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Abstract. Scientists demystify stress changes within tens of
days before a mainshock and often utilize its foreshocks as an
indicator. Typically, foreshocks are detected near fault zones,
which may be due to the distribution of seismometers. This
study investigates changes in seismicity far from mainshocks
by examining tens of thousands of M > 2 quakes that were
monitored by dense seismic arrays for more than 10 years
in Taiwan and Japan. The quakes occurred within epicen-
tral distances ranging from 0 to 400 km during a period of
60 d before and after the mainshocks that are utilized to ex-
hibit common behaviors of seismicity in the spatiotempo-
ral domain. The superimposition results show that wide ar-
eas exhibit increased seismicity associated with mainshocks
occurring more than several times to areas of the fault rup-
ture. The seismicity increase initially concentrates in the fault
zones and gradually expands outward to over 50 km away
from the epicenters approximately 40d before the main-
shocks. The seismicity increases more rapidly around the
fault zones approximately 20 d before the mainshocks. The
stressed crust triggers ground vibrations at frequencies vary-
ing from ~ 5 x 107* to ~ 1073 Hz (i.e., variable frequency)
along with earthquake-related stress that migrates from exte-
rior areas to approach the fault zones. The variable frequency

is determined by the observation of continuous seismic wave-
forms through the superimposition processes and is further
supported by the resonant frequency model. These results
suggest that the variable frequency of ground vibrations is a
function of areas with increased seismicity leading to earth-
quakes.

1 Introduction

Numerous studies (Reasenberg, 1999; Scholz, 2002; Vi-
dale et al., 2001; Ellsworth and Beroza, 1995) reported
that foreshocks occur near a fault zone and migrate to-
ward the hypocenter of a mainshock before its occurrence.
The spatiotemporal evolution of foreshocks is generally con-
sidered to be an essential indicator that reveals variations
in earthquake-related stress a couple of days before main-
shocks. After detecting these variations, scientists installed
multiple instruments along both sides of the fault over short
distances to monitor the activity of the fault. However, these
instruments typically detect small vibrations near the fault
zone. Stress accumulates in a local region near a hypocenter,
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triggering earthquake occurrence that is concluded from the
sparse distribution of seismometers.

Bedford et al. (2020) analyzed the GNSS data and ob-
served crustal deformation in a thousand-kilometer-scale
area before the great earthquakes in the subduction zones.
Chen et al. (2011, 2014, 2020a, b) filtered the crustal dis-
placements before earthquakes using the GNSS data through
the Hilbert—Huang transform. The filtered crustal displace-
ments in a hundred(thousand)-kilometer-scale area before
the moderate—large (M9 Tohoku-Oki) earthquakes exhibit
paralleling azimuths that yield an agreement with the most
compressive axes of the forthcoming earthquakes (Chen et
al., 2014). On the other hand, Dobrovolsky (1979) estimated
the size of the earthquake preparation zone using the numer-
ical simulation method and found that the radius (R) of the
zone is proportional to earthquake magnitude (M). In ad-
dition, the relationship can be written by using a formula
of R =10%*M_ These results suggest that a stressed area
before earthquakes is obviously larger than the rupture of
fault zones. However, it is a big challenge to monitor stress
changes in a wide area beneath the ground. A simple way to
imagine this is if we place a stick on a table and then hold
and try to break the stick. The stress we making on the stick
can apply to either a limited local region or to both ends of it.
Migrations and propagations of the loading force can be de-
tected according to the changes of strain and the occurrence
of microcracks. This common sense suggests that the spa-
tiotemporal evolution of earthquake-related stress appearing
a couple of days before mainshocks can be recognized if we
can trace the occurrence of relatively small quakes in a wide
area (Kawamura et al., 2014; Wen and Chen, 2017). Here
we take advantage of earthquake catalogs obtained by dense
seismic arrays in Taiwan and Japan to expose foreshocks dis-
tributed over a wide area instead of a local region.

2  Methodology

The ability to detect relatively small quakes depends on the
spatial density and capability of seismometers. Taiwan and
Japan are both the most famous high-seismicity areas in the
world. Dense seismometers evenly distributed throughout the
whole area are beneficial for monitoring the earthquake oc-
currences close to and far away from fault zones (Chang,
2014). Earthquake catalogs retrieved from Taiwan and Japan
were obtained from the Central Weather Bureau (CWB), Tai-
wan and the Japan Meteorological Agency (JMA). To distin-
guish dependencies from independent seismicity, the earth-
quake catalogs are declustered. Therefore, the ZMAP soft-
ware package for MATLAB (Wiemer, 2001) was utilized to
remove and/or omit influence from duplicate events, such as
aftershocks. The declustering algorithm used in ZMAP is
based on the algorithm developed by Reasenberg (Reasen-
berg, 1985). We classify clusters by using the standard input
parameters (proposed in Reasenberg, 1985, and Uhrhammer,
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1986) for the declustering algorithm. The aftershock clus-
ters in a small area and in a short period of time do not
conform to the Poisson distribution, which requires remov-
ing the aftershocks from the earthquake sequence. Therefore,
some parameters can be set as follows: the look-ahead time
for un-clustered events is 1d, and the maximum look-ahead
time for clustered events is 10d. The measure of probability
to detect the next event in the earthquake sequence is 0.95.
The effective minimum magnitude cut-off for the catalog is
given by 1.5, and the interaction radius of dependent events is
given by 10 km (van Stiphout et al., 2012). Earthquakes with
depth > 30 km were eliminated from the declustered catalogs
to understand seismicity changes before mainshocks mainly
in the crust.

Before the analytical processes in this study, we assumed
that earthquakes with relatively small magnitude can be the
cracks and potentially related to the far mainshocks based on
the large seismogenic areas (Bedford et al., 2020). The min-
imum magnitudes of completeness M. are 2.0 and 0.0 that
can be determined by the declustered earthquake catalogs in
Taiwan and Japan, respectively (also see Figs. S1-S4 in the
Supplement). The earthquakes with M > 2 are selected and
utilized in this study for fair comparison of the seismicity
changes during earthquakes in Taiwan and Japan. We classi-
fied the selected earthquakes via their magnitudes into three
groups (i.e., 3<M <4,4<M <5 and 5 <M < 6). Note
that the classified earthquakes in each group are determined
to be the break events (i.e., the mainshocks). In contrast, the
other selected earthquakes with magnitudes smaller than the
minima of the classified magnitude are determined to be the
crack events.

We construct a spatiotemporal distribution of the crack
events for each break quake. The spatiotemporal distribu-
tion from O to 400 km away from the epicenter of the break
quake during a period of 60 d before and after the break oc-
currence is constructed to illustrate the relationship between
the crack events and the break quake in the spatial and tem-
poral domain. Note that the spatial and temporal resolutions
of the grids of the spatiotemporal distribution are 10 km and
1 d, respectively, based on the declustering parameters in the
ZMAP software (Wiemer, 2001). We count the crack events
in each spatiotemporal grid according to distance away from
the epicenter and the differences in time before and after the
occurrence of the break quake.

The superimposition process, a statistical tool utilized in
data analysis, is capable of either detecting periodicities
within a time sequence or revealing a correlation between
more than two data sequences (Chree, 1913). The process is
known as the superposed epoch analysis (Adams et al., 2003;
Hocke, 2008). In practice, the superimposition is a process
to stack numerous datasets that can migrate unique features
for a few datasets and enhance common characteristics for
the most datasets. The count in each grid of the spatiotem-
poral distributions for all the break quakes is superimposed
as a total one based on the occurrence time and epicentral
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Figure 1. Spatiotemporal seismic density distributions in Taiwan and Japan. The seismic densities constructed by using the declustered earth-
quake catalogs of Taiwan and Japan are shown in the left and right panels, respectively. The seismic density reveals changes in seismicity at
distances from the epicenters ranging from 0 to 400 km up to 60 d before and after quakes in a particular magnitude group. The superimposed
number in each grid is further normalized for a fair comparison by using the total number of quakes and their areas. Notably, the total number

of quakes is shown in the title of each diagram.

distance of the break quakes. The total count of the superim-
posed distribution in each spatiotemporal grid is normalized
to seismic density (count per square kilometer) for compar-
ing to the total number of the break quakes and the related
spatial area. Moreover, we compute the average values every
distance grid using the seismic densities 60 d before and after
the quake. The average values are subtracted from the seis-
mic densities, and the obtained differences are divided by the
average values in each distance grid to obtain the normal-
ized variation, clarifying changes of the seismic density in
the spatiotemporal domain.

3 Analytical results

The earthquakes with magnitude > 2 listed in the declus-
tered catalogs of Taiwan from January 1991 to June 2017
are utilized to construct a spatiotemporal distribution of fore-
shocks and aftershocks corresponding to the quakes with 3 <
M < 4. We superimposed all the crack events correspond-
ing to the 15625 quakes (3 < M < 4). The seismic density
is more than 1000 times greater in a hot region at a dis-
tance of 10km away from an epicenter (which is generally
considered to be the gestation area of foreshocks) than it is
in areas located > 200 km from the epicenter (Fig. 1a). The
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sudden increase in seismic density suggests that earthquake-
related stress accumulates mainly around the hot region, trig-
gering many foreshocks a few days before the earthquakes
with 3 < M < 4. This partial agreement of the numerous re-
cent studies reported that the seismicity migrates toward the
fault rupture zone within tens of kilometers from epicenters
a couple of days before earthquakes (Kato et al., 2012; Kato
and Obara, 2014; Liu et al., 2019). Meanwhile, the events
mainly occur 01 d after the quakes, which is irrelevant to the
smaller distribution 0-1 d before the quakes (also see Fig. 1).
The seismic density close to epicenters (Fig. 1) suddenly in-
creases before and gradually decreases after the quakes. The
irrelevance and the differences of changes rates with epicen-
tral distance smaller than 20 km before and after the quakes
reveal that the increase in seismicity before the quakes is not
contributed by the seismicity after due to the analytical pro-
cesses in this study. In addition, these analytical results of
the seismic activity are also in agreement with the studies
in Lippiello et al. (2012, 2017, 2019) and de Arcangelis et
al. (2016) with regards to distinct methods.

On the other hand, the increase in seismic density is not
only always limited within the hot region, but also extends
outward to a distance of over 50km away from the epicen-
ters about 0-40d leading up to the occurrence of the quakes
(Fig. 1a). We further examine the spatiotemporal changes in
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Figure 2. Changes of the normalized spatiotemporal variations in Taiwan and Japan. The normalized variations corresponding to the seismic
density in Taiwan and Japan (in Fig. 1) are shown in the left and right panels, respectively. The colors reveal changes of the normalized
variations at distances from the epicenters ranging from 0 to 400 km up to 60 d before and after quakes in a particular magnitude group.

the seismic density up to the M > 4 quakes utilizing the same
superimposition process (Fig. 1b and c). The expansion of
the increased seismic density about 0-40d leading up to the
occurrence of the quakes and the sharp increases in seismic
density a few days before the quakes can be consistently ob-
served using the M > 4 quakes in Fig. 1b and c. Similar re-
sults (i.e., the sharp increases in seismic density a few days
before the quakes and areas where the increase in the seis-
micity density is much larger than that of the hot region) can
also be obtained using the earthquake catalogs between 2001
and 2010 from the Japan Meteorological Agency (JMA) in
Japan (Fig. 1d-f). Note that the earthquakes that occurred
on the northern side of the latitude of 32° N were selected
from the Japan catalogs. The selection is based on the fact
that the earthquakes occurred in the area monitored by the
dense seismometer network and to avoid the double count of
events in the Taiwan catalogs. The normalized variations cor-
responding to seismic density in Fig. 1 are shown in Fig. 2.
The radii of the positive normalized variations are approxi-
mately 50 km while earthquake magnitude increases from 3
to 6 in Taiwan (Fig. 2a—c). The land area of Taiwan is ap-
proximately 250 km by 400 km, which causes underestima-
tion of the seismic density in the spatial domain. In contrast,
the positive normalized variations roughly expand along the
radii ranging from 50 to 150 km, while earthquake magni-
tude increases from 3 to 6 in Japan (Fig. 2d—f). However,
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variations in the lead time mostly range from 40 to 20d, and
relationships between the positive normalized variations and
the earthquake magnitude can be found in neither Taiwan nor
Japan (Fig. 2).

In short, the expansion of the increase in seismic density
becomes mitigation and may no longer impact a place at
distances > 200 km away from the epicenters for the earth-
quakes with a magnitude < 6. The increase in seismicity den-
sity before the quakes suggests that the accumulation of the
earthquake-related stress in the crust originates from the hot
region and gradually extends to an external place before
earthquakes occur. The area of this external place is several
times that of a fault rupture zone that is concluded based
on the sparse seismic arrays of the past. If a quake can ex-
cite seismicity changes over a wide area (i.e., over 50 km
by 50km), any crustal vibration related to stress accumu-
lation before earthquakes can be too small to be identified
from continuous seismic waveforms at one station. In con-
trast, crustal vibrations can be a common characteristic of
continuous seismic waveforms at most stations around fault
zones due to the fact that seismicity changes dominated by
earthquake-related stress accumulation are distributed in a
wide area.

https://doi.org/10.5194/nhess-20-3333-2020



C.-H. Chen et al.: Spatiotemporal changes of seismicity rate during earthquakes

4 The principal component analysis (PCA) on the
continuous seismic waveforms

Seismic waveforms obtained from 33 broadband seismome-
ters operated by the National Center for Research on Earth-
quake Engineering (NCREE) of Taiwan, within a temporal
span of approximately 1 year (from June 2015 to June 2016)
are utilized in this study. Note that two seismometers of them
are eliminated from following the analytical processes due
to long data gaps. The principal component analysis (PCA)
method (Jolliffe, 2002) is utilized to retrieve the possi-
ble stress-related common signals from continuous seismic
waveforms on the vertical component at 31 seismic stations
over a wide area and to mitigate local noise simultaneously.
Figure 3a shows the energy and the cumulative energy of the
principal components derived from the continuous seismic
waveforms at the 31 stations. The energy of the first prin-
cipal component is about 12 %, which is more than 3 times
that of the following ones. Thus, we determined the first prin-
cipal component to be the common signals of the ground
vibrations before earthquakes. Figure 3b reveals changes in
the common signals during the study period along the time.
However, no obvious changes can be observed in the tempo-
ral domain.

Thus, we sliced the common signals into several time
spans using a 5d moving window with 1d steps to show
time-varying changes. The common signals in each time
span are transferred into the frequency domain using the
Fourier transform to investigate frequency characteristics
of ground vibrations before earthquakes. The amplitudes
are normalized using the frequency-dependent average val-
ues computed from the amplitude 30d before and after
earthquakes via the temporal division. Here, we take the
M6.6 Meinong earthquake (Wen and Chen, 2017; Chen et
al., 2020c) as an example to understand the changes of the
amplitude of the common signals in the spatiotemporal do-
main (Fig. 4a). Distinct patterns in the amplitude—frequency
distributions can obviously be observed before and after the
earthquake at a frequency higher than 5 x 10~*Hz (also
see Fig. 4e and f). The amplitude at the frequency close to
5x 10~* Hz was obviously enhanced approximately 20-40d
before the earthquake. Hereafter, the enhancements were sig-
nificantly reduced and reached a relatively small value a few
days after the earthquake. Meanwhile, the frequency is close
to 2 x 10~* Hz approximately 60 d before the earthquake and
tends to be high near 1073 Hz a few days before the event
(also see Fig. 4e and f). We next superimpose the ampli-
tude based on the occurrence time of the 17 earthquakes with
4 <M <5 and the 109 earthquakes with 3 < M < 4 during
the 1-year temporal span shown in Fig. 4b and c, respec-
tively. The consistent variations (i.e., the frequency is close to
2 x 10™* Hz approximately some days before the quakes and
tends to be high near 1073 Hz a few days before the quakes)
can be observed in Fig. 4b and c.
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Figure 3. The energy and the first principal component derived
from vertical seismic velocity data from the 31 stations. The energy
and the cumulative energy of the principal components are shown
in (a). Bars denote the energy of each principal component. The
blue line shows the variation in the cumulative energy from dis-
tinct used principal components. The variations in the first principal
component during the period (i.e., from June 2015 to June 2016) are
revealed in (b). The red vertical line indicates the occurrence time
of the M 6.6 Meinong earthquake (on 2 February 2016).

Here, we retrieve the ratios at three frequencies of approx-
imately 1 x 107%, 5 x 10™* and 1 x 1073 Hz to reveal the re-
lationship between the enhancements and earthquake magni-
tudes (Fig. 4d—f). For the Meinong earthquake, the enhance-
ments could be identified at the low frequency of approxi-
mately 1 x 10™* Hz. The ratios exhibit a relatively large value
of ~ 1.2 about 90 d earlier than the earthquake (Fig. 4d). The
ratios rapidly decrease to a relatively small value of ~ 0.5
near 60 d before the earthquake. The enhancements with the
maxima reach ~ 1.6 about ~ 30 d before the earthquake. Af-
ter the earthquake, the ratios fluctuate and recover with a
relatively large value of ~ 1.2 about 100d after the earth-
quake. Regarding earthquakes with relatively small magni-
tude, the enhancements at 1 x 10~ Hz are ~ 1.2 for the group
of 4 <M < 5and ~ 1.1 for the group of 3 < M < 4 between
30 and 50 d before the earthquake occurrence (Fig. 4d). Sim-
ilarly, the enhancements at 5 x 10~*Hz are ~ 1.4 for the
Meinong earthquake, ~ 1.15 for the group of 4 <M <5
and ~ 1.05 for the group of 3 < M < 4 between 5 and 30d
before the earthquake occurrence (Fig. 4e). The enhance-
ments at 1 x 1073 Hz are ~ 1.15 for the Meinong earth-
quake, ~ 1.15 for the group of 4 <M <5 and ~ 1.05 for
the group of 3 < M < 4 between 2 and 30 d before the earth-
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respectively.

quake occurrence (Fig. 4f). The ratios at the three frequencies
in Fig. 4d—f suggest that the amplitude ratios of the enhance-
ments and earthquake magnitudes generally show a propor-
tional relationship. However, the ratios at 1 x 103 Hz with
a relatively large value of ~ 1.6 can be observed during the
period of 60-45 d before the Meinong earthquake due to un-
known disturbances (Fig. 4f).

The findings suggest that the common-mode ground vibra-
tions exist in a wide area before earthquakes due to the sig-
nals being retrieved from most stations distributed around all
of Taiwan through the PCA method. In short, the common-
mode vibrations are very difficult to be identified from the
time series data but become significant in the frequency do-
main. If the expansion of the seismogeneric areas and the
existence of the common-mode ground vibrations are true,
the next step is to determine the potential mechanism hidden
behind this nature.

5 Discussions
Walczak et al. (2017) repeatedly observed stressed rocks ex-
citing long-period vibrations during rock mechanics experi-

ments. Leissa (1969) reported that the resonance frequency
of an object is proportional to its Young modulus and ex-
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hibits an inverse relationship to its mass. Based on the crust,
the outermost of the Earth, being lamellar, we assume that
the earthquake-related stress accumulates in the volume of a
square sheet with a width of 100 km, which is determined by
using a distance of 50km away from an earthquake due to
the significant increase in the seismic density (Figs. 1 and 2).
The resonance frequency near 3 x 10~* Hz (Fig. 4) can be de-
rived from the square sheet once the thickness of the volume
is ranged between 500 and 1000 m (Fig. S5). Although we do
not fully understand the causal mechanism of the thickness,
the agreement with the spatiotemporal domain of the rela-
tively small quakes from the earthquake catalogs, the super-
imposition results of continuous seismic waveforms and the
resonance frequency models suggests that the phenomenon
of variable frequency may exist tens of days before earth-
quake occurrence and can be retrieved by broadband seis-
mometers.

In this study, we determined the seismogenic areas using
the relatively small earthquakes in the spatiotemporal distri-
bution and found that the areas are significantly larger than
the fault rupture zone (Figs. 1 and 2). Meanwhile, the ground
vibrations can exhibit frequency-dependent characteristics at
about 10~% Hz (Fig. 4) that could relate to the large seismo-
genic areas due to the resonance model (Fig. S5). If these

https://doi.org/10.5194/nhess-20-3333-2020
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are true, the seismo-TEC (total electron content) anomalies
in the ionosphere, which is generally observed in a large-
scale area with more than 10000 km? (Liu et al., 2009),
have a high potential to be driven by upward propagation of
acoustic waves before earthquakes (Molchanov et al., 1998,
2011; Korepanov et al., 2009; Hayakawa et al., 2010, 2011;
Sun et al., 2011; Oyama et al., 2016). The existence of the
ground vibrations can generate the acoustic-gravity waves
that have been reported (Liu et al., 2016, 2017). However,
the acoustic-gravity waves in a period of < 300s are diffi-
cult to propagate upward into the atmosphere and the iono-
sphere (Yeh and Liu, 1974; Azeem et al., 2018). The wide
seismogenic areas observed in this study can contribute the
larger-scale ground vibrations at approximately 5 x 10™4-
103 Hz that cover the frequency channel (< 1/300 Hz) for
the acoustic-gravity waves propagating into the atmosphere
and changing the TEC in the ionosphere. Meanwhile, the
seismo-atmospheric and the seismo-ionospheric anomalies
in a large-scale area can also be supported by the acoustic-
gravity waves due to the wide seismogenic areas. While par-
tial aforementioned relationships cannot be quickly proven,
the ground vibrations at a low frequency (< 1/300Hz) in
a wide area assist our understanding of the essence of the
seismo-anomalies in the atmosphere and the ionosphere.

6 Conclusion

The process of stress migration in the spatiotemporal domain
can be concluded from tracing the increase in seismicity ac-
cording to the 10-year earthquake catalogs from dense seis-
mic arrays in Taiwan and Japan. Areas with the increase in
seismicity, where stress accumulates in the crust and trig-
gers earthquakes, are seriously underestimated using a sparse
seismic array. Seismicity initially increases around hypocen-
ters, and this can be observed more than 50 d before quakes
through superimposing large numbers of earthquakes. The
seismicity gradually increases along with the expansion of
areas from fault zones to an area widely covering an epi-
central distance close to 50 km approximately 20-40d be-
fore earthquakes. The crustal resonance exists at a frequency
near 5 x 10~* Hz when the expansion becomes insignificant.
Instead of the spatial expansion, the sharp increase in seis-
micity around the hot regions suggests stress accumulation
in fault zones generating crustal resonance at a frequency of
up to ~ 1073 Hz in the few days before earthquakes. Most
broadband seismometers can observe the variable frequency
of ground vibrations in Taiwan due to the comprehensive
spatial coverage of resonant signals. The variable frequency
depends on various stress-dominant areas that can be sup-
ported by the potential crustal resonance model. Seismic ar-
rays comprising dense seismometers with a wide coverage
are beneficial for monitoring the comprehensive process of
stress migration in the spatiotemporal domain leading up to
a faraway and forthcoming mainshock.
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Data availability. The earthquake catalogs of Taiwan and Japan
were obtained from the Central Weather Bureau (https:/www.
cwb.gov.tw/, last access: December 2020) and the Japan Meteo-
rological Agency (JMA; https://www.data.jma.go.jp/svd/eqev/data/
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