, higher hit rates, and
lower false alarm rates when using the trees for classification
(Table 6). For example, when adding contextual variables,
the percentage of correct classifications by the storm slab
decision tree increased from 78 % to 88 %, the hit rate in-
creased from 76 % to 84 %, and the false alarm rate dropped
from 35 % to 13 %. The decision tree for wind slab prob-
lems had similar improvements when adding contextual vari-
ables. The improvements were less clear for dry loose, wet
loose, and cornice avalanche problems because these prob-
lems were less prevalent in the dataset. Even with statisti-
cally significant variables in their decision trees, the terminal
nodes still suggest these problems were absent most of the
time, unless it was known that the problem was present the
previous day. This also reinforces the important role of per-
sistence in avalanche forecasting.

Another dominant theme was that adding new avalanche
problems often had more significant and intuitive expla-
nations than removing old avalanche problems, suggesting
problems were added more consistently by forecasters than
they were removed. This is evident in the greater number
of significant variables on the left branch of trees with con-
textual variables (i.e. situations when a problem would be
added) than on the left branch of the trees for surface problem
types (i.e. situations when a problem would be removed). For
example, there were no significant weather or snowpack vari-
ables to explain the removal of dry loose, wet loose, or cor-
nice avalanche problems. Similarly, when analysing the onset
of persistent avalanche problems there were several signifi-
cant differences in conditions 3 d before and after the onset
of the problem (Fig. 8), but there were no significant differ-
ences 3 or even 7 d before and after the end of the problem.
These patterns suggest forecasters likely have greater con-
fidence, precision, and consistency when adding new prob-
lems. Removing problems could be more inconsistent due
to uncertainty about when the likelihood or consequences
of avalanches have reduced to the point where problems no
longer need to be listed (Lazar et al., 2012). However, it is
important to remember that our analysis did not include the
full range of observations that avalanche forecasters consult
when removing an avalanche problem (e.g. avalanche obser-
vation data).
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Figure 7. Decision tree for weak layers developing into persistent avalanche problem types as their status transitions from surface to active
to dormant. Variables appearing in the tree include the maximum slab density in kg m−3 (SLAB DENSITY MAX), the age of the weak layer
in days (AGE), the maximum intensity of incoming shortwave radiation in the past 72 h in MJ m−2 (ISWR MAX 72), the minimum hourly
wind speed over the past 72 h in m s−1 (VW MIN 72), the height of snow in the past 72 h in cm (HN72), and the weak-layer density in
kg m−3 (WL DENSITY). Terminal nodes show the proportion of cases with weak layers having a surface status (yellow), active status (light
green), and dormant status (dark green).

Significant interactions between storm slab and wind slab
avalanche problems were apparent in the decision trees
(Figs. 5 and C1b), as at least one of these two problems was
listed in the hazard assessment on 83 % of the days over the
study period. Some operational policies suggest using only
one of these two problems at a time to effectively communi-
cate the most relevant risk management approach (Klassen,
2014). The decision trees with contextual variables show this
practice was applied with wind slabs typically being removed
when storm slab problems were added and then reintroduced
when storm slab problems were removed. The most intu-
itive rule based on weather or snowpack conditions from
these trees was adding storm slab problems when a thresh-
old amount of snowfall occurred. However, the variables for
removing storm slab problems and adding or removing wind
slab problems had less intuitive interpretations (e.g. incom-
ing longwave radiation and air temperature). One possible
explanation is that storm slab problems are more directly in-
fluenced by changing weather conditions, while wind slab

problems exist most of the winter but are removed when they
are masked by more important storm slab problems. Storm
slabs and wind slabs may also be difficult for forecasters to
distinguish as they may coexist in different parts of the ter-
rain. Another possible explanation of the observed pattern
is that the model-generated data did not capture all the pro-
cesses that form wind slab problems.

The significance of variables related to the time and lo-
cation of the hazard assessment also highlights forecasting
practices that may override physical weather and snowpack
conditions. For example, wind slab problems were more
likely before 7 January, wet loose problems were more likely
after 16 March, and wind slab and cornice problems were
more likely at higher elevations. While these patterns have
intuitive explanations, contextual variables were more sig-
nificant than physical explanations that could have been cap-
tured with weather and snowpack variables. For example,
wind speed should capture stronger wind at higher elevations
and temperature variables should capture warmer conditions
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Figure 8. Decision tree comparing conditions before and after weak
layers first become associated with persistent problems (considering
3 d before they become problems and the first 3 d of layers of being
associated with a problems). Variables appearing in the tree include
the maximum slab density in kg m−3 (SLAB DENSITY MAX) and
the snow surface temperature in ◦C (TSS). Terminal nodes show the
proportion of cases with weak layers having surface (yellow) and
active (green) statuses.

Figure 9. Decision tree comparing conditions before and after weak
layers become dormant (considering the first 14 d when layers are
no longer associated with persistent problems with the last 14 d
when they are associated with persistent problems). Variables ap-
pearing in the tree include the maximum slab density in kg m−3

(SLAB DENSITY MAX), the age of the weak layer in days (AGE),
and the maximum air temperature over the past 24 h in ◦C (TA
MAX 24). Terminal nodes show the proportion of cases with weak
layers having active (light green) and dormant (dark green) statuses.

later in the season with more nuance than rules based purely
on elevation and day of season. This result seems to indicate
that forecasters may apply heuristics when uncertain about
the physical conditions, such as adding wind slab problems
in the alpine elevation band when they lack field observations
because they know wind slabs are common in the alpine el-

evation band. Some problems may also be prioritized differ-
ently in certain situations; for example, wind slab problems
may become lower priority as the season progresses because
other higher-consequence avalanche problems develop and
take priority.

While not included in this analysis, information about in-
dividual forecasters could provide additional influential con-
textual variables. Statham et al. (2018b) show inconsistencies
between adjacent agencies and individual forecasters, as their
interpretations of the avalanche conditions and how to apply
danger ratings or avalanche problems differ. Decision trees
could be a suitable method for internal forecaster training to
see how the application of avalanche problems is influenced
by individuals, their experience, or how many days they have
been on duty.

Our results are limited to typical winter avalanche con-
ditions for Glacier National Park, Canada. Two important
avalanche conditions missing from the analysis are deep-
persistent-slab avalanche problems which are more com-
mon in continental snowpacks and wet–dry and wet-slab
avalanche problems which are more common in spring.
These problems would likely have unique weather and snow-
pack influences, as well as unique contextual factors given
their unique risk management considerations. The results are
also specific to the avalanche problem types used in North
America (Statham et al., 2018a), which are more detailed
than the five problems used in Europe (European Avalanche
Warning Services, 2017). The European problems likely
have similar weather and snowpack influences as the anal-
ogous North American problems, but their application could
substantially differ between agencies and as a result have dif-
ferent contextual influences. Similar studies in different re-
gions and contexts would be helpful to understand broader
patterns in the application of avalanche problems.

4.2 Lessons about forecasting with weather and
snowpack models

Variables generated by weather and snowpack models pro-
vided intuitive explanations for most avalanche problem
types, despite discrepancies between modelled and observed
conditions. For example, although the models systematically
underestimated precipitation, the most significant variables
influencing storm slab problems were threshold amounts of
new snow (Figs. 4 and 5). The threshold amount of 7 cm over
72 h in Fig. 4 was less than expected from practical experi-
ence, as Schirmer et al. (2009) found a 12 cm threshold for
72 h snowfall as a strong predictor of avalanche danger and
McClung and Schaerer (2006) suggest 30 cm of new snow
as a rule of thumb for natural avalanche activity. Accord-
ingly, the types of variables appearing in the decision trees
are more important than the specific thresholds, which should
be treated with caution when compared to values expected
from field observations. Interpreting the specific values ex-
tracted from models requires an understanding of how well
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the model performs in that region and weather situation. Fur-
thermore, the agreement between modelled values and field
observations could vary significantly across terrain.

The model-generated variables were more intuitive for
some avalanche problem types than for others. The most
significant variables were intuitive for storm slab problems
(height of new snow in past 72 h), dry loose problems (skier
penetration depth), wet loose problems (maximum air tem-
perature), and persistent-slab problems (slab density). The
most significant variables for wind slab and cornice problems
were air temperature and snow height, respectively, which
seem less connected to the formation of these problems. Vari-
ables directly associated with snow transport by wind would
have been more intuitive, suggesting the model configura-
tion likely did not adequately capture snow transport pro-
cesses. Improved prediction of wind slab and cornice prob-
lems could be achieved with model configurations that better
capture snow transport (e.g. Vionnet et al., 2018).

Models also offer opportunities to capture conditions that
are difficult to measure in the field. For example, the slab
density above a weak layer was found to have a significant
influence on persistent avalanche problem types. Slab den-
sification is difficult to continually quantify from field ob-
servations but is likely a process that forecasters hypothe-
size about when assessing persistent problem types. Models
could help forecasters explicitly test hypotheses about slab
density trends and similar physical properties. Although this
analysis used weak layers identified by forecasters, weak-
layer detection could also be automated by models (Monti
et al., 2014). For example, the 54 weak layers attributed to
persistent problems were found to have significantly larger
grain sizes than the other 41 potential weak layers that
formed over the same period, suggesting layer properties
could be analysed to detect weak layers. However, our ap-
proach was more appropriate for understanding how fore-
casters applied persistent problem types.

4.3 Applications and limitations of decision support
tools

Data-driven decision support tools like the decision trees
presented in this study have the potential to improve the
accuracy and consistency of avalanche hazard assessments
(Clark, 2019; Lazar et al., 2016; Statham et al., 2018b; Techel
et al., 2018). Providing guidance on avalanche problems
could provide more tangible information to forecasters about
necessary risk mitigation measures than previous decision
aids that focused on danger level or avalanche occurrence.
Expanding the decision tools to provide insight into addi-
tional avalanche problem attributes such as the location, size,
and likelihood of avalanches could offer additional value.

While this study focused on model-generated weather and
snowpack variables due to their consistency and temporal
coverage, decision support tools could also include a broader
range of inputs that represent the data available to forecast-

ers more comprehensively. First, including field observations
of weather and snowpack conditions would be a meaningful
complement to overcome issues with model errors. Second,
including avalanche activity data would likely improve as-
pects of the decision trees such as providing better explana-
tions of when avalanche problems are removed. A challenge
would be formatting field observations in a way that allows
them to be integrated into a statistical model in a consistent
way. Future decision aids should consider leveraging the re-
spective strengths of field observations and model-generated
variables.

Using operational datasets to build predictive models will
continue to face issues with messy and inconsistent patterns
that could perpetuate errors in human assessments (Guikema,
2020). The decision trees presented in this study only showed
the most significant variables by restricting the p value to
0.0001 to keep the diagrams tidy and easy to interpret. How-
ever, adjusting the maximum p value to 0.05 revealed de-
cision trees with many additional significant variables that
become more challenging to interpret. While such models
may offer considerable predictive power, the underlying rules
should be grounded in physical conditions and operational
priorities to provide optimal and unbiased decision support.

5 Conclusions

We employed conditional inference trees to examine pat-
terns in how avalanche forecasters combine different types
of weather and snowpack conditions into their assessment of
avalanche problems. We used simulated weather and snow-
pack observations to create a consistent dataset and explore
the potential of physical models to complement traditional
field observations.

Some avalanche problems had clear and intuitive rules
about specific conditions that explained their presence or ab-
sence in hazard assessments, such as new-snow thresholds
for storm slab avalanche problems and slab density ranges
for persistent-slab avalanche problems. Other problems ap-
peared to be more influenced by contextual information such
as the time of season, location, and presence or absence of
other avalanche problems. Wind slab avalanche problems,
for example, were better explained by the absence of storm
slab problems than by weather and snowpack conditions.
In addition, we also found that the patterns for adding new
avalanche problems to hazard assessments were much clearer
compared to when they were removed, highlighting chal-
lenges in removing avalanche problems such as a lack of
information, an incomplete understanding of snowpack pro-
cesses, and potential inconsistencies in forecasting practices.

Our analysis highlights that avalanche problem assess-
ments included in public avalanche bulletins not only are
based on patterns in weather conditions and snowpack struc-
ture but might also be influenced by human risk management
needs and risk communication priorities. The present analy-
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sis provides a systematic approach for examining how the
different perspectives affect existing forecasting practices.
The decision trees emerging from our analyses provide a con-
cise and tangible summary of existing practices that can be
used to facilitate expert discussions about current practices
and how to increase consistency within forecasting teams and
across agencies.

While it might be tempting to use the decision trees pre-
sented in this study as decision support tools for operational
avalanche forecasting, it is important to remember that the
identified decision rules are affected by errors and biases in
both the past assessments and the simulated data. Hence a
purely data-driven approach to the design of decision aids
will perpetuate past errors and biases. To avoid this issue,
we propose a mixed-method approach that combines insights
from data-driven analysis methods with qualitative studies on
avalanche forecasting practices. The combination of the two
perspectives will lead to a better understanding of existing
practices and lay the foundation for meaningful decision aids
that are grounded in snow science principles but also take ad-
vantage of human avalanche forecasting expertise.
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Appendix A: Contingency table statistics

A contingency table shows the combined frequencies of ob-
served and modelled values. For a dichotomous variable (i.e.
yes or no) the contingency table has four possible combina-
tions of observed and modelled values (Table A1). Numerous
statistics describe the marginal distributions in contingency
tables; in this analysis we report accuracy, the hit rate, and the
false alarm rate. Accuracy is the fraction of modelled values
that were correct:

accuracy= (hits+ correct negatives)/total. (A1)

The hit rate is the fraction of observed yes events that were
correctly modelled:

hit rate= hits/(hits+misses). (A2)

The false alarm rate is the fraction of modelled yes events
that did not occur:

false alarm rate= false alarms/(hits+ false alarms). (A3)

Table A1. Contingency table.

Observed

Yes No

Modelled Yes hits false alarms
No misses correct negatives
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Appendix B: Correlations between weather and
snowpack variables

Figure B1. Correlation matrix for weather and snowpack variables used in decision trees for surface avalanche problems. Variables in bold
were removed due to high correlation with other variables. Variable names are described in Tables 2, 3, and 4.
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Figure B2. Correlation matrix for weather and snowpack variables used in decision trees for persistent avalanche problems. Variables in bold
were removed due to high correlation with other variables. Variable names are described in Tables 2, 3, and 4.
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Appendix C: Additional decision trees for surface
avalanche problem types

Figure C1. Conditional inference tree for the presence or absence (Pres/Abs) of wind slab avalanche problems (a) based on weather and
snowpack variables and (b) including additional contextual variables about the hazard assessment. Variables appearing in the tree include
maximum air temperature over the past 24 h in ◦C (TA MAX 24), the size of surface hoar on the surface in mm (HOAR), the grain type
beneath snow deposited in the past 72 h (WL GTYPE 72), the height of new snow since the last snow-free day (SLAB THICKNESS HST),
the grain type beneath snow deposited since the last snow-free day (WL GTYPE HST), the total snow height in cm (HS), the presence or
absence of a wind slab problem the previous day (STATUS WIND PREV), the elevation band (ELEV BAND) relative to below the treeline
(BTL), the presence or absence of a storm slab problem the same or previous day (STATUS STORM and STATUS STORM PREV), the
specific season (SEASON), and the number of days since 1 October (SEASON DAY). Terminal nodes show the proportion of cases with
wind slab problems present (green) and absent (yellow).
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Figure C2. Conditional inference tree for the presence or absence (Pres/Abs) of dry loose avalanche problems (a) based on weather and
snowpack variables and (b) including additional contextual variables about the hazard assessment. Variables appearing in the trees include
the skier penetration depth in cm (SKI PEN), the average density of new snow since the last snow-free day in kg m−3 (SLAB DENSITY
AVG HST), the presence or absence of a dry loose problem the previous day (STATUS DRYL PREV), maximum air temperature over the
past 72 h in ◦C (TA MAX 72), and the size of surface hoar on the surface in mm (HOAR). Terminal nodes show the proportion of cases with
loose dry problems present (green) and absent (yellow).
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Figure C3. Conditional inference tree for the presence or absence (Pres/Abs) of wet loose avalanche problems (a) based on weather and
snowpack variables and (b) including additional contextual variables about the hazard assessment. Variables appearing in the trees include
the maximum air temperature over the past 24 and 72 h (TA MAX 24 and TA MAX 72), whether there was a melt–freeze crust beneath the
snow deposited in the past 72 h (WL ABOVE CRUST 72), the presence or absence of a wet loose problem the previous day (STATUS WETL
PREV), and the number of days since 1 October (SEASON DAY). Terminal nodes show the proportion of cases with wet loose problems
present (green) and absent (yellow).
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Figure C4. Conditional inference tree for the presence or absence (Pres/Abs) of cornice avalanche problems (a) based on weather and
snowpack variables and (b) including additional contextual variables about the hazard assessment. Variables appearing in the trees include
the total snow height in cm (HS), the maximum incoming shortwave radiation in the past 24 h in W m−2 (ISWR MAX 24), the maximum
hourly wind speed in the past 24 h in m s−1 (VW MAX 24), the height of new snow since the last snow-free day (HST), the snow surface
temperature in ◦C (TSS), the presence or absence of a cornice problem the previous day (STATUS CORN PREV), and the elevation band
(ELEV BAND) relative to the treeline band (TL). Terminal nodes show the proportion of cases with cornice problems present (green) and
absent (yellow).
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