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Abstract. Daily polar-orbiting satellite MODIS thermal de-
tections since 2002 were used as the baseline for quantifying
wildfire activity in the mixed grass and agricultural lands of
southernmost central Canada. This satellite thermal detection
record includes both the responsible use of fire (e.g. for clear-
ing crop residues, grassland ecosystem management, and tra-
ditional burning) and wildfires in grasslands and agricultural
lands that pose a risk to communities and other values. A
database of known wildfire evacuations and fires otherwise
requiring suppression assistance from provincial forest fire
agencies was used to train a model that classified satellite
fire detections based on weather, seasonality, and other en-
vironmental conditions. A separate dataset of high resolu-
tion (Landsat 8 thermal anomalies) of responsible agricul-
tural fire use (e.g. crop residue burning) was collected and
used to train the classification model to the converse. Key
common attributes of wildfires in the region included occur-
rence on or before the first week of May with high rates of
grass curing, wind speeds over 30 km h−1, relative humid-
ity values typically below 40 %, and fires that are detected
in the mid-afternoon or evening. Overall, grassland wildfire
is found to be restricted to a small number of days per year,
allowing for the future development of public awareness and
warning systems targeted to the identified subset of weather
and phenological conditions.

1 Introduction

Wildfire is a widespread and commonplace phenomenon in
Canada, with contexts ranging from an integral component

of traditional land use (Lewis et al., 2018), a purely natu-
ral disturbance (i.e. lightning ignition) process with little hu-
man impact (Whitman et al., 2018), to a devastating natural
hazard to communities (Christianson et al., 2019). Fire (both
human and natural ignition) is most common in Canada in
its interior, west of the Great Lakes and east of the Rocky
Mountains, where a belt of high fire frequency extends from
the subarctic forests of the Deh Cho (Mackenzie Valley)
through to the drier southern boreal forest–grassland transi-
tion (Boulanger et al., 2014). Within this broad north–south
transect, the density of values at risk varies greatly, from
sparse communities in the northern forest with limited in-
dustrial activities to a dense matrix of industry with dis-
persed agriculture and rural habitation (Johnston and Flan-
nigan, 2018). At the southern limit of the boreal forest in
western Canada, climatic limitations to widespread forests
created a natural ecotone towards a more open deciduous
forest and grass parkland (Hogg, 1994; Zoltai, 1975), which
has been almost entirely converted to intensive agriculture
with a steady rate of increasing agricultural conversion (Hob-
son et al., 2002). This is in contrast to the United States,
where extensive natural grasslands intermix with dry conifer
forests in areas of greater wildfire occurrence (Gartner et al.,
2012). In Canada, at the southern forest limit and further
south, the wildland–urban interface transitions to widespread
human agriculture and only patches of broadleaf (decidu-
ous) aspen forest (Hogg, 1994). Though smaller, localized
grasslands in a larger matrix of forest are readily integrated
into local wildfire-likelihood assessments (Parisien et al.,
2013), large-scale assessments of wildfire likelihood are of-
ten based on modelling that utilizes forest fire management
agency records (Parisien et al., 2013; Stockdale et al., 2019)
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and therefore exclude wildfires in agricultural areas where
no such land management agency records exist. In this pri-
marily agricultural region, controlled agricultural burning is
commonly used to burn off excess crop residue (Chen et
al., 2005). The use of a purely thermal remote sensing ap-
proach to determine the risk of wildfire (Rogers et al., 2015)
(i.e. fires being actively suppressed but not under control) is
somewhat limited and can erroneously count responsible fire
use in agriculture as wildfire occurrence.

In Canada, both forest fire and grass fire likelihood and
spread are predicted using a common system, the Canadian
Forest Fire Danger Rating System (CFFDRS), developed and
maintained by the Canadian Forest Service starting in the
1930s. The system allows for the prediction of grass fire rate
of spread (metres per minute), fire intensity (equivalent to
flame height), and expected growth rate (fire size over time).
Fire weather is quantified using daily temperature, precipita-
tion, humidity, and wind speed, with grass curing (the ratio
of dead grass to live grass) being a critical variable that con-
trols grass fire behaviour. Under the Canadian Fire Weather
Index System (Van Wagner, 1987), the fire danger classes
for public awareness (i.e. low, high, extreme, etc.) are based
on a scaling of the expected head fire intensity of an ide-
alized pine stand with a pine needle surface fuel bed. In this
type of forest, wind speed, humidity, and drought will impact
fire behaviour, but the lack of deciduous trees or understory
vegetation negates seasonal phenology beyond needle flush.
When this Fire Weather Index scheme is then applied across
regions dominated by grasslands, agriculture, or deciduous
tree or shrubs, the Fire Weather Index alone and associated
fire danger classes need to be adjusted for leaf-on or greenup
conditions (Alexander, 2010; Chéret and Denux, 2011).

Recent research in Australia has highlighted the impor-
tance of grass fuel loading as a negative influence on fire rate
of spread, whereby a doubling of grass fuel load from the
standard assumption of 0.35 kg of fuel m−2 to 0.70 kg m−2

results in a 10 % reduction in spread rate (Cruz et al., 2018).
Conversely, a 50 % reduction in fuel load results in between
a 10 %–30 % increase in spread rate; flame height (propor-
tional to fireline intensity) increased to the power of 0.60 with
increased fuel loading however, meaning a doubling of fuel
loading results in a 50 % increase in flame height. Accord-
ingly, under dry conditions, light agricultural residues may
burn with high rates of spread though lower flame heights,
while higher fuel loads in agricultural residues would likely
burn slower but with substantially larger flames. In mixed
forest and open grass-type fuel landscapes, the lower inten-
sity of grass fires typically results in higher rates of success-
ful fire suppression for grasslands in empirical (Finney et al.,
2009) and modelling (Reimer et al., 2019) studies compared
to standing forest. Rapid fuel moisture gains during typical
night-time periods result in limited nocturnal fire activity po-
tential (Kidnie and Wotton, 2015) except during exceptional
periods of sustained wind and very low humidity (Lindley et
al., 2019).

The overall goal of this study is to examine the differing
environmental conditions most common during agricultural
fires and to contrast that with documented grassland wildfires
in the region. The first specific goal is to apply a classification
model to historical fire thermal detections (2002–2018) in or-
der to determine the relative densities of agricultural burning
and smaller, mostly undocumented grassland wildfires. The
second goal is to develop an initial data-driven wildfire oc-
currence criterion usable for public warning specific to grass-
land and agricultural regions of southern Canada.

2 Materials and methods

2.1 Summary of datasets

MODIS thermal detections were used as a spatially unbiased
record of fire activity in the study area. Each thermal detec-
tion was then associated with gridded data including grass
curing (NDVI), as well as surface weather and fire weather
variables from the Canadian Fire Weather Index (FWI) Sys-
tem (Table 1). These thermal detections were then clus-
tered and classified where possible into confirmed agricul-
tural burning (Landsat 8; Kato et al., 2018) or wildfire using
a fire occurrence database (Hanes et al., 2018) or evacuation
records largely from media reports (Beverly and Bothwell,
2011). These known agricultural and wildfire hotspot clus-
ters and associated fields were then used to create a general-
ized additive model (GAM), which was used to classify the
unknown hotspot clusters into agricultural burning or wild-
fires and produce maps of their relative occurrence (goal 1).
Additionally, a decision tree model was also built on the con-
firmed wildfire vs. agricultural hotspot clusters, to provide
simplified classification thresholds (goal 2) for use in fire op-
erations and as the basis for potential public warning criteria.

2.2 Study area

The study area encompasses the entire primary agriculture
zone of central-western Canada (prairies) as well as the
forest–agriculture mix that extends north (to 58◦ N at its fur-
thest point) and east to (as far as 96◦W) where the shallow
granitic soils of the Canadian Shield are found (Fig. 1). The
southern limit of the study area is the United States border
at 49◦ N, and the western limit is the continuous forest and
protected areas of the Rocky Mountains. The climate of the
region is cool and continental, with mean annual temperature
ranging from 0.6 ◦C in Peace River to 5.9 ◦C at Lethbridge.
The number of frost-free days is as few as 119 in Peace River
and as many as 132 in areas east of Lethbridge. Foehn winds
(locally known as chinooks) on the eastern side of the Rocky
Mountains cause periodic temperature increases above freez-
ing during winter, allowing for occasional winter fires in
grass and other open, fine fuels. Snowmelt typically occurs in
March–April in the southern extent and April–early May fur-
ther north. Annual precipitation varies from close to 600 mm
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Table 1. Summary of datasets used in study.

Dataset Spatial Temporal Derived data Product number/source Time frame
resolution resolution

Land cover 30 m As of 2010 Grass cover Agriculture and agri-food 2010
Canada (2018)

MODIS thermal 1 km Twice daily Hotspot clusters MOD14A1 and MYD14A1 2002–2018
detections

MODIS NDVI 250 m 16 d composite Grass curing MOD13Q1 and MYD13Q1 2002–2018

Landsat 8 30 m 16 d Confirmed Kato et al. (2018) 2013–2018
thermal detections agricultural fires

Weather and fire 3 km grid 12:00 pm LST Model input McElhinny et al. (2020)a 2002–2018
weather daily

Canadian National n/a n/a Confirmed wildfires Hanes et al. (2018) 2002–2017
Fire Database

Canadian Wildfire n/a n/a Confirmed wildfires Beverly and Bothwell (2011)b 2002–2018
Evacuation Database

a The station data used in McElhinny et al. (2020) were interpolated on a 3 km grid using an inverse distance weighting approach. b The methodology of Beverly and
Bothwell (2011) was applied to search for fires in the prairie region of Canada, which were excluded from this publication. Evacuations were catalogued from
2002–2018. See data in the Supplement. n/a stands for not applicable.

Table 2. The linear predictors of the GAM predicting whether a
hotspot cluster is a wildfire (coefficients given in logit space) along-
side their odds for predictors with p<0.10. Smoothing of the GAM
is shown with χ2 (chi-square).

Linear predictor Estimate SE Odds ratio p

Intercept 14.5 11.6 0.21
Detection hour 0.26 0.144 1.29 0.06
ln(FRP)a

−0.30 0.30 0.32
Air temperature 0.054 0.078 0.48
RHb

−0.163 0.061 0.31 0.016
FFMCc

−0.148 0.118 0.21
DMCd 0.039 0.022 1.04 0.080
Drought code 0.008 0.004 1.008 0.083

Smooth terms edf Ref df χ2 p

Day of year 3.1 3.8 14.4 0.004
Curing 4.1 5.0 17.7 0.004
Wind speed 2.0 2.1 9.4 0.034

a FRP: maximum fire radiative power of a cluster (natural log-transformed). b

RH: noon relative humidity (%), odds ratio per unit increase in RH. c FFMC: Fine
Fuel Moisture Code. d DMC: Duff Moisture Code.

in the easternmost edge of the study area near Winnipeg to
as little as 316 mm in areas northeast of Lethbridge. Precip-
itation is heavily weighted to convective precipitation in the
months of June–August. April and October are typically the
two driest snow-free months.

Overall, 42 % of the study area is agricultural land or
grasslands. Land ownership in the agricultural area is almost

entirely privately held, with the exception of First Nations re-
serves (1.6 %), parks and protected areas (2.4 %), and provin-
cial grazing reserves (1.8 %). Wildfire response is primar-
ily volunteer-driven at the local community level (McGee et
al., 2015). At the fringe of agriculture, private land is inter-
mixed with provincially (sub-national) owned lands that are
managed primarily for timber, and wildfire response is en-
tirely the responsibility of provincial fire management agen-
cies outside of settlement boundaries. Remotely sensed land
cover data at 30 m resolution (Agriculture and Agri-Food
Canada, 2018) were used to distinguish forested areas from
open fuels (including permanent croplands, pastures, native
grasslands, and treeless wetlands) all of which share simi-
lar phenology and flammability. Broadleaf crops vs. cereals
were not distinguished.

2.3 Fire occurrence records

In the forest–agriculture mix, we used comprehensive fire
history records from wildfire management agencies, as com-
piled in the Canadian National Fire Database (CNFDB)
(Hanes et al., 2018). In the agricultural zone, the CNFDB
provides only a partial sample of wildfires in the region.
The agricultural zone is not located in the provincial wildfire
agencies’ area of responsibility; therefore in this zone, only
larger fires that required a mutual aid response from provin-
cial agencies are documented in the database. Additional re-
porting on wildfire occurrence in the agricultural zone is pro-
vided by the Canadian Wildfire Evacuation Database (Bev-
erly and Bothwell, 2011), which since 2010 has collected in-
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Figure 1. Remotely sensed land cover data at 30 m resolution (Agriculture and Agri-Food Canada, 2018) of our study area as of 2010
compared to the extent of the ecumene. The study area extends past the ecumene to ensure all minor areas of grass and agriculture are
included.

formation on wildfire evacuation in grassland areas in addi-
tion to forest fires dating back to the 1980s.

Records from fire management agencies and evacuations
provide a partial sample of the true extent of wildfires in the
agricultural zone and completely capture the occurrence of
wildfire in the provincial forest. Remotely sensed thermal de-
tection of active wildfire from the polar-orbiting NASA Aqua
and Terra satellites that pass over Canada at nominally 13:30
local time (with a 01:30 overnight overpass) were used as
a spatially unbiased (but time-limited) sample of fire activ-
ity in the area (Fig. 2). Off-nadir collections (Freeborn et al.,
2014) were also utilized and the detection-specific detection
hour was used. A standard MODIS collection from 2002–
2018 (MOD14A1 and MYD14A1) (Giglio, 2015) with 1 km
resolution was screened for persistent industrial heat sources.
These MODIS thermal detections were merged into hotspot
clusters based on the detection’s track and scan distance, in
an attempt to group detections from the same fire together
(see Supplement).

A 3 km grid of daily basic surface meteorology at 12:00
(noon) local time (air temperature, humidity, 10 m wind
speed, and precipitation sum over the prior 24 h) as well as
Canadian Fire Weather Index System variables using inverse-
distance weighting (Lee et al., 2002) was constructed for ev-
ery day during 2002–2018. The rasters constructed use the
same surface station data as McElhinny et al. (2020). The pri-
mary Fire Weather Index variables used include the Fine Fuel
Moisture Code, Initial Spread Index, Duff Moisture Code,
and Drought Code (Lawson and Armitage, 2008). The Fine

Fuel Moisture Code (FFMC) is a model of moisture con-
tent for fine dead vegetation material at the forest floor of
a closed-canopy forest. The FFMC utilizes all of the above
basic surface meteorology to estimate drying rate with an ex-
ponential drying rate (time to loss of two-thirds of moisture
content) of 18 h. It is used here as a proxy for the moisture
content of dense matted grass thatch, with relative humidity
alone a better proxy for the moisture content (Miller, 2019)
and ignition capacity (Beverly and Wotton, 2007) of standing
grass. High FFMC values indicate drier conditions, up to a
maximum of 101. The Initial Spread Index (ISI) is the prod-
uct of the FFMC and the square of wind speed and is pro-
portional to the forward spread rate potential for grasslands
and other open vegetated fuels (Hirsch, 1996). ISI is calcu-
lated daily and represents the peak potential rate of spread
typically found in the later afternoon at the daily tempera-
ture maximum. The Duff Moisture Code (DMC) represents
the moisture content of a forest organic soil layer as esti-
mated by a simple precipitation and evaporation model. It
has an exponential drying rate of 12 d and can be considered
a metric of the bi-weekly soil moisture budget. Similarly, the
Drought Code (DC) is a simple vertical water budget model
(Miller, 2020) for a soil column with a 100 mm soil water ca-
pacity (similarly, larger values indicate drier conditions). In
this manner, the DC has been shown to represent variations
in surface water levels (Turner, 1972); a simple vertical wa-
ter balance of precipitation and evaporation controls surface
water extent in the prairies of Canada, where water routing to
streamflow and groundwater infiltration is limited (Woo and
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Figure 2. Grass fire MODIS (MOD14A1 and MYD14A1) (Giglio, 2015) hotspot clusters in the study area from 2002–2018. These hotspots
have been screened for persistent industrial heat sources and clustered as described in the methods. The study area extends past the ecumene
to ensure all minor areas of grass and agriculture are included. However, the vast majority of hotspot clusters are present within the ecumene.

Rowsell, 1993). As such, the DC is a proxy for the extent of
saturated soil areas (wetlands and other surface pond water)
that when sufficiently dry increase the continuity of fuels on
the landscape.

We purposely utilized the longer-duration MODIS dataset
from 2002 onwards, rather than the shorter-duration VIIRS
dataset from 2012 onwards. Though both sensors are capable
of fire detection in the mid-wave infrared, VIIRS is in theory
capable of detecting smaller or less intense agricultural fires
(Johnston et al., 2018; Zhang et al., 2017) which offers little
advantage when the goal is the detection of larger wildfires in
the region. Moreover, one of the goals of this study is to ex-
amine broad spatial trends in fire occurrence, where a longer
record is ideal. Recently launched geostationary weather-
oriented earth observation platforms such as GOES 16/17,
Meteosat, and Himawari offer many advantages for moni-
toring short-lived wildfires, with scan rates every 10–15 min
(Hall et al., 2019). The northern latitude of the study area
(49–59◦ N) causes a severe degradation of the pixel size of
GOES geostationary fire detections to 4 km and limited ca-
pacity in accurately resolving fire radiative power (Hall et al.,
2019). The dataset and classification criteria presented here
can assist in improving the confidence in real-time wildfire
detection in these areas with widespread intentional fire use
in agriculture on the landscape.

All hotspot clusters with less than 40 % open fuels (grass-
lands, croplands, and treeless wetlands) were too influenced
by fire behaviour in forests and were excluded from the
dataset. Within the agricultural ecumene, the vast majority

of the region constitutes open fuels (Fig. 1), and little tree
cover exists outside of shelter belt plantations which exist
as single rows of trees (Piwowar et al., 2016). Area burned
in forest–shrub–grass mixes typical of post-fire regenera-
tion were eliminated from this study, as their suppression,
land ownership, and vegetation ecology more closely mirror
forests than grasslands (Whitman et al., 2019). This resulted
in a total of 24 297 MODIS hotspot clusters containing a to-
tal of 44 324 thermal detections. The CNFDB and evacua-
tion database were used to classify these hotspot clusters as
wildfires where possible. Eighty-four hotspot clusters repre-
senting wildfires were identified using the CNFDB, and 15
additional hotspot clusters were identified using the evacua-
tion records and were not otherwise recorded in the CNFDB.

The responsible use of fire in the region includes tradi-
tional burning by First Nations (Lewis et al., 2018), pre-
scribed burning by fire management agencies to reduce fuel
loads in grasslands (McGee et al., 2015), burning of crop
residues (Chen et al., 2005), and pile burning during land-
clearing operations where residual tree biomass is burned
during agricultural land conversion (Hobson et al., 2002).
Other than prescribed burning, no official documentation ex-
ists for this type of fire use and could otherwise be conflated
with wildfires as documented by remote sensing. In order to
discriminate between responsible fire use and wildfires, we
used the 30 m short-wave infrared thermal detections from
the Landsat 8 satellite (Kato et al., 2018) in order to classify
clusters of thermal detections as responsible fire use if they
correspond to geometric patterns associated with prescribed
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burning or other controlled fire (Fig. 3). A total of 41 Landsat
hotspot clusters were manually classified in this manner; fire
weather and land cover were associated with these detections
similar to the MODIS detections. These Landsat detections
are limited in spatial scale as the satellite only returns over
an area every 2 weeks, so these records are at best a small
sample of the entire fire activity in the region (approximately
1/14, or 7 %), and only a small sample of Landsat data were
used in this study. All responsible use of fire is referred to as
agricultural fire in this paper.

2.4 Satellite grass curing

Grass curing (the fraction of dead grass with moisture con-
tent controlled by atmospheric conditions) is the primary
control on the fire spread potential in grass fuels, overriding
all other factors (Cruz et al., 2015). However, capturing the
complexities of plant phenology in the simple daily weather
scheme used by the Fire Weather Index System or similar
scheme is challenging (Jolly et al., 2005). For this retrospec-
tive analysis, we leverage satellite greenness as a proxy for
grass curing, similar to Pickell et al. (2017). In this study,
we leverage historical 16 d composite NDVI (MOD13Q1 and
MYD13Q1) (Didan et al., 2015) at 250 m resolution. A sim-
ple linear transform was used to convert between NDVI and
percent curing:

Pcuring =

(
1−

NDVIt −min(NDVI)
max(NDVI)−min(NDVI)

)
× 100, (1)

where NDVIt is the measured NDVI at time t , min(NDVI)
represents the per-pixel minimum snow-free NDVI value,
and max(NDVI) is the per-pixel maximum NDVI climatol-
ogy. Both the min and max values are based on the average
of the annual maxima and minima from 2002 to 2014 (i.e.
n= 12 per pixel for both min and max calculations).

2.5 Classification of thermal detections

In total, 99 MODIS clusters (representing 386 total indi-
vidual hotspots) were associated with documented wildfire,
and 41 MODIS clusters (representing 104 total individual
hotspots), confirmed to be agricultural controlled burning
via Landsat imagery, were classified as agriculture fire use.
Variables included for consideration in the GAM include
surface weather variables, day of year, satellite curing frac-
tion, and the fuel moisture codes (FFMC, DMC, DC) from
the Fire Weather Index System. Higher-order components
of the Fire Weather Index System such as Initial Spread In-
dex and Buildup Index were not used due to their derivation
from fuel moisture codes and high correlation (Spearman’s
ρ>0.7) with those codes. The high correlation (ρ =−0.73)
between relative humidity and FFMC is noted, but both were
used in the GAM. All other variables in the GAM were
correlated ρ<0.5 and thus suitable for landscape-level fire
weather analysis and modelling (Parisien et al., 2012). These

data were then used to build models to classify the remain-
ing hotspot clusters as either agriculture fire or wildfire us-
ing generalized additive models (GAMs) as binomial mod-
els (binary of wildfire or not) without interaction surfaces
built using the R package mcgv (Wood, 2019), with splines
used for variables with an expected non-linear response such
as ignition day of year, hour of detection (from MODIS),
wind speed, and curing (Eq. 1). The non-linear partial ef-
fect terms in GAMs have been found to be superior to lin-
ear models with interactions in the examination of wildfire-
environment data (Woolford et al., 2010). This model was
validated using leave-one-out cross validation. These GAMs
account for multiple non-linear responses but not interactions
between predictors. Additionally, classification trees were
constructed using the rpart package (Therneau et al., 2019)
to classify wildfires from thermal detections using a simple
conditional threshold-type model for use as simplified warn-
ing criteria (maximum of two variables). Inputs directly re-
lated to hotspot detection were not included (i.e. FRP), as
they are only obtained upon fire detection. Variables that in-
tegrate multiple weather factors into a single index (i.e. Initial
Spread Index or Buildup Index) were considered.

2.6 Analysis of classified clusters

The large dataset of hotspot clusters classified by the GAM
were separated back into their individual hotspots (44 324)
and used as a proxy for total fire on the landscape (a com-
bination of fire size and fire occurrence). These classified
hotspots were used to explore spatial and temporal patterns
of agricultural and wildfires in the study area. The thresholds
determined by both the decision tree model and GAM were
used to produce a map representing the number of potential
grassland wildfire days per year.

3 Results

Environmental, remotely sensed, and weather variables re-
lated to the distribution of agricultural vs. wildfire hotspot
clusters are shown in Fig. 4. Both fire types (agricultural
vs. wildfires) show a strong peak in the spring period af-
ter snowmelt (day of year, Fig. 4a), centred on late April
and early May, with a slightly earlier peak for wildfires. The
curing fraction of the grass or agricultural residue is lower
for wildfires compared to agricultural fires (Fig. 4b), which
may be due to low NDVI (high curing) artifacts from tillage
(Zhang et al., 2018) or adjacent previously burned area in the
larger MODIS pixels. The hour of first detection (Fig. 4c) is
largely limited by the 13:00 local time overpass at nadir for
MODIS. Night-time fire detections at 01:00 local time over-
pass are rare even for the wildfires. Pre-fire drying conditions
as parameterized in the Fire Weather Index System (DMC
and DC) show much larger right skews for wildfires. In the
case of the DMC (Fig. 4d), 26 % of the wildfire data have
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Figure 3. Examples of processed Landsat 8 images indicating fire detections considered agriculture burns. Note the regular geometric patterns
of the fires, specifically the line ignition patterns and the burning of specific fields. The presence of previously burned fields is shown north
of the active fire in the centre panel, which is registered in this study as low NDVI and very high rates of curing.

DMC values beyond the maximum DMC for agricultural
burning of 67 (approx. 17 d without rain exceeding 1.5 mm).
DC (Fig. 4e) shows a similar trend: 5 % of agricultural fires
have a DC of 470 or greater compared to 27 % of wild-
fires. Observed fire weather values showed a meaningfully
larger number of wildfires when relative humidity (Fig. 4f)
was below 20 %, more agricultural fires when noon air tem-
peratures are below 10 ◦C (Fig. 4g), and far more wildfires
when noon 10 m wind speeds exceed 25 km h−1 (Fig. 4h).
Fine Fuel Moisture Code (Fig. 4i) showed a peak for agri-
cultural burning at FFMC 90 versus 92 for wildfires. Finally,
the natural logarithm of the fire radiative power (FRP) of the
MODIS detection (Fig. 4j) showed far more variance in wild-
fires compared to agricultural fires. No agricultural fires ex-
ceeded 400 MW in the sample of confirmed agricultural fires.
The median number of thermal detection points per wildfire
was 2 but as high as 55, in contrast with agricultural fires
where the median number of thermal detections is also 2 but
the maximum is 6. Only 16 % of wildfires contained more
than six hotspots in a cluster.

The above variables were assessed in a binomial general-
ized additive model, shown in Fig. 5. The GAM was able
to explain 64 % of the variance in the data, with strong non-
linear predictors in day of year, curing, and wind speed. Day-
of-year analysis showed that wildfires are 75 % or more of
detections for days prior to early May. Wind speeds over
25 km h−1 or curing fractions between 50 % and 85 % were
also indicators of the likelihood of hotspot cluster being a
wildfire. Relative humidity and DC were found to be sig-
nificant in the GAM as linear predictors, with odds ratios
(increased likelihood of a fire being classified as a wildfire
per integer increase in predictor value) of 0.31 per unit in-
crease in RH, and 1.008 per unit of DC. Essentially, a single
integer percentage increase in relative humidity, keeping all
other measures constant, makes the odds of a hotspot detec-
tion being a wildfire drop by one-third. Similarly, a 100-unit
increase in DC (on a scale roughly from 0 to 700) makes

the odds of a thermal detection being a wildfire increase
by 80 %. Despite the lack of interactions between predic-
tors in all GAMs, the model had a high overall predictive
power, with sensitivity of 0.86 (true positive rate), specificity
(true negative rate) of 0.90, an area under receiver operat-
ing characteristic curve (AUC) of 0.89, and a critical suc-
cess index of 0.87 (Table 3). The cutoff of the overall GAM
binomial output of 0.66 provided the optimal model perfor-
mance. When the GAM is applied to the 24 297 hotspot clus-
ters in the entire MODIS dataset, 30 % of hotspot clusters
were detected under conditions that are most similar to doc-
umented wildfires. These hotspots have a strong regional gra-
dient with more wildfires in the eastern portion of the study
area (Fig. 6).

A simple decision tree was constructed from the same 140
classified hotspots to look at simple threshold-based classifi-
cation schemes. (Fig. 7). An Initial Spread Index (ISI) (pro-
portional to the fire’s potential or modelled rate of spread
based on weather alone) was found to be the strongest pre-
dictor, with 53 of 54 hotspot clusters being wildfires when
ISI is greater than or equal to 17. For fires with ISI<17, high
curing (i.e. low NDVI, indicative of ploughed fields in the
vicinity or recent adjacent agricultural burning) over 87 %
was a strong indicator of controlled agricultural burning, with
21 of 25 hotspot clusters being agricultural burning. Detec-
tion hour during or after 14:00 local time (indicating an in-
tense fire detected in a later off-nadir satellite overpass) was
also a meaningful indicator of a wildfire event, with 15 of
16 clusters being confirmed wildfires. For detections prior to
14:00 local time, an ISI of 11 or greater provided a mod-
erately strong indicator of a wildfire, with 18 of 22 hotspot
clusters detected being wildfires. For hotspot clusters with
an ISI below 11, there was no meaningful discrimination be-
tween agricultural fires and wildfires. Overall, this decision
tree model had an AUC of 0.75 and a favourable true posi-
tive rate of 0.77 with a lower true negative rate of 0.71 (Ta-
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Figure 4. Distribution of hotspot cluster properties between wildfires (purple) and agricultural fires (blue). Fire radiative power is given in
megawatts and transformed by the natural logarithm.

Table 3. Generalized additive model (cutoff 0.66) and decision tree
model performance metrics (n= 140 in both models). Sensitivity,
specificity, and AUC (area under receiver operating characteristic
curve) were calculated using a leave-one-out cross validation. Miss
rate through to accuracy statistics were calculated using all data to
train the model tested against itself.

Metric GAM Decision tree

True positive rate – sensitivity 0.87 0.77
True negative rate – specificity 0.85 0.71
AUC 0.89 0.74

False negative rate 0.14 0.23
False positive rate 0.15 0.29
False discovery rate 0.06 0.13
False omission 0.28 0.44
Critical success index 0.81 0.68
Accuracy 0.86 0.75

ble 3). The critical success index of this particular classifica-
tion model is 0.68 and overall accuracy is 0.75.

The decision tree model was used to analyze the number of
potential wildfire days per year given the criteria laid out in
Fig. 7. Geographic patterns of potential wildfire days (Fig. 8)
are the opposite of observed densities of both agricultural and
wildfire (Fig. 6), with more days conducive to wildfires in
the west of the study area. The seasonal and spatial patterns
along lines of equal longitude are portrayed in a Hovmöller
time–longitude diagram in Fig. 9. For both agricultural and
wildfires there is a concentration of fires in the spring (around
weeks 17 to 21, late March to late April) and between longi-
tudes 100–105◦W. Agricultural fires have an additional con-
centration of hotspots in week 43 (late September).

In addition to the classification tree presented in Fig. 7,
some properties of wildfires show meaningful breakpoints
beyond which all agricultural fires occur with or without
meaningful differences to overall distribution (Fig. 4) or as
a linear predictor in the GAM (Fig. 5). Median FRP between
all agricultural burns (39 MW) and all wildfires (59 MW)
are similar, and a non-parametric Mann–Whitney U test on
the two samples did not differ significantly (Mann–Whitney
U = 1860, n1 = 113, n2 = 41, p<0.44 two-tailed). How-
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Figure 5. Generalized additive model outputs for a binomial model of agricultural fire vs. wildfire. The ticks along each plot axis show the
marginal distribution of the data.

Figure 6. (a) Cumulative occurrence of wildfire hotspot detections per 25 km square cell in the study region from 2002–2018. (b) Cumulative
occurrence of agricultural fire hotspot detections in the study region from 2002–2018. Discrimination between wildfire and agricultural fire
hotspots conducted using the generalized additive model (GAM).

ever, on the higher end of FRP, wildfires showed a much
larger right skew to the FRP values, with the 99th percentile
of agricultural fire FRP of 233 MW, while this corresponded
to the 86th percentile of wildfire FRP (or the largest 14 % of
the wildfire data). With the maximum observed wildfire FRP
being 1174 MW, this allows for an additional logical scheme
to discriminate wildfires from agricultural burning not cap-

tured in the above decision tree, where MODIS hotspot
FRP values>233 MW can be confidently classified as wild-
fires. Similarly, median noon wind speeds between agricul-
tural fires (15.5 km h−1) and wildfires (21.2 km h−1) were
similar, though distributions differed significantly (Mann–
Whitney U = 1387, n1 = 113, n2 = 41, p = 0.0001 two-
tailed). Some 30 % of wildfire wind speeds exceeded the 90th
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Figure 7. Simple decision tree scheme for the classification of agricultural vs. wildfires. The first set of numbers in each terminal node is the
number of correctly classified records divided by the total number of records in that node. The accuracy of each node is also given. Note that
high rates of curing are associated with ploughed fields or those previously burned in agricultural fires in the days prior (see Fig. 5).

Figure 8. Average number of days per year (2002–2015, April–September) where the fire weather and environmental conditions meet or
exceed an Initial Spread Index of 17 or greater as well as grass curing between 60 % and 85 %.
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Figure 9. Hovmöller diagram showing seasonal patterns of wildfire vs. agricultural fire. In this diagram, the number of hotspot detections
is summed across all latitudes within a longitude bin (x axis) and is shown over time (y axis). Values are the cumulative sum of detections
from 2002–2018.

percentile of agricultural fire wind speeds (22 km h−1), al-
lowing for an additional simple classification consideration
for fire thermal detections during periods of high wind speed.

4 Discussion

In all likelihood, many of the roughly 7500 wildfire hotspot
clusters classified by the GAM over 17 years (or 441 fires
per year over a 115 Mha study area) are smaller, briefly out-
of-control fires where agricultural burning gets beyond direct
suppression and burns over a number of adjacent agricultural
fields until the wildfire encounters a roadway (typically over
10 m of fuel-free width), which readily stops most wildfires
in grass and agricultural residue fuels (Cheney and Sullivan,
2008). Given the generally widespread dispersed population
density of the area, the vast majority of wildfires in the region
are detected and reported by the public (McGee et al., 2015),
such that satellites as the first mode of wildfire detection are
of limited utility in the region, compared to more northerly
and remote areas (Johnston et al., 2018). However, satel-
lites provide a consistent technique for medium-resolution
fire extent reporting and mapping that can prove useful for
emergency managers (Lindley et al., 2019). Moreover, wild-
fire growth modelling (Sá et al., 2017) and smoke dispersion

forecasts (Chen et al., 2019) require real-time analysis and
forecasting initialized using remotely sensed fire detections.

Both the GAM and the classification tree point to the com-
bination of critically dry fuel and wind as the drivers of wild-
fire occurrence in the region. In the GAM, both low RH (as
a proxy for standing grass moisture) and indicators of bi-
weekly (DMC) to monthly (DC) moisture deficit are signif-
icant in predicting wildfire occurrence as linear predictors,
with a wind threshold in the range of 30 km h−1. In the Cana-
dian Fire Weather Index System, fine fuel moisture (mostly
driven by low RH) is combined with wind speeds to calculate
the Initial Spread Index as a single heuristic (Fig. S2) and
thus comes out as the strongest indicator of wildfire. Lind-
ley et al. (2011) found no such moisture deficit as a driver
of wildfire occurrence, and instead they found that RH alone
below 25 % and particularly below 20 % to be responsible for
most grassland wildfires in west Texas. In our study region,
RH alone however is not an ideal proxy for fuel moisture
across the wide range of air temperatures found in the region
during wildfire, as RH alone does not account for variable
vapour pressure deficit at different temperatures (Srock et al.,
2018) that drives the equilibrium moisture content of stand-
ing grasses (Miller, 2019). Moreover, the extensive shallow
water bodies in the region may contribute during periods of
higher moisture surplus (i.e. low DMC and DC) to a frag-
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mentation of fuel continuity, similar to the function of larger
lakes to the north in Canada (Nielsen et al., 2016).

While more complex classification models with additional
predictors were easily built using the rpart package, the
goal in the classification tree model is to create a parsimo-
nious model with simple application in short-range (same
day to 3 d outlook) guidance whether environmental con-
ditions (grass curing, humidity, and wind speed) are suffi-
ciently similar to historical wildfire occurrence. The classifi-
cation tree presented in Fig. 7 is by no means the sole model
that meets objectives for critical success index and model ac-
curacy. A high false alarm rate as present in the classifica-
tion tree shown in Fig. 7 would be far more problematic in
natural hazards such as tornadoes that require a sheltering
response upon a false alarm (Ripberger et al., 2015). In this
particular regional context, the criteria established to differ-
entiate between agricultural fires and wildfires are more akin
to the threshold beyond which responsible fire use activities
should not occur due to dry and windy conditions, rather than
triggering a sheltering response. The adoption of any formal
warning criteria requires a robust consultation process with
regional stakeholders and is not within scope here. Rather,
the data acquired and analyzed here provide for the efficient
creation of future warning products in the region.

The study region is often impacted by prolonged dry pe-
riods. The study region experienced profound drought in the
1999–2005 period (Hanesiak et al., 2011) that corresponds
to the start of the study period. Drought Code (representing
a simple water balance of precipitation minus evaporation)
was a weak linear (p = 0.084) predictor of grassland wild-
fire in this dataset and may be considered mechanistically
similar to the Palmer drought severity index widely used in
grassland and agricultural water availability studies (Hane-
siak et al., 2011). Similarly, the Duff Moisture Code is an-
other weak linear indicator of wildfire detection, though as a
model of the drying of a forest floor organic soil it is still a
metric of rainfall deficit relative to evaporation over the prior
2 weeks. Drought itself in the grasslands and agricultural
areas of North America results in significant reductions in
NDVI (Gu et al., 2007) that therefore directly increases grass
curing as estimated in this study (Eq. 1) and hence lengthens
the seasonal window of grassland wildfire susceptibility.

The thresholds shown here in the classification tree and
GAMs correspond to modelled fire intensity conditions at
the upper limits of ground-based wildfire suppression. The
grass fire spread model in the Canadian Forest Fire Dan-
ger Rating System utilizes Australian experimental grass fire
data that have been shown to approximate fire behaviour in
wheat crops, with the matted (or cut) grass model approxi-
mating spring (cured) post-harvest debris (Cruz et al., 2020).
Following the Canadian Forest Fire Danger Rating System
(Forestry Canada Fire Danger Rating Group, 1992) for an
O-1a (matted grass) fuel type, ISI values of 17 (Fig. 7) with
grass curing of 80 %, the resultant spread rate is 38 m min−1

(2.3 km h−1). This intensity of approximately 4000 kW m−1

(flames 2 m long) is near the upper limit of suppression, par-
ticularly when fire sizes exceed 2 ha at the time of initial sup-
pression action (Hirsch et al., 1998). This correspondence of
our remotely sensed records (confirmed by fire reports solely
of date and time, not of reported fire behaviour) and the op-
erational models in the Canadian Forest Fire Danger Rating
System lends confidence to the application of our approach
in public safety and awareness messaging.

Under climate change, the agricultural and grassland re-
gion of Canada is anticipated to move northward (Schneider
et al., 2009), though this rate of transition will be dampened
in wetland areas (Schneider et al., 2016) and those not dis-
turbed by wildfire (Stralberg et al., 2018). Natural grasslands
are expected to increase particularly in areas of rapidly ac-
celerating fire occurrence, where younger forests disturbed
by severe wildfire are prone to large increases in grass cover
(Whitman et al., 2019). Moreover, a dense grass cover is
problematic in recently planted forests north of the study
region, as it can outcompete tree seedlings (Lieffers et al.,
1993) and is likely to be exacerbated by the expected lower
overall canopy density (Lieffers and Stadt, 1994) brought
about by a drier future climate (McDowell and Allen, 2015).
Active conversion of forest to agricultural lands is likely to
continue (Hobson et al., 2002) as is the natural expansion
of grasslands on drier, south-facing (solar-exposed) slopes in
the boreal forest (Sanborn, 2010). In addition to this likely
grassland and cropland expansion, projections of increas-
ingly common critical fire weather conditions (Wang et al.,
2015) are likely to shift the fire regime to one of more open
fuel burning. However, no change in the rate of fire detections
(undifferentiated between wildfires and agricultural burning)
has been detected between 1981–2000 (Riaño et al., 2007)
nor 1998–2015 (Andela et al., 2017) in the region.

The expansion of grasslands and agriculture into currently
forested areas will substantially change the fire regime in
these areas, highlighting the importance of understanding
the current grassland and agriculture area fire regime. With
grassland expansion into forest, forest fire suppression will
have to incorporate elements of the grass fire regime. A key
feature of the temporal nature of the grassland fire regime
shown (Fig. 9) is the prevalence of wildfire in the month
of April, far before traditional forest fire suppression crews
are trained and active (Tymstra et al., 2019). The occurrence
of autumnal wildfire is much smaller than that in the spring
(Fig. 9) but similarly requires resources for wildfire suppres-
sion in a region where the fire season has traditionally ended
in early September (Hanes et al., 2018).

Regional contrasts in this grassland–agricultural fire land-
scape are revealed in the spatial analysis. Larger amounts of
both agricultural burning and wildfire in the east of the study
area (Fig. 6), despite fewer burn days (Fig. 8), may be due
to differences in agricultural practices or more flax agricul-
ture. Farmers are more likely to burn flax crop residue as
it can be difficult to remove by other methods (Chen et al.,
2005). Higher rates of agricultural burning may also lead to
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increased wildfires via escaped fires from crop burning. Fur-
ther work is required to better understand the contributions
of vegetation and fire ignition that result in east–west gradi-
ents in both wildfire and agricultural activity observed here
that contrasts directly with the number of potential wildfire
activity days.

5 Conclusions

A classification scheme was developed to discriminate re-
motely sensed agricultural fires vs. wildfires in the south-
ern grasslands of continental Canada through an analysis of
historical wildfires and documented agricultural fires. Effec-
tive schemes for discriminating fire types were produced us-
ing continuous data (generalized additive models) as well
as threshold-based classification trees. A combination of
weather, vegetation condition, and temporal variables pro-
vided the best predictors. A noon Initial Spread Index thresh-
old of >= 17 was the most powerful threshold from the
decision tree model for discriminating wildfires from agri-
cultural fires, while grass curing values between 60 %–85 %
were the best non-linear spline predictor in the GAM. Fire ra-
diative power was effective in discriminating wildfires only
in the 14 % of wildfires with very high FRP values that ex-
ceeded the highest documented FRP in the agricultural fire
dataset. Minor discrimination utility was seen in the Drought
Code and Duff Moisture Code precipitation deficit metrics.
Classification of a large dataset of historical wildfire detec-
tions revealed a strong regional contrast in fire activity that
is the inverse of the number of days with wildfire-conducive
weather. Overall, the majority of the most power predictors
of grassland wildfire stem from weather observations and re-
motely sensed metrics of the pre-fire environment and are
thus available for forecasting and real-time classification of
satellite thermal detections. This work provides a foundation
from which future public warning products can be derived.
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