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Abstract. Extreme waves play a crucial role in marine inun-
dation hazards and coastal erosion. Prediction of non-linear
wave–wave interactions is crucial in assessing the propaga-
tion of shallow water extreme waves in coastal regions. In
this article, we experimentally study non-linear wave–wave
interactions of large-amplitude focused wave groups prop-
agating in a two-dimensional wave flume over a mild slope
(β = 1 : 25). The influence of the frequency spectrum and the
steepness on the non-linear interactions of focused waves are
examined. The generated wave trains correspond to Pierson–
Moskowitz and JONSWAP (γ = 3.3 or γ = 7) spectra. Sub-
sequently, we experimentally approach this problem by the
use of a bispectral analysis applied on short time series,
via the wavelet-based bicoherence parameter, which identi-
fies and quantifies the phase coupling resulting from non-
resonant or bound triad interactions with the peak frequency.
The bispectral analysis shows that the phase coupling in-
creases gradually and approaches 1 just prior to breaking,
accordingly with the spectrum broadening and the energy
increase in high-frequency components. Downstream break-
ing, the values of phase coupling between the peak frequency
and its higher harmonics decrease drastically, and the bico-
herence spectrum becomes less structured.

1 Introduction

Extreme wave propagation is a highly non-linear process ob-
served in both open seas and coastal regions. The main phys-
ical mechanisms which may lead to an extreme wave event
are illustrated in Kharif and Pelinovsky (2003), Kharif et
al. (2009), Didenkulova and Anderson (2010) and Onorato

et al. (2013). Extreme waves may occur in deep or shal-
low water, in energetic storm sea state, or in a previously
calm sea state. In our opinion, spatio-temporal wave focus-
ing is one of the most important mechanisms in the extreme
wave formation for shallow and deep water (Kharif and Peli-
novsky, 2003). The spatio-temporal wave focusing is a classi-
cal mechanism giving rise to an important wave energy con-
centration in a small region. If the wave height of the focus-
ing group exceeds 2.2 times its significant wave height, it
can be defined as a rogue or freak wave (Dysthe et al., 2008).
For this reason, spatio-temporal wave focusing is often em-
ployed in laboratory wave flumes with a wide variation of
water depth (Merkoune et al., 2013), spectrum type (Tian et
al., 2011; Xu et al., 2019; Abroug et al., 2019, 2020) and
wavelength-to-depth ratio, in order to better understand the
generation process, the dynamic behaviour and the hydrody-
namic loads on ocean structures in extreme sea conditions.

Over the past years, several studies have attempted to
quantify the spatial evolution of spectral energy of unidi-
rectional wave groups in experimental wave flumes using a
classic Fourier analysis (Tian et al., 2011; Liang et al., 2017;
Abroug et al., 2020). The frequency spectrum only gives the
distribution of energy in the frequency domain; however, in-
formation about the phase coupling between different wave
components is unknown. Consequently, higher-order spec-
trum techniques should be adopted. A powerful tool to in-
vestigate the highly non-linear process is the wavelet-based
bispectral technique, which has been used in several works
to study the non-linear interactions and quadratic phase cou-
pling between wave components (Dong et al., 2008; Ma et
al., 2010). The need to detect and quantify second-order non-
linear interactions can be found in many disciplines, such as
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geophysics (Grinsted et al., 2004), plasma physics (Milligen
et al., 1995), fault diagnosis (Li et al., 2014), health-related
areas, neuroscience (Bai et al., 2017) and wave analysis (El-
deberky, 1996; Eldeberky and Madsen, 1999; Young et al.,
1996; Young and Eldeberky, 1998; Becq-Girard et al., 1999;
Huseni and Balaji, 2017; Zhang et al., 2019). In wave analy-
sis, the propagation of wave trains in the nearshore zone has
an exceptionally high spectral and temporal resolution.

The majority of previous works regarding the evolution
of unidirectional wave trains in numerical and experimen-
tal wave flumes have shown that spatio-temporal focusing
leads to a shape and elevation of a wave crest at focus that
cannot be predicted by either linear or second-order wave
theory. This is due to high-order non-linearities, called the
bound (harmonics) and resonant non-linearities (Vyzikas et
al., 2018). On the one hand, bound non-linearities are the re-
sult of non-linear harmonics that are phase locked to the wave
train and contribute in the sharpening of free surface eleva-
tion. On the other hand, resonant interactions contribute in
the redistribution of energy among different frequency com-
ponents. It is important to mention here that in shallow wa-
ter regions exact resonant interactions are hardly realised in
unidirectional propagation because the resonant conditions
cannot be satisfied in a small area. Therefore, we investi-
gate specifically the role of bound waves generated by non-
resonant three-wave coupling.

Over the past few decades, various experimental studies
have investigated the spatial evolution of non-linear coupling
between wave components. Dong et al. (2008) studied the
spatial evolution of non-linear interactions between differ-
ent wave components in the shoaling and de-shoaling re-
gion by carrying out two random wave experiments based
on JONSWAP spectra with varying peak wave periods and
root-mean-square wave heights. They showed that the de-
gree of quadratic phase coupling increases in the shoaling
region and achieves its highest level prior to wave break-
ing. Ma et al. (2010) studied experimentally JONSWAP wave
trains propagating in intermediate water depth. Recently,
non-linear transformation of unidirectional irregular waves
propagating over a complex bathymetry (1.06< kph < 2.2;
where kp is the peak wavenumber and h denotes the water
depth) was performed in Zhang et al. (2019), who studied
the triad wave–wave non-linear interactions in the case of
long records of JONSWAP irregular waves (1200 Tp, where
Tp is the peak period) using a Fourier-based bispectral anal-
ysis. They found that the phase coupling is strong near the
end of the slope, where second and third harmonics be-
come more important. They also noticed the appearance
of low-frequency waves generated by the difference inter-
actions during wave propagation. We must note here that
the main difference between Fourier-based bicoherence and
wavelet-based bicoherence is the number of degrees of free-
dom (Dong et al., 2008). Wavelet-based bicoherence is a suit-
able tool to detect non-linear wave–wave interactions occur-

ring in relatively short data sequences and can be used to
analyse data collected in laboratory flumes (Elsayed, 2006).

Most of the aforementioned studies were conducted in ran-
dom wave conditions based on JONSWAP spectra. To the
authors’ knowledge, few studies have attempted to quantify
the degree of phase coupling resulting from the propagation
of realistic spectrum wave trains in the nearshore zone using
wavelet-based bicoherence. Experiments are performed on
numerous Pierson–Moskowitz and JONSWAP wave trains
propagating from a constant intermediate water depth to
shoaling and breaking zones.

The paper is outlined as follows. The experimental set-up
and test conditions are illustrated in Sect. 2. In Sect. 3, a short
formal description of wavelet analysis and wavelet-based
bicoherence is provided. The spatial evolution of wavelet-
based bicoherence is discussed in Sect. 4. Section 5 is de-
voted to conclusions and perspectives.

2 Experimental set-up and wave train parameters

The following is a brief consideration of present wave trains
generation; more details of the experiments can be found
in Abroug et al., 2020. The experiments were conducted
in a two-dimensional wave flume of the M2C (Morphody-
namique Continentale et Côtière) laboratory at Caen Uni-
versity, France. The flume is 22 m long, 0.8 wide and the
water depth is h0 = 0.3 m (Fig. 1). In this study, the rela-
tive water depth kph0 < 1.363 is verified, which means that
the modulation instability effect can be neglected (Janssen
and Onorato, 2007; Fedele et al., 2019). An Edinburgh De-
signs Ltd piston type wave maker is located at one end of the
flume to implement wave trains using linear wave generation
signal. Wave trains are generated with almost no reflection
at the end of the flume, since measurements are performed
before reflected waves travel back to the measurement loca-
tion. Thus, the occurrence of resonant interactions potentially
driven by reflected waves is limited, and we only focus on
bound waves.

The data used in this work are issued from Abroug et
al. (2020). The present study relates to seven wave train sim-
ulations based on the averaged JONSWAP spectra (i.e. with
peak factor γ = 3.3 or 7) or Pierson–Moskowitz spectra
with varied peak wave periods fp and wave steepnesses S0
(i.e. non-linearity). The linear NewWave theory (Tromans et
al., 1991), which is able to generate targeted waves at a pre-
scribed location and time by combining sinusoidal compo-
nents of different frequencies, is used as input for the gener-
ated focused wave trains. This theory was validated at deep
water locations, at intermediate water depth locations (Tay-
lor and Williams, 2004) and at coastal regions (Whittaker et
al., 2016); for kh < 0.5). In NewWave theory, the expected
shape of a wave train is the autocorrelation function (Fourier
transform of the spectral density).
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Figure 1. Schematic experimental set-up: WG1 and WG2 denote wave gauge no. 1 and wave gauge no. 2 respectively.

For each wave train, a large number of wave signals were
recorded along the flume to accurately follow the wave evo-
lution in space. The surface elevation is measured by two
aligned wave gauges located from the longitudinal coordi-
nate xmin = 4 m to xmax = 14 m, where x = 0 is defined as
the mean position of the wave maker. The positions of these
wave gauges are clearly delineated in Fig. 1. The sampling
rate is 50 Hz and each record duration is 35 s with a sam-
ple interval of 0.02 s. The fast Fourier transform (FFT) was
applied to each signal, resulting in 1750 frequency compo-
nents over the range [0, 3fp] and with a spectral resolution
1f = 0.023 Hz. The distance from the wave maker for the
focusing point was set to 12 m from the wave maker.

Using linear NewWave theory, the free surface elevation
of a wave train at a distance x from the wave maker can be
written as follows:

η(x, t)=

N∑
i=1

ai cos[ki (x− x0)−ωi (t − t0)] , (1)

ai = A0
S (fi)1f

N∑
i=1
S (fi)1f

, (2)

where ai (Eq. 2) is the amplitude of each component, i varies
from 1 to N (number of waves), x0 and t0 denote respec-
tively the predefined focal location and focal time, ki =
ωi/g tanh(kih) is the wavenumber, ωi = 2πfi is the angu-
lar frequency, h is the water depth, A0 represents the theo-
retical linear crest amplitude of the wave train, S(fi) is the
spectral density, and 1f = fmax−fmin

N−1 is the frequency step.
JONSWAP and Pierson–Moskowitz are the two spectra used
to represent the sea state. All generated waves are crested fo-
cused waves; i.e. the phase angle of the wave group within
its envelope at the focus position is equal to zero.

Based on Eq. (1), the varied parameters during these ex-
periments were the spectrum type (S(fi)) and the wave steep-
ness S0. The peak frequency parameter was chosen in order
to have a relative depth kph0 varying between 0.79 and 0.92
(deep side in Table 1). Deep and shallow sides in Table 1 rep-
resent respectively the flat bottom depth (4 m<x < 9.5 m)
and the shallowest studied depth (x = 14 m). Five of the stud-

ied wave trains have more than one breaking, and breaking
locations xb are indicated as bracketed intervals in Table 1.

3 Wavelet-based analysis

The free surface elevation of each wave train was studied
through the bispectral analysis applied on short time series,
via the wavelet-based bicoherence. The detailed characteris-
tics of the wavelet-based bicoherence can be found in Milli-
gen et al. (1995), and a brief introduction of this technique is
given below. The continuous wavelet transform WT(a, τ ) of
a time series f (t) is calculated as

WT (aτ)=

+∞∫
−∞

f (t)ψ∗a,τdt, (3)

ψa,τ (t)= |a|
−0.5ψ

(
t − τ

a

)
, (4)

where the asterisk denotes the complex conjugate and
ψa,τ (Eq. 4) represents the mother wavelet function dilated
by a factor τ and scaled by a factor a, a > 0. The latter pa-
rameter can be interpreted as the frequency inverse; i.e. f =
1/a. The wavelet transform can be interpreted as a series of
bandpass filter of the time series with a mother wavelet func-
tion. We have chosen the Morlet wavelet as a mother wavelet
function because it provides information about phase and
amplitude, and it is adapted for capturing coherence between
harmonic components. The Morlet wavelet can be consid-
ered as a modulated Gaussian waveform and is defined as

ψ(t)= π−1/4e−
t2
2 e(iω0t), (5)

where ω0 denotes the dimensionless frequency and t is the
dimensionless time. The Morlet wavelet with ω0 = 6 is a
good choice, since it ensures a good balance between time
and frequency localisation (Grinsted et al., 2004; Dong et al.,
2008). For the Morlet wavelet the scale a is almost equal to
the Fourier period T (T = 1.03a). As mentioned in Dong et
al. (2008), it is convenient to write the scales a as fractional
powers of two (Torrence and Compo, 1998):
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Table 1. Wave train key parameters.

Test fp S0 Spectrum type xb kph0 kph

(Hz) (m) Deep Shallow
side side

1 0.70 0.19 Gaussian [11.85; 12.55] 0.84 0.34
2 0.66 0.14 Pierson–Moskowitz 12.9 0.79 0.31
3 0.66 0.28 Pierson–Moskowitz [11.09; 11.82] 0.79 0.31
4 0.75 0.25 JONSWAP (γ = 3.3) [12.13; 12.81] 0.92 0.37
5 0.75 0.38 JONSWAP (γ = 3.3) [10.5; 11.61] 0.92 0.37
6 0.75 0.11 JONSWAP (γ = 7) 13.5 0.92 0.37
7 0.75 0.23 JONSWAP (γ = 7) [12.07; 12.69] 0.92 0.37

ai = a02iδ, i = 0,1,2, . . ., M, (6)

M =
1
δ

log2

(
N1t

a0

)
, (7)

where a0 is the smallest resolvable scale, M represents the
largest scale and δ denotes the scale factor. The a0 parame-
ter should be chosen equal to 2×1t (Torrence and Compo,
1998; Dong et al., 2008).N and1t represent respectively the
number of points in the times series and the time sampling.
The scale factor δ should be sufficiently small to provide
high resolution and adequate sampling in scale. Moreover,
for the Morlet wavelet, a scale factor δ = 0.5 is the largest
value that gives adequate sampling (Dong et al., 2008). It is
for that reason that we opted for a scale factor δ = 0.02, giv-
ing a total of 395 scales ranging from 0.04 up to 11.83 for
respectively high and low frequency. The wavelet-based bis-
pectrum (Eq. 8) measures the phase coupling in the interval
1T = 35 s that occurs between f1, f2 and f3 where the lat-
ter parameters must satisfy the frequency sum rule (Eq. 9).
Quadratic non-linear coupling occurs between f1 and f2,
generating a third component at the sum frequency f3.

The bispectrum (Eq. 8), which is the double Fourier trans-
form of the third-order moment, measures the extent of phase
coherence due to the non-linear triad interaction between
three waves that satisfy the frequency and phases matching
criteria (Eqs. 9 and 10). The estimation of wavelet-based bis-
pectrum in the whole bifrequency plan can be based on its
values in the intervalψ : {[f1 > f2 > 0, f1+f2 = fs = 25 Hz
(Nyquist sampling frequency)}.

B (a1,a2)=

∫
WTx (f1,τ )WTx (f2τ)WT∗x (f3τ)dτ (8)

f3 = f1+ f2 (9)
ϕ3 = ϕ1+ϕ2 (10)

The wavelet-based bicoherence (Eq. 11), which can be de-
fined as the normalised wavelet bispectrum, is used in prac-
tice to measure the degree of phase coupling (Larsen et al.,
2001) and is bounded by 0 and 1 by the Schwarz inequality. A

Figure 2. The wavelet-based bicoherence of a narrow-banded Gaus-
sian wave train (Test 1) at x = 4 m.

value close to unity reveals a maximum amount of coupling,
and a value close to zero corresponds to a random phase re-
lation.

b2 (a1a2)=

|B (a1,a2)|
2[

t=35∫
t=0
|WTx (a1,τ )WTx (a2,τ )|

2dτ

]
t=35∫
t=0
|WTx (a3,τ )|

2dτ

(11)

Figure 2 exhibits a simple illustration of the wavelet-based
bicoherence of a narrow-banded Gaussian wave train (Test 1)
recorded at x = 4 m from the wave maker. The shading in-
dicates the strength of non-linear coupling, with dark red
(b2(f1, f2)= 1) being totally coupled and dark blue (b2(f1,
f2)= 0) completely uncoupled. The degree of phase cou-
pling is represented by the colour bar indicating the sum in-
teractions between two frequencies. In this manner, a visual-
isation of the non-linear activity across the wave train prop-
agation is feasible, detecting the frequency sections of the
signal that contribute the most to the non-linear activity. The
two frequencies f1 and f2 are normalised by the peak fre-
quency fp. Red (b2(fp, fp)) and yellow peaks represent the
phase coupling of the primary frequency component with its
harmonic. In general, a non-null bicoherence b2(f1, f2) > 0
means that the f3 = f1+ f2 component gains energy from
the f1 and f2 components.
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Figure 3. Three sets of time series of Pierson–Moskowitz (Test 3), JONSWAP (γ = 3.3) (Test 4) and JONSWAP (γ = 7) (Test 7) wave
trains.

4 Results and discussions

Figure 3 shows three sets of time series of three wave
trains with approximately the same steepness S0 and de-
rived from Pierson–Moskowitz (Test 3; xb ∈ [11.09; 11.82]),
JONSWAP (γ = 3.3) (Test 4; xb ∈ [12.13; 12.81]) and JON-
SWAP (γ = 7) (Test 7; xb ∈ [12.07; 12.69]) spectra at eight
different locations along the flume. This preliminary fig-
ure shows surface elevation time histories including the first
measurement (x = 4 m), the propagation along the flat bot-
tom, the shoaling and the breaking of the focused wave
group. It should be noted here that the seven studied wave
trains are crest-focused wave groups (8= 0).

Figure 4 shows, in a log scale, the spatial evolution of
the Fourier spectra of the same three wave trains (Test 3,
4 and 7). A spatial downshift of the spectral peak (Test 4
and 7), a steepening of the low-frequency side and a widen-
ing of the high-frequency side are illustrated. These spectral
variations, identified and quantified in Abroug et al. (2020),
concern high- and low-frequency components. The shift of
energy is essentially due to non-linear wave–wave interac-
tions among wave frequency components during the focalisa-
tion process. Nevertheless, we do not distinguish which wave
components participate in the wave–wave interactions, nor
do we distinguish the wave modes that undergo the strongest
non-linear interactions. Consequently, the wavelet-based bi-

coherence is used herein to provide information about the
non-linear triad wave interactions that cannot be easily ob-
tained from the Fourier analysis which was used in Abroug
et al. (2020).

Figure 5 presents the spatial evolution of the wavelet-
based bicoherence of a Pierson–Moskowitz wave train
(Test 3; xb ∈ [11.09; 11.82]) along the flat bottom. This fig-
ure shows that wave–wave interactions between different
modes are weak on flat bottom (4 m<x < 9.5 m; kph0 =

0.79), and few frequency components participate in the
focusing process. In the intermediate water depth region
(4 m<x < 9.5 m), the sea state is almost Gaussian, and for
that reason non-linear wave–wave interactions are relatively
moderate. For example, b2(fp, fp)= 0.1 and b2(fp, 3fp)=

0.065 at x = 4 m indicate respectively a weak self–self wave
interaction at the energy-frequency peak coupled with the en-
ergy at 2fp and a very weak wave interaction at the peak fre-
quency coupled with the energy at 4fp (Fig. 5a). A significant
bicoherence magnitude band ranging from 0.5fp to fp is ob-
served, i.e. b2(0.5fp−fp, 0.5fp−fp), which indicates an en-
ergy transfer from low-frequency components to the spectral
peak. This partially explains the spatial evolution of the spec-
trum, namely the increase in energy in the peak region, which
is potentially a way of compensating for the energy dissipa-
tion in the transfer region, i.e. the region between the spectral
peak and high-frequency regions (Abroug et al., 2020; Liang
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Figure 4. Spatial evolution of normalised amplitude spectra in a log scale for Test 3, 4 and 7.

et al., 2017). Note that the magnitude of the bicoherence is
consistent with the fact that spectrum shape does not vary
substantially along the flat bottom (4 m<x < 9.5 m) (Fig. 4).

As the wave train approaches the toe of the slope (x ∼
9.5 m), more and more wave components are involved in
the non-linear phase coupling, and the bicoherence values
increase progressively. For x = 9.6 m, just a little over the
toe of the slope, the bicoherence magnitude among primary
components increases slightly, i.e. b2(fp, fp)= 0.24 and
b2(3fp, fp)= 0.15, which is consistent with the small energy
increase in the high-frequency region (Abroug et al., 2020).

As the wave train propagates in the shallower region
(9.5 m<x <xb ∈ [11.09; 11.82]), the degree of phase cou-
pling is seen to increase rapidly (Fig. 6a). The degree of
phase coupling within the peak frequency increases consider-
ably at shallower regions compared to deeper regions. Wave

energy transfers increase in the high-frequency region, and as
a result, the spectrum broadens. In the vicinity of the break-
ing location (xb ∈ [11.09; 11.82]), the non-linear coupling
spreads over most of the wave components. The increase in
the second and third harmonic is clearly noticeable in Fig. 6b.
The values of bicoherence for approximately all frequency
pairs are greater than 0.13, indicating that the non-linear cou-
pling reaches its maximum level, which means that almost all
of the higher harmonic waves are involved in the propagation
process.

Downstream of the breaking location (x > xb ∈

[11.09; 11.82]), the degree of phase coupling between
frequency components decreases drastically, and the bico-
herence becomes less structured (Fig. 6d). This result is
consistent with the decreasing trend of energy in higher-

Nat. Hazards Earth Syst. Sci., 20, 3279–3291, 2020 https://doi.org/10.5194/nhess-20-3279-2020



I. Abroug et al.: Laboratory study of non-linear wave–wave interactions of extreme focused waves 3285

Figure 5. The wavelet-based bicoherence spatial evolution on the flat bottom for a Pierson–Moskowitz wave train (Test 3). (a) x = 4 m;
(b) x = 5 m; (c) x = 8 m; (d) x = 9.6 m.

Figure 6. The wavelet-based bicoherence spatial evolution on the sloping bottom for a Pierson–Moskowitz wave train (Test 3). (a) x = 11 m;
(b) x = 12 m; (c) x = 13 m; (d) x = 13.8 m.

frequency components downstream of the breaking location
(Tian et al., 2011; Abroug et al., 2020).

In Figs. 7 and 8, a JONSWAP (γ = 3.3) wave train (Test 5;
xb ∈ [10.5; 11.61]) is chosen to illustrate the spatial evolution
of the wavelet-based bicoherence of a narrower wave train
propagating over the flat and the sloping bottom. Wave–wave
interactions evolve qualitatively in the same way compared to
the case of Pierson–Moskowitz. Figure 7a (x = 4 m) shows
that the two dominant phase coupling peaks appear at the
bifrequencies (fp, fp) and (0.5fp, 0–0.5fp), which illustrates
that the quadratic non-linear interactions only occur between

the peak and low-frequency modes. Note that no other peak
was found to be significant. As the wave train propagates
over the shallower region (x > 9.5 m), new phase couplings
appear at the bifrequencies (2fp, fp), (3fp, fp) and (2fp, 3fp)
(Fig. 8). This finding illustrates that quadratic non-linear in-
teractions between the peak frequency, the first harmonic,
and the second harmonic and third harmonic result from the
gradual broadening of the spectrum. It is in accordance with
previous studies demonstrating that energy is mainly trans-
ferred to high frequencies during the shoaling process (Tian
et al., 2011; Liang et al., 2017; Abroug et al., 2020). For this
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Figure 7. The wavelet-based bicoherence spatial evolution on the flat bottom for the JONSWAP (γ = 3.3) wave train (Test 5). (a) x = 4 m;
(b) x = 6 m; (c) x = 8 m; (d) x = 9.6.

Figure 8. The wavelet-based bicoherence spatial evolution on the sloping bottom for the JONSWAP (γ = 3.3) wave train (Test 5). (a) x =
10.20 m; (b) x = 11.20 m; (c) x = 12.40 m; (d) x = 13.60 m.

wave train (Test 5), the wavelet-based bicoherence reaches its
maximum shortly after the breaking (xb ∈ [10.5; 11.61]) at
x = 12 m. For example, b2(fp, fp)= 0.7, b2(2fp, fp)= 0.53
and b2(2fp, 2fp)= 0.16. Triad interactions lead to skewed
wave profiles and can characterise the near-breaking condi-
tions (Fig. 3 for x > 10.6 m).

Beyond the breaking location (x > xb ∈ [10.5; 11.61]),
the bicoherence decreases sharply and becomes less struc-
tured. For example b2(fp, fp)= 0.52, b2(2fp, fp)= 0.31
and b2(2fp, 2fp)= 0.004 at x = 13.6 m; i.e. h= 0.13 m.
This pattern is qualitatively similar to that obtained in the

case of a Pierson–Moskowitz wave train. This indicates that
the increasing trend of the phase coupling is one of the more
important reasons for the wave train breaking in shallow wa-
ter.

Figures 9 and 10 depict the wavelet-based bicoherence
spectra for the case of a JONSWAP (γ = 7) wave train
(Test 7; xb ∈ [12.07; 12.69]) at eight locations along the
wave flume. No bispectral peak appears at b2(2fp, fp), and
this is maybe not surprising as no clear third harmonic 3fp
is present in the frequency spectrum (Fig. 4). Furthermore,
wavelet-based bicoherence diagrams show that the phase
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Figure 9. The wavelet-based bicoherence spatial evolution on the flat bottom for the JONSWAP (γ = 7) wave train (Test 7). (a) x = 4 m;
(b) x = 6.4 m; (c) x = 8 m; (d) x = 9.6 m.

Figure 10. The wavelet-based bicoherence spatial evolution on the sloping bottom for the JONSWAP (γ = 7) wave train (Test 7). (a) x =
10.2 m; (b) x = 11 m; (c) x = 12.4 m; (d) x = 13.8 m.

coupling reaches its maximum level at frequencies slightly
higher than the exact harmonics (2fp, 3fp . . . ). This result is
consistent with the results of Ma et al. (2010), who explained
this process by the slight upshift of peak values in spectrum
at higher harmonics, which is readily seen in Fig. 4. The fact
that clear first, second and third harmonics are not present is
possibly due to other mechanisms such as quadruplet inter-
actions (f1+ f2 = f3+ f4, Elgar et al., 1995), which have a
shape-stabilising impact on the spectrum and are confined to
free waves. This result is consistent with the peak frequency
downshift demonstrated experimentally in Stansberg (1994)

and Abroug et al. (2020), where it was interpreted as a self-
stabilising feature.

Figure 11 summarises the variability in the location and
intensity of the wavelet-based bicoherence between the bifre-
quency pairs (fp, fp), (2fp, fp), (3fp, fp), (4fp, fp) and
(2fp, 2fp) for several tests. The two vertical solid lines and
the dotted line respectively indicate the breaking region and
the toe of the slope. This figure indicates that the steep-
ness has a strong influence on the non-linear phase cou-
pling between harmonics in intermediate water depth (h0 =

0.3 m). Non-linear wave–wave interactions and their increas-
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Figure 11. Spatial variation of the wavelet-based bicoherence among harmonics. The two vertical solid lines and the dotted line respectively
indicate the breaking region and the toe of the slope.

ing trend is more important for wave trains having strong
non-linearities. Beyond the wave breaking (x > xb), the de-
creasing trend of the phase coupling between harmonics is
also more significant in the case of strong steepness S0. This
result is in accordance with the dissipation related to break-
ing, which is particularly noticeable when the wave steepness
is high (Abroug et al., 2020).

An important similarity between different spectra is that
important wave–wave interactions are mostly limited to the
first harmonics of primary waves (fp, fp) and (2fp, fp).
This finding is consistent with the energetic behaviour of
wave trains downstream of the wave breaking (Abroug et al.,
2020). Moreover, in the case of small and moderate wave
steepness (Test 2; xb = 12.9 and Test 6; xb = 13.5), the phase
coupling varies slightly downstream of the wave breaking
compared to that found prior to the breaking, suggesting that
a small energy transfer happens downstream of the breaking
location.

It can be concluded that bound or non-resonant interac-
tions play an important role in the evolution and breaking
of wave trains in shallow water depth. Although the bound
waves are not supposed to contribute to the energy redistri-
bution, our experimental observations raise the question of

the impact of bound interactions on dissipation and energy
transfers among different frequency components.

5 Conclusions and perspectives

An experimental approach is proposed for determining the
non-linear wave–wave interactions, which accompany the
propagation of large amplitude wave trains, that might cause
damage to coastal zones, marine structures and navigation
vessels. We investigate seven focused wave trains derived
from JONSWAP (γ = 3.3 or 7) and Pierson–Moskowitz
spectra propagating from intermediate water depth to the in-
ner surf zone. The results presented in this study extend the
parameter range of observations of triad interactions. The ex-
perimental conditions were selected based on two parame-
ters: the wave steepness and the spectrum type. The present
data were collected in intermediate water with a kph0 vary-
ing between 0.92 and 0.79. A typical wave train consists of a
large number of waves interacting with one another. Wavelet-
based bicoherence is used to investigate the phase coupling
between frequency components of short time series. Some
consequences of non-linear transfer are briefly discussed –
in particular the role played by non-linear interactions in
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shaping the high-frequency part of the spectrum, the rela-
tive contribution of each harmonic and the downshifting of
the peak spectrum demonstrated in previous studies. Note
that our experimental study is different from previous experi-
ments (Dong et al., 2008; Ma et al., 2010) regarding the slope
geometry and, most importantly, the use of three different
spectral types.

Along the flat bottom (4 m<x < 9.5 m), one might as-
sume that the influence of triad interactions is very weak for
the three considered spectra. The bispectral analysis of the
data shows that as the waves propagate along the flat bot-
tom, the magnitude of the bicoherence increases slightly (be-
tween 0 % and 20 % of its initial value). Moreover, this is
foreseeable because the spectrum and the wave train shape
do not substantially change along the flat bottom, and a small
amount of energy is transferred from the peak region to high-
frequency components.

When the wave train reaches the slope (9.5 m<x <xb),
wave–wave interactions among high-order harmonics in-
crease rapidly and reach the maximum degree in the break-
ing/focus location. In line with previous studies (Elsayed,
2006; Dong et al., 2008; Ma et al., 2010), strong non-linear
interactions were predominantly observed in the shallower
region. The analysis showed a gradual broadening of the
bicoherence spectrum, which is in accordance with previ-
ous studies that demonstrated that the energy is transferred
mainly to high-frequency regions (Tian et al., 2011; Abroug
et al., 2020). This is partly due to significant spectral transfor-
mations which are more important during the shoaling pro-
cess. Particularly, this analysis showed a considerable con-
tribution of second and third harmonics for unidirectional
steep wave trains, and the spectral components at the sec-
ond harmonic 2fp have increased substantially (6 times its
initial value). The bispectral analysis results show that the
wave non-linearity S0 plays an important role in the increas-
ing trend of phase coupling, which is more important for
wave trains having strong non-linearities. This last finding
agrees well with the conclusions made by Ma et al. (2010).

An innovative aspect of this paper is presenting wavelet-
based bispectral analysis for highly non-linear intermedi-
ate water waves with different spectral types. If we com-
pare the three spectra, we can see that all non-linear inter-
actions on the flat bottom (x < 9.5 m) are weak (b2 < 0.15)
in the case of wide spectrum wave trains (Test 2 and 3
Fig. 11). However, in the case of narrower spectra, more
frequencies (e.g. fp, 2fp and 3fp) are implicated in the
focusing process (Test 4–7 Fig. 11), and the correspond-
ing phase coupling is higher (b2 > 0.2). This finding is in
agreement with the stable behaviour of wide spectrum wave
trains, which was demonstrated experimentally in Abroug
et al. (2019) and Stansberg (1994). In intermediate water
depth (0.79< kph < 0.92), wide spectrum harmonics (fp,
2fp, 3fp . . . ) are less implicated in the focusing process com-
pared to narrow-spectrum harmonics. In shallow water re-
gions (9.5 m<x <xb) and after breaking (xb < x), the spa-

tial evolution of the phase coupling is qualitatively similar
for the three spectra.

The results obtained in this study show important features
in wave–wave interactions during the propagation of focused
waves. This study strengthens the usefulness of wavelet-
based analysis in detecting features that are hidden in a
Fourier-based analysis and in explaining a number of phe-
nomena, such as the process leading to wave breaking and
the energy transfer between wave components. Nevertheless,
in order to confirm the use of wavelet-based bicoherence
for more realistic 3D studies with structures, efforts should
be made to expand this study for example by investigating
greater water depths, higher steepness and wider spectra.
Furthermore, the observed evolution of bicoherence for fo-
cused waves should be compared to that of waves with sim-
ilar steepness and bandwidth but with initial random distri-
bution of phase. In other words, efforts should be made to
identify and quantify the phase coupling differences between
focusing wave trains and non-focusing waves. Information
concerning the phase coherence can be obtained by calcu-
lating the biphase parameter (β(a1, a2), Ma et al., 2010).
It will be interesting to quantitatively measure the deviation
of biphase values between primary waves/higher harmonics
and to analyse their spatial evolution through different spec-
tra to distinguish differences. Finally, a detailed study of how
bound energy at harmonics would be influenced by quadru-
plet interactions should be performed.

Shallow water extreme waves are a major threat to off-
shore structures and ships. Findings in this study would im-
prove our understanding of the propagation and breaking
of extreme wave trains and help engineers in monitoring
the wave propagation in coastal regions. The experimen-
tally measured wave signals are highly non-linear, unsteady
and nonstationary. Consequently, the application of time-
localised bicoherence analysis is shown to be a powerful ap-
proach. This study shows that an extreme wave can be read-
ily identified from the wavelet-based bicoherence spectrum,
in which strong energy is transferred to high-frequency com-
ponents during the shoaling process. Such a detailed exami-
nation of individual non-linear interactions is useful for prac-
tical applications such as investigating non-linear responses
of high-frequency loads observed in severe sea conditions
(e.g. springing and ringing, which are excited by the sum-
frequency components of irregular waves). By identifying
which wave components are the most involved in the propa-
gation process, this study may provide a complementary ap-
proach to existing experimental and field studies for deter-
mining extreme wave group run-up and overtopping.

Data availability. The free surface elevation of the seven wave
trains used in this work is available in the Supplement. The seven
files are named in the same way as in the paper. Each file consti-
tutes the source file describing the evolution of free surface eleva-
tion along the flume from x = 4 m (first column) to x = 14 m (last
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column) from the wave maker. More results of bicoherence runs can
be requested from the corresponding author.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/nhess-20-3279-2020-supplement.
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