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Abstract. Growing urban development, combined with the
influence of El Niño and climate change, has increased the
threat of large unprecedented floods induced by extreme
precipitation in populated areas near mountain regions of
South America. High-fidelity numerical models with phys-
ically based formulations can now predict inundations with
a substantial level of detail for these regions, incorporating
the complex morphology, and copying with insufficient data
and the uncertainty posed by the variability of sediment con-
centrations. These simulations, however, typically have large
computational costs, especially if there are multiple scenar-
ios to deal with the uncertainty associated with weather fore-
cast and unknown conditions. In this investigation we de-
velop a surrogate model or meta-model to provide a rapid
response flood prediction to extreme hydrometeorological
events. Storms are characterized with a small set of parame-
ters, and a high-fidelity model is used to create a database of
flood propagation under different conditions. We use kriging
to perform an interpolation and regression on the parameter
space that characterize real events, efficiently approximating
the flow depths in the urban area. This is the first applica-
tion of a surrogate model in the Andes region. It represents
a powerful tool to improve the prediction of flood hazards in
real time, employing low computational resources. Thus, fu-
ture advancements can focus on using and improving these
models to develop early warning systems that help decision
makers, managers, and city planners in mountain regions.

1 Introduction

Flash floods produced by extreme precipitation events have
produced devastating consequences on cities and infrastruc-
ture in mountain regions (EEA, 2005; Wilby et al., 2008).
In many cases, anthropic factors such as unplanned urban
development and climate change can significantly amplify
their effects, increasing the risk for the population and af-
fecting their social and economical conditions (Wohl, 2011).
The Andes mountain range in South America has been the
scenario of many recent floods with catastrophic outcomes
(e.g. Houston, 2005; Mena, 2015; Wilcox et al., 2016). The
piedmont has also experienced a rapid urban growth, with
cities occupying regions near river channels and increasing
the exposure of communities and their infrastructure (Cas-
tro et al., 2019). In this context, assessing flood hazards and
designing strategies to reduce the potential damages caused
by flooding are now critical in cities located near mountain
rivers. Specifically, implementing efficient and accurate tools
that facilitate real-time predictions of potential risks is a key
component to provide decision makers with enough time for
action and reduce the life-loss potential (Amadio et al., 2003;
Resio et al., 2009; Toro et al., 2010; Taflanidis et al., 2013).

One of the main difficulties of predicting flood hazard in
real time in these regions comes from the very short time
available to provide an accurate estimation of the risk. The
complex topography in the Andean foothills is characterized
by small watersheds, on the order of 50–1000 km2, and very
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steep slopes that can reach 40◦. As a consequence, these envi-
ronments often have very short times of concentration (Ama-
dio et al., 2003), which restricts the option of real-time pre-
dictions based on instrumentation along the river network. In
this context, numerical models can play a significant role in
predicting flood propagation for a set of possible scenarios
and understanding their consequences.

Implementing numerical models to simulate flash floods
in these regions, however, is far from trivial, since mul-
tiple factors oftentimes associated with high levels of un-
certainty control the generation and propagation of floods.
In Andean regions, particularly, rivers are characterized by
complex bathymetries and steep slopes, typical of moun-
tain rivers, that generate propagation of flows with rapid
changes of velocity and wet–dry interfaces (Guerra et al.,
2014). Large sediment transport, generally produced by hill-
slope erosion and rilling by the overland flow in areas with
steep slopes and low vegetational covering, can play a signif-
icant role in the flow hydrodynamics (Contreras and Escau-
riaza, 2020), altering the momentum balance of the instan-
taneous flow. Additional factors, such as storms influenced
by the South American monsoon (Zhou and Lau, 1998) and
El Niño–Southern Oscillation (ENSO), can generate anoma-
lously heavy rainfall (Holton et al., 1989; Díaz and Markgraf,
1992). However, there is a lack of meteorological, fluviomet-
ric, and sediment concentration data, used for calibration and
validation of models, due to the difficulties of measuring in
high-altitude environments, with difficult access, and during
episodes of severe weather.

Models can provide accurate results with high resolution
in urban areas, incorporating the coupling effect of meteo-
rological, hydrological, hydrodynamics, and sediment trans-
port components. Unfortunately, they might require large
computational costs, with hundreds to thousands of CPU
hours per simulation (Tanaka et al., 2011), which prevent the
timely prediction of flood propagation that is necessary, es-
pecially when the uncertainty of the flood conditions requires
the evaluation of multiple possible scenarios of a single event
(Toro et al., 2010).

Thus, combining physically based high-fidelity models
with statistical approaches is a good alternative to provide
fast responses, but preserving the high resolution and high
accuracy of physically based models. Surrogate models (or
also called meta-models) based on interpolation/regression
methodologies have already been applied with the same ob-
jective for surge predictions during extratropical cyclones
(Taflanidis et al., 2013), to substitute hydrodynamic mod-
els and predict maximum peak flows during hydrological
events (Bermúdez et al., 2018) and estimate flooding maps
(Jhong et al., 2017), among others. The general idea consists
in (1) developing a database of high-fidelity simulations and
(2) parameterizing each storm/simulation through a small
number of variables to represent the input for the surrogate
model, and the outputs of interest. Then, we (3) provide a
fast-to-compute approximation of the input–output relation-

ship. After the surrogate model is developed, it can be used to
predict scenarios for new sets of inputs or new storm charac-
teristics that were not simulated with the high-fidelity model.

The objective of our research is to assess the applicabil-
ity and performance of a surrogate model or meta-model
approach, to accurately and efficiently predict flood hazard
from hydrometeorological events in an Andean watershed.

We select the Quebrada de Ramón watershed as a study
case, which is located in the Andean foothills of central
Chile. We develop a set of high-fidelity simulations for a
wide range of hydrometeorological scenarios by coupling
two models: (1) a semi-distributed hydrological model that
transforms precipitation into runoff (Ríos, 2016) and (2) a
two-dimensional (2D) high-resolution hydrodynamic model
of the non-linear shallow-water equations, which incorpo-
rates the effects of high sediment concentrations (Contreras
and Escauriaza, 2020). We parameterize the set of high-
fidelity simulations by selecting four input parameters that
describe the storm events and one output that describes the
flood hazard at critical points within the watershed. Then, we
implement the surrogate model by statistically interpolating
a relationship between inputs and output on the parameter
space. In this work, we implement kriging or Gaussian pro-
cess interpolation, a popular surrogate modeling technique to
approximate deterministic data (Couckuyt et al., 2014).

The meta-model can be used to rapidly calculate the flood
hazard output for inputs that describe new events. We use
physical variables based on the analysis of the results of
the high-fidelity model, describing the dynamic interplay
between the high sediment concentrations and geomorphic
drivers on the flood propagation in mountain streams (Con-
treras and Escauriaza, 2020), as well as the implementation
of the surrogate model. Thus, the surrogate model provides
high-resolution results with low computational costs, con-
siderably more inexpensive compared to traditional compu-
tational fluid dynamics (CFD) simulations (Couckuyt et al.,
2014; Jia et al., 2015), by using a database of precomputed
cases for the fast evaluation of multiple scenarios.

The paper is organized as follows: in Sect. 2 we provide
a detailed description of the generation of the database that
we use to build the surrogate approach, using high-fidelity
simulations that combine a hydrological model and a 2D hy-
drodynamic model for the Quebrada de Ramón stream near
Santiago, Chile. In Sect. 3 we describe the statistical interpo-
lation of the surrogate model using kriging. Results for water
depth predictions in critical points and flooded areas are de-
scribed in Sect. 4. In Sect. 5 we provide a discussion of the
results, and in the conclusions of Sect. 6 we summarize the
findings of this investigation and discuss future research di-
rections.
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2 Database generation through high-fidelity
simulations

The first requirement to implement a surrogate model is
developing a database of high-fidelity simulations that de-
scribe the complex interaction between meteorological, hy-
drological, and hydrodynamic processes during the storms.
We select the Quebrada de Ramón watershed, located in
central Chile, to the east of the city of Santiago, as our
study case. The elevation of the main channel ranges from
3400 to 800 m a.s.l., and the total area of the watershed is
38.5 km2. The steep gradients in the basin and channels pro-
duce high flow velocities and large sediment concentrations
reaching urban areas. The record of flash floods shows that
extreme precipitation can be generally accompanied by an
increment of temperature and a higher elevation of the 0 ◦C
isotherm, particularly during events affected by the El Niño
phenomenon. The flood risk has increased over the last years,
since in the lower section of the watershed the natural chan-
nel has been replaced with an artificial channel with a de-
sign discharge of 20 m3 s−1, i.e., the 10-year flow discharge
(Catalán, 2013).

One of the most challenging aspects of modeling this area
is the lack of accurate and continuous hydrometeorologi-
cal data. This is critical at high altitudes, where estimating
the location of the 0 ◦C isotherm is key to predict the total
area draining liquid rainfall. The only continuous hydrom-
eteorological data available come from a station located at
527 m a.s.l., at around 10 km west of the outlet of the wa-
tershed, which provides daily precipitation and temperature
data for approximately 40 years. In terms of streamflow, there
is only one gauge at the outlet of the basin, at the critical
point in the artificial channel. The gauge has a discontinuous
record of monthly, daily, and maximum instantaneous dis-
charge between 1991 and 2015, with gaps especially during
extreme weather conditions.

To create the database, we couple hydrological and hy-
drodynamic models to run 200 years of continuous synthetic
precipitation and temperature series, simulating the rainfall–
runoff process in the watershed. We use a hydrological model
described in Sect. 2.1 to compute the time series of river dis-
charge at the outlet of the natural domain, which corresponds
to the entrance to the urban area. Then, we select events such
that the maximum instantaneous flow rate exceeds 20 m3 s−1,
obtaining a set of 49 different hydrographs. We use the hy-
drodynamic model of Contreras and Escauriaza (2020), ex-
plained briefly in Sect. 2.2, to propagate these hydrographs
through the urban area for different sediment concentrations
that are quasi-randomly selected within a realistic range for
the region. Thus, each simulation in the database describes
flow depths and velocities during the flood in the study area,
produced by specific hydrometeorological conditions and the
high-resolution topography of the terrain.

In the remainder of this section, we provide a detailed de-
scription of both the physics-based hydrological and hydro-

dynamic models and their implementation in the Andean wa-
tershed.

2.1 Hydrological model

We develop a continuous rainfall–runoff model using HEC-
HMS (Scharffenberg and Fleming, 2010), which transforms
meteorological data into discharge hydrographs, based on the
work of Ríos (2016). We divide the watershed into subcatch-
ments using a bare-earth digital elevation model (DEM). The
model calculates the abstractions for each of the subcatch-
ments (i.e., interception in vegetation, surface storage and in-
filtration), the evapotranspiration, and the snow melting and
accumulation. On the other hand, the base flow and excess
runoff are combined to calculate the response hydrograph,
which is then propagated to the outlet of the watershed.

Interception by vegetation is calculated using a simple
model that considers a maximum storage capacity for each
subcatchment, which is a function of the type of vegetation,
the season of the year, and the characteristics of the storm
(Ponce, 1989). A similar method was used to estimate the
surface storage, which depends on the soil properties and
the slope (Bennett, 1998). Both the interception and surface
storage must be filled before initiating infiltration, which is
simulated with the soil moisture accounting (SMA) method
(Scharffenberg and Fleming, 2010). The SMA method rep-
resents the catchment as a group of different subsurface stor-
age strata, in which infiltration, percolation, the soil humid-
ity dynamics, and evapotranspiration are continuously simu-
lated during wet and dry periods. Evapotranspiration is calcu-
lated using the Priestley–Taylor equation (Chow et al., 1988),
while snow accumulation and melting are simulated as a
function of the atmospheric conditions through the temper-
ature index (Bras, 1990). In the model, the melted snow be-
comes available on the soil surface and then is added to the
rainfall hyetograph (see Scharffenberg and Fleming, 2010,
for details).

Base flow in the subcatchments is estimated with a lin-
ear reservoir model able to represent an exponential reces-
sion curve. The Clark unit hydrograph that propagates the
time–land curves through the linear reservoir is used to sim-
ulate the direct response of the subcatchment (see Viessman
and Lewis, 2003, for details). Because of the low storage
and flood attenuation capacity of the channel network in this
mountain environment, we use a simple delay method with-
out attenuation to simulate the transit of the hydrographs
from every subcatchment to the outlet.

The Quebrada de Ramón basin was divided into
12 subcatchments whose morphological metrics were ob-
tained from a 2 m resolution bare-earth digital elevation
model (DEM), as shown in Fig. 1. We use daily precipita-
tion and temperature data recorded at Quinta Normal sta-
tion, located at 527 m a.s.l., at around 10 km west of the
outlet of the watershed. The data comprise the period from
1 April 1971 to 31 March 2010, which represents 40 hydro-
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Figure 1. Configuration of the Quebrada de Ramón used in the hydrological model. The colored areas represent each of the subcatchments,
enumerated from 1 to 12 in HEC-HMS. The blue lines represent each of the reaches and the blue dots the junctions between them. Background
image: © Google Earth.

logical years. To perform the simulation, we used the method
proposed by Socolofsky et al. (2001), slightly modified by
Ríos (2016), to statistically disaggregate the daily precipita-
tion record to generate 5-hourly synthetic records (i.e., a total
of 200 years). These hourly synthetic records in the Quinta
Normal gauge were extrapolated to the different subcatch-
ments by considering a linear gradient and the elevations of
their centroids. This gradient was estimated using annual pre-
cipitation records between 1995 and 2014 for 23 stations lo-
cated in a surrounded area of 3000 km2, whose elevations
vary between 176 and 2475 m a.s.l., and was assumed to be
unique and constant. Likewise, we extrapolate the records of
maximum and minimum daily temperature of Quinta Normal
to each subcatchment following the −6.5 ◦C km−1 gradient,
typically used in the zone (Torrealba and Nazarala, 1983;
Lundquist and Cayan, 2007). The daily record is disaggre-
gated in an hourly time series, using a procedure based on a
Fourier decomposition (Campbell and Norman, 2012). Since
there are no series of hourly solar radiation data in the study
area, we use the monthly average of solar radiation in the pe-
riod 2003–2012 for the entire watershed, which is very simi-
lar for the region (Ministerio de Energía, 2015).

Due to the lack of a long and reliable record of stream-
flow data at Quebrada de Ramón, we followed the approach
presented in Ríos (2016) to calibrate the model by replicat-

Figure 2. Calibration of HEC-HMS: comparison between measured
flow rate and results from the hydrological model.

ing the most recent annual frequency curve reported in the
study area (ARRAU Ingeniería, 2015). We run the model us-
ing the 200 years of hourly synthetic record with a time step
of 30 min.

In Fig. 2, we compare both the frequency curves of annual
maximum discharges. The similarity between both curves
demonstrates the ability of the model to simulate large
streamflows expected for the basin.
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2.2 Hydrodynamic model

We propagate the floods by solving the non-linear shallow-
water equations (NSWEs), which correspond to the conser-
vation of mass and momentum, assuming hydrostatic pres-
sure distribution, negligible vertical velocities, and vertically
averaged horizontal velocities. Since the high sediment con-
centrations can change the rheology of the flow, we modify
the equations to account for the heterogeneous density dis-
tribution (Contreras and Escauriaza, 2020). We couple the
sediment mass conservation equation and include an addi-
tional source term in the momentum equations to represent
the additional stresses produced by the increase in the density
and viscosity of the water–sediment mixture. In the numeri-
cal solution, we compute the evolution in time and space of
the flow depth h, the volumetric sediment concentration C,
and the Cartesian components of the 2D flow u and v in the
X and Y directions, respectively.

The equations are solved in non-dimensional form, us-
ing a characteristic velocity scale U , a scale for the water
depth H, and a horizontal length scale of the flow L. Two
non-dimensional parameters appear in the equations: (1) the
relative density between the sediment and water s = ρs/ρw,
and (2) the Froude number of the flow Fr = U/

√
gH.

To adapt the computational domain to the complex ar-
bitrary topography in mountainous watersheds, we use a
boundary-fitted curvilinear coordinate system, denoted by
the coordinates (ξ , η). Through this transformation, a better
resolution in zones of interest and an accurate representation
of the boundaries are possible. We perform a partial transfor-
mation of the equations, and we write the set of dimension-
less equations in vector form as follows:

∂Q

∂t
+ J

∂F

∂ξ
+ J

∂G

∂η
= Sb(Q)+ SS(Q)+ SC(Q), (1)

where Q is the vector that contains the non-dimensional
cartesian components of the conservative variables h, hu, hv,
and hC. The Jacobian of the coordinate transformation J is
expressed in terms of the metrics ξx , ξy , ηx , and ηy , such that
J = ξxηy − ξyηx .

The fluxes F and G in each coordinate direction are ex-
pressed as follows:

F =
1
J


hU1

uhU1
+

1
2Fr2 h

2ξx

vhU1
+

1
2Fr2 h

2ξy

ChU1

 ,

G=
1
J


hU2

uhU2
+

1
2Fr2 h

2ηx

vhU2
+

1
2Fr2 h

2ηy

ChU2

 , (2)

where U1 and U2 represent the contravariant velocity com-
ponents defined as U1

= uξx +vξy and U2
= uηx +vηy , re-

spectively.

The model considers three source terms: SB contains the
bed slope terms, SS corresponds to the bed and internal
stresses of the flow, and SC incorporates the effects of gra-
dients of sediment concentration.

To account for the rheological effects, in the SS term, we
modify the quadratic model of O’Brien and Julien (1985) to
represent the stresses for a wide range of sediment concen-
trations, expressing clearly the contribution of each physical
mechanism. Thus, the source terms for the bed and internal
stresses for the i coordinate direction can be written as

SSi = Syield+ Svi + Stdi , (3)

where Syield represents the sum of the yield and Mohr–
Coulomb stress, Svi the viscous stress, and Stdi the sum of
the dispersive and turbulent stresses. We modify the model,
changing the equations to represent each of the terms from
those originally used, which have been obtained from exper-
iments or physically based formulas, to the traditional flow
resistance formulas that converge to zero when the concen-
tration is zero.

The system of equations is solved in a finite-volume
scheme based on Guerra et al. (2014), which has shown high
efficiency and precision to simulate extreme flows and rapid
flooding over natural terrains and complex geometries. The
method is implemented in two steps: first, in the so-called hy-
perbolic step, the Riemann problem is solved at each element
of the discretization without considering momentum sinks.
The flow is reconstructed hydrostatically from the bed slope
source term, adding the effects of the spatial concentration
gradients. In the second step, we incorporate the shear stress
source terms utilizing a semi-implicit scheme, correcting the
predicted values of the hydrodynamic variables. To com-
pute the numerical fluxes, we implement the VFRoe-NCV
method, linearizing the Riemann problem (Guerra et al.,
2014). The MUSCL scheme is used to perform the extrap-
olation with second-order accuracy in space. The model has
been validated for many cases including supercritical flows
and wave propagation on dry surfaces, also comparing the
results with analytical solutions and experiments that include
sharp density gradients. For additional details of the model,
the reader is referred to Contreras and Escauriaza (2020).

For the Quebrada de Ramón watershed, we simulate the
propagation of the 49 hydrographs obtained from the hydro-
logical model, whose maximum flow rate exceeds 20 m3 s−1,
which is the maximum hydraulic capacity at the critical point
in the urbanized area. We define the computational domain
shown in Fig. 3 that comprises the channelized portion of
the main channel (6.6 km approximately), which starts at an
elevation of 878.8 m a.s.l. A curvilinear boundary-fitted grid
is used to perform the simulations, consisting of a total of
3914× 697 grid nodes. The grid resolution varies progres-
sively in the flow direction from 0.5 m upstream to 2 m of
resolution within the flooding zone. In the cross-stream di-
rection, the resolution of the grid varies from approximately
0.5 m near the main channel to more than 30 m in areas that
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Figure 3. Aerial view of the urbanized area of the Quebrada de Ramón watershed. The area enclosed by the black line defines the computa-
tional domain used in the hydrodynamic model. The grid is presented every 100 nodes in the direction of the flow and every 20 nodes across
the river channel. Background image: © Google Earth.

Figure 4. Distribution of the mean sediment size in millimeters. Orange triangles denote the sites where we performed direct measurements
of sediment size distributions. Background image: © Google Earth.

are never flooded. To construct the grid, we couple a 1 m
resolution lidar survey of the area around the channel, with
0.5 m resolution topographic field measurements to define
the main channel and a 0.5 m digital surface model (DSM)
from satellite images for the rest of the watershed, which cap-
tures natural and built features.

The bed roughness is represented by a mean sediment
grain diameter ds, which is shown in Fig. 4. We use field
measurements at the locations shown as the orange symbols
to determine ds along the channel. We derived values of ds
from Manning coefficients in the floodplain, by using the
Strickler relation (Julien, 2010). Based on satellite images
and field observations, we define two types of land cover:
floodplain with short grass (n= 0.025) in parks and rough
asphalt (n= 0.016) in the rest of the urbanized area.

The hydrographs resulting from the hydrological model
correspond to the inflow boundary condition in the eastward
boundary, and open boundary conditions are defined at all
the other boundaries of the computational domain. The ini-
tial condition for all the cases is dry-bed since we are in-
terested in simulating the propagation of single events, and
the channel is typically dry before events. We run the simu-
lations for a total physical time equivalent to the length of
the hydrograph plus a time of concentration of the water-
shed (∼ 3 h). We use a simulation time step defined by the
Courant–Friedrichs–Lewy (CFL) stability criterion, with val-
ues within 0.4–0.6.

The sediment transport is probably the factor with the most
uncertainty, since its value can depend on localized land-
slides, previous recent storms, or inter-annual changes in the
vegetation covering, among others. Magnitudes of sediment
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M. T. Contreras et al.: Forecasting flood hazard in real time: a surrogate model for flood hazards 3267

Figure 5. Instantaneous flow depth in the Quebrada de Ramón and the flooded area in Santiago, Chile, for a peak flow of 97 m3 s−1 and
38 % of sediment concentration. Background image: © Google Earth.

concentration have been reported for the largest flood regis-
tered in the watershed, which was generated during an abnor-
mally warm storm, with periods of intense precipitation over
partially saturated soils. The sediment concentration during
the storm could not be directly measured, but it was estimated
to be around 40 % (Sepúlveda et al., 2006; Sepúlveda and
Padilla, 2008). In the present investigation, we chose values
of sediment concentrations in a range between clear water
and 40 %, through a Latin hypercube sampling. We based this
range on estimations for previous events and a recent study
in this river that shows the most significant differences in
the hydrodynamics of the flow occur between 0 % and 20 %
(Contreras and Escauriaza, 2020).

Figure 5 shows the instantaneous results of the simulations
for a peak flow of 97 m3 s−1 with 38 % of sediment concen-
tration. The spatial and temporal resolution of the simula-
tions allows us to explore in detail the evolution of the flow
along the main channels and its propagation towards the ur-
ban areas. The results show significant changes in flow depth
and velocity in the urbanized zone, with more gentle slopes
that coincide with results reported in Contreras and Escauri-
aza (2020).

2.3 Definition of inputs and outputs of the surrogate
model

Parameterizing the database and defining a small number of
input and output variables that can capture the characteristics
of the storms and the flood propagation require understand-
ing the physics of the floods. In this section we provide a brief
overview of the components that control flooding in Andean
environments and define the parameters used to implement
the surrogate model.

From the hydrometeorological perspective, the volume of
precipitation and its spatial and temporal distribution are
the critical factors that define the magnitude of the flood.
Most of the precipitation in the region of study occurs be-
tween May and September, which constitutes the rainy sea-
son. Storms are typically frontal rainfall events that last from
1 to 2 d (Garreaud, 1993). They correspond to 80 % of the
total events in the area, accumulating 50 % of the annual
precipitation (Montecinos, 1998). Cyclonic events, however,
also take place in the mountains, producing storms with in-
tense precipitation. While these events occur occasionally in
the area, they can produce extreme flash flooding. El Niño–
Southern Oscillation (ENSO) is one of the factors that also
generates floods in the Andes (García, 2000; Sepúlveda et al.,
2006). This phenomenon cyclically produces years of severe
drought or frequent floods (Rutllant et al., 2004). During
rainy years, also known as El Niño years, the intensity and
duration of the storms are larger, often producing flash floods
and debris flows in the watersheds along the Andean range.

Warm temperatures during storms, especially when they
are influenced by the ENSO phenomenon, are a critical factor
that might increase the flooding effects (Vicuña et al., 2013).
Due to the complex topography in these environments, wa-
tersheds are very susceptible to the variation in the elevation
of the 0 ◦C isotherm. Warm conditions enlarge the total area
contributing direct excess runoff, increasing runoff volumes,
peak discharges, flow velocities, and sediment transport.

Steep topographic gradients of the channels promote the
mobilization of large amounts of sediments, mostly from
landslides. In many cases, the volumetric sediment concen-
trations in the flow can exceed 20 %, which requires the con-
sideration of additional stresses produced by the particle–
flow and particle–particle interactions (Julien, 2010). In
those cases, the rheology of the flow changes from the tra-
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ditional resistance term that only considers the bed stresses.
The changes in the flow hydrodynamics due to high sediment
concentrations are also evident in the flood propagation. In
the study region, Contreras and Escauriaza (2020) showed
that the flooded area in the urban zone increases 36 % when
comparing the same flood with clear water or 20 % sediment.
Likewise, the water depth in the urban area can increase 25 %
when 60 % of sediment concentration is considered instead
of clear water.

In this framework, we characterize the extreme events in
the watershed by only four parameters to define the storms.
These parameters are the following:

1. mean value of the intensity of rainfall per event P ;

2. the second statistical moment of the precipitation M2P

with respect to the starting time of each event, to in-
corporate the temporal distribution and duration of the
event;

3. the minimum temperature during the day of the
event TMin, which yields information on the elevation
of the 0 ◦C isotherm; and

4. sediment concentration (C), to consider the volumetric
and rheological effects of the flood, i.e., the changes of
velocity and depth, especially when we have a hyper-
concentrated flow.

The output of the surrogate model can be any variable de-
rived from the time series of water depth or flow velocity
distributed in space (i.e., water depths, flow velocities, dis-
charge, force). Here we select the maximum water depth at
the location where the channel reduces its hydraulic capacity
to 20 m3 s−1. Thus, the vector of inputs X and the output Y
to implement the surrogate model are encoded as follows,

X =
[
P M2P TMin C

]
; Y = [hMax] . (4)

In the next section we explain the statistical procedure to
create new scenarios from the interpolation of precomputed
cases of the database.

3 Surrogate model: kriging on the parameter space

After constructing the database with 49 simulations of differ-
ent storms, and parameterizing them by defining the inputs
and the output of the simulations, we implement the surro-
gate model by defining a simplified relationship among the
variables. In this case we use DACE (Design and Analysis
of Computer Experiment), a MATLAB toolbox designed to
implement a variety of kriging models and extensions for sur-
rogate formulations (Couckuyt et al., 2014).

In general terms, kriging considers the response of the
model Ŷ (X) to a vector of inputs X = [x1, x2, x3, . . . , xd ]
as a linear combination or regression function f (X) that

captures the general trend of the data and a random func-
tion R(X) that describes the residuals of the stochastic pro-
cess (Lophaven et al., 2002):

Ŷ (X)= f (X)+R(X). (5)

Defining the correct regression function is not a simple
task, since this function should capture the complexity in the
input–output relationship. DACE provides several options,
and for simplicity the most used ones are the simple and the
ordinary kriging, in which the regression function is defined
as a zero-order or constant function, respectively. In this in-
vestigation we use universal kriging, which provides more
flexibility to the regression function and defines f (X) as a
linear combination of p chosen functions, as follows:

f (X)=

p∑
i=1

αibi(X), (6)

where bi(X) represents the basis functions, and αi repre-
sents arbitrary coefficients. Assuming that the values of αi
are correctly determined by generalized least squares (GLS),
the random function R(X) becomes white noise, and it can
be represented by a Gaussian process Z(X) with mean 0,
variance σ 2, and a correlation matrix Psi (Lophaven et al.,
2002). Thus, the formulation of the surrogate model can be
written as

Ŷ (X)= f (X)+Z(X). (7)

Implementing a surrogate model requires a matrix with
n samples S= [s1, s2, s3, . . . , sn]T , with si ∈ Rd , and its re-
spective deterministic or high-fidelity responses Y = [y1, y2,
y3, . . . , yn]

T with yi ∈ Rq . To determine the functions bi(X)
in the regression function, we assume that they are power-
based polynomials of degree 0, 1, or 2 and that they are
encoded in the matrix F(i,j)= bj (si) with i ∈ {1,n}, j ∈
{1,p}.

On the other hand, the Gaussian process Z(X) is defined
by the correlation matrix 9(i,j)= ψ(si , sj ) with (i,j) ∈
{1,n}. Each term of the matrix is computed from a stationary
correlation function (Couckuyt et al., 2013):

ψ
(
si,sj

)
= exp

(
−

d∑
a=1

θa|si(a)− sj (a)|
k

)
, (8)

where θa and k are parameters that can be fixed or determined
by using a maximum likelihood estimation (MLE) depending
on the correlation function chosen. DACE has built-in multi-
ple options for the correlation functions: Gaussian, exponen-
tial, cubic, linear, spherical, spline, Matérn-3/2, or Matérn-
5/2.

The mean and standard deviation of the prediction are es-
timated as

Ŷ (X)=Mα+ r(X)9−1(Y −Fα),

s = σ

√
1− r(X)9−1r(X)T +

1−FT9−1r(X)T

FT9−1F
, (9)
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where M is the matrix F of basis functions evaluated in
the input vector X, and r(X) is a vector of correlations
r(X)= [ψ(X, s1), ψ(X, s2), . . . ,ψ(X, sn)]. In the follow-
ing sections we use the mean as the prediction (hP) and its
standard deviation s as parameters to assess the performance
of the model. Lophaven et al. (2002) and Couckuyt et al.
(2013) provide a detailed description of the universal krig-
ing in DACE, which is used here.

4 Results

4.1 Cross-validation process: implementing the
surrogate model

Determining the correct order of the regression function and
the correlation function is critical to optimize the accuracy
of the surrogate model. Since there is no clear methodology
to define them, we implement a cross-validation process to
assess the accuracy of a surrogate model built with multiple
combinations of regression and correlation functions.

Traditionally, the cross-validation process consists of di-
viding the database into two groups. The first set is used to
implement the surrogate model and the second one to vali-
date the results and evaluate the accuracy of the predictions.
In this research, due to the lack of hydrometeorological and
streamflow data, we only have simulations for 49 storms that
produce the critical conditions for the system. Thus, reduc-
ing the number of storms in the database might significantly
affect the accuracy of the model. To deal with this setback,
we run the cross-validation process by selecting one testing
storm at a time, building the surrogate model with the re-
maining 48 storms.

We evaluate the performance of the model based on the
mean square error (MSE) and the percent of cases in which
the high-fidelity value is within 1 standard deviation from
the mean of the prediction (PWSD), considering the defini-
tion of Ŷ (X) and s in Eq. (9). In the analysis we use the water
depth at the point in the urban area where the hydraulic ca-
pacity of the channel reduces to 20 m3 s−1. We tested three
orders of the regression function (orders 0, 1, and 2) and the
nine correlation functions (cubic, exponential, Gauss, Gauss-
p, linear, Matérn-3/2, Matérn-5/2, spherical, and spline).

Figure 6 shows the performance for the 27 different surro-
gate models. The MSE, on the left, is significantly reduced
when we use a zero- or first-order regression function, in
comparison with the second order, but it does not strongly
depend on the correlation function. On average, the MSE for
the second-order regression function is 18.59 %, and it de-
cays to 2.92 % and 2.51 % for zero- and first-order functions,
respectively. In terms of the PWSD, the performance of the
different regression functions is associated with the corre-
lation function as well. For the case of a zero-order func-
tion, we observe the worst performance of the model for
Matérn-5/2 (PWSD= 77 %) and the best one for a cubic or

spline function (PWSD= 90 %). For a first-order function,
the Gauss and the cubic or Gauss-p yield the best and the
worst results, respectively, with PWSD= 75 % and 90 %. For
the second-order function, in general, the value of PWSD is
larger for all the correlation functions. The worst cases get
over 85 % and the best ones, Gauss and Matérn-5/2, up to
90 %.

Based on the significant differences of MSE with the re-
gression functions, we decide to implement the surrogate
model with the best combination of MSE and PWSD but only
considering the zero- and first-order regression functions. We
notice that the linear correlation function reaches the mini-
mum MSE for both orders of regression functions. Besides,
this obtains one of the highest PWSDs, only surpassed by the
Cubic and the Gauss-p functions for 2.5 %.

Thus, we use a surrogate model built with a first-order re-
gression function and a linear correlation function for the en-
tire upcoming analysis. The next subsection shows how this
surrogate model performs in terms of the relative and abso-
lute error and how the different input parameters affect the
accuracy of the predictions of water depth at the specific crit-
ical point in the urban area. Then, we explore the idea of a
surrogate model distributed in space to predict flooded areas.

4.2 Prediction of maximum water depth at the critical
point

We study the performance of the surrogate model built with
a first-order regression function and a linear correlation func-
tion for specific events. We use the same methodology to run
the cross-validation process in the previous subsection and
examine the absolute and relative error of the prediction. We
aim at understanding when the surrogate model performs the
best and the poorest depending on the characteristics of the
storms.

Figure 7a shows in red the absolute error between the
high-fidelity value and the mean of the prediction for each
of the 49 storms. The mean of the absolute error is 0.13 m,
with a minimum of only 0.0064 m (Event 27) and a max-
imum that increases to 0.73 m (events 1 and 48). The ma-
jority of the events have an error equal to or smaller than
0.25 m (44 storms or 89.8 %), 6.12 % is in the range 0.25–
0.5 m, and only two of the events, 4 %, have an error that ex-
ceeds 0.5 m. The blue bars represent 1 standard deviation of
the prediction plotted in the positive and negative directions
around zero. Their values vary from a minimum of 18.24 cm
to a maximum of 82.78 cm, with a mean of 29.21 cm. Even
though 87.76 % of the predictions are within 1 standard de-
viation, we observe that there is an association between the
high standard deviations and larger errors.

We compare these results with a similar model devel-
oped by Bermúdez et al. (2018). They implemented a sur-
rogate model based on regression functions to predict maxi-
mum water depth at three specific points in a coastal basin.
After running 100 high-fidelity hydrodynamic simulations,
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Figure 6. Assessment of the surrogate model built with all the available combinations of regression and correlation functions. Panel (a) shows
the performance in terms of the mean square error and (b) the percentage of cases predicted within 1 standard deviation.

Figure 7. Results of the surrogate model for the water depth, compared to the data obtained from the high-fidelity approach. Panel (a) shows
in red the absolute error between the high-fidelity value and the mean of the prediction and in blue 1 standard deviation of the prediction
around zero. Panel (b) shows the relative error of the model. The events in red represent those with a predicted standard deviation larger than
10 % of the mean maximum water depth at the point of the predictions for the entire set of high-fidelity values hHF.

they estimated a mean absolute error for the water depth of
0.023 m. This is an order of magnitude lower than our mean
error (0.13 m). We explain this difference based on the in-
puts used to implement the surrogate models. While we use
hydrometeorological data and thus we intend to substitute
the combination of hydrological and hydrodynamics high-
fidelity simulations, Bermúdez et al. (2018) uses the maxi-
mum discharge at the inlet and the water elevation at the out-
let, so the surrogate model only replaces the hydrodynamic
propagation model.

We also plot in Fig. 7b the relative error for each of
the events, and we highlight with red those with a stan-
dard deviation higher than 10 % of the mean of the max-
imum water depth at the point of prediction, for the total
49 storms. The mean of the relative error for all the events
is 3.6 %, with a minimum and maximum equal to 0.18 % and
19.92 %, respectively. However, if we consider a valid pre-
diction as those values with s ≤ 10 %hHF, we can establish
that the surrogate model can predict 87.76 % of the storms,
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with a mean, minimum, and maximum relative error equal to
2.22 %, 0.18 %, and 6.24 %, respectively.

We also focus on understanding how the surrogate per-
forms depending on the characteristics of the storms. In
Fig. 8, we plot the relative error as a function of the four input
parameters X = [P M2P TMin C] for each of the 49 storms.

Figure 8a shows that the two predictions with more than
10 % of relative error are events with P > 2 mm. This could
suggest that the surrogate model loses accuracy for intense
storms; however, the model is also able to predict storms with
P > 3 mm and errors that do not exceed 5 %.

We show the magnitude ofM2P in Fig. 8b, as a representa-
tion of the temporal distribution of precipitation for the total
duration of the storms. The performance of the model does
not depend strongly on the values of the second moment of
precipitation. Two predictions with relative errors larger than
10 % are storms with M2P on the order of 6 mm2, over the
average of the parameter in the database. Nevertheless, four
other predictions with similar values of M2P and three others
with M2P > 8 have relative errors that do not exceed 5 %.

Warm temperatures during storms have increased the
flooding effect by increasing the total area draining liq-
uid precipitation, runoff volumes, and peak discharges. In
Fig. 8c, we show that the surrogate model exhibits good per-
formance at predicting storms with minimum temperatures
that exceed 10 ◦C, with relative errors lower than 5 %. In-
deed, the two storms with the largest relative error (∼ 20 %)
occur under low temperatures (< 5 ◦C).

The sediment concentration, shown in Fig. 8c, does not
have a specific relationship with the magnitude of the relative
error either, since the predictions with errors that are larger
than 10 % take place in events with sediment concentrations
in almost the entire range of possible values (0 %–40 %).

Therefore, we do not observe that the surrogate model
does especially good or bad for specific characteristics of
storms, which we consider a valuable property of the model.
Having a lightly uniform distribution of cases in the database
is highly recommended; thus the model could accurately pre-
dict events that do not occur very often.

We also study the relationship between the accuracy of
the model and the magnitude of the flood, through the max-
imum discharge at the prediction point, QMax, as shown in
Fig. 9. While the range of QMax in the database varies be-
tween 20 and 46 m3 s−1, the predictions with relative errors
greater than 10 % are floods withQMax <= 40 m3 s−1. More
specifically, the two cases with error of∼ 20 % do not exceed
a discharge of 35 m3 s−1. Another relevant result is that the
surrogate model shows excellent performance in predicting
extreme floods. For example, the largest flood, with a max-
imum discharge of ∼ 46 m3 s−1, is predicted with a relative
error that is lower than 1 %.

In terms of efficiency and computational cost, the time
required for building the model is highly dependent on the
number of cases in the database. For the case of 49 scenar-
ios, the time required for estimating the parameters is 4.78 s,

which needs to be done only once. We can later predict the
maximum water depth at a specific point almost instanta-
neously. Conversely, coupling the hydrologic and hydrody-
namic models takes on the order of days. Since the hydro-
logical model can run only in a single core, running the
200 years of continuous simulation takes about 2 d. Then,
we have to post-process the data to select the single storms,
which takes about an hour. Finally, we run the high-fidelity
hydrodynamic model, which takes between 2 and 3 d to com-
plete using 120 cores. Therefore, running the hydrologic
model only for a few computation days, coupling it with
the hydrodynamic model, and predicting water depth would
never take less than 2 d. This is orders of magnitude longer
than the seconds or minutes that predicting with the surrogate
model takes.

4.3 Predicting the flooded area

With the objective of taking advantage of the high-resolution
results from the database of high-fidelity simulations, we also
explore the idea of predicting the total flooded area in the
urban zone. We implement an individual surrogate model at
each point in the domain, which predicts the maximum water
depth at the specific location by using a first-order regression
function and a linear correlation function. To develop the lo-
cal surrogate models, we consider the same vector X as the
input parameter and the maximum water depth at each point
of the domain as the output. Then, we use in parallel the set of
surrogate models for a unique set of input values, generating
a map of the maximum flooded area, by using the maximum
water depth predicted at each point of the domain.

We validate the model through the same cross-validation
process described in Sect. 4.1. We build the surrogate model
with 48 of the 49 storms, and we validate the prediction
with the remaining storm. We iterate this process for all the
storms. Due to the wide variety of storms that compose the
database, results show areas that are rarely flooded are of-
ten predicted as flooded with water depths on the order of
10−2 cm. To deal with this effect, we filtered the predictions,
considering flooded areas to be the zones with maximum wa-
ter depth equal to or larger than 10 cm.

We assess the performance of this method as a qual-
itative error, as shown in Fig. 10 for a specific storm
withX = [3.22mm 8.42mm2 0.45 ◦C 29.05%] andQMax =

23.7 m3 s−1. In the figure, the green area represents nodes
where the surrogate model and the high-fidelity simulation
show equal flooding, the orange zone shows the nodes where
the high-fidelity model shows flooding which is not predicted
by the surrogate model, and conversely the blue area shows
where the surrogate model predicts flooding in sections that
are dry from the high-fidelity model solutions.

Since this is a mountain river with a steep slope, the
flooded area is usually very narrow along the main chan-
nel. The flooded nodes in this section are always correctly
predicted by the surrogate model. In Fig. 10, the over- and
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Figure 8. Results of the surrogate model for the four input parameters (P , M2P , TMin, and C), compared to the data obtained from the
high-fidelity approach.

Figure 9. Results of the surrogate model for the flow discharge,
compared to the data obtained from the high-fidelity approach.

under-predicted regions exhibit water depths that are very
close to the 10 cm threshold, which indicates that we could
explore a better filter for future analysis.

Additionally, following the guidelines and definitions in
Stephens et al. (2014), we computed three metrics to eval-
uate the performance of the model: (1) hit rate (H ), which
represents the fraction of the flood area correctly predicted;

Table 1. Quantitative assessment of the surrogate model for predict-
ing flooded areas. We present the hit rate (H ), false alarm rate (F ),
and critical success index (CSI). The values represent the basic sta-
tistical parameters for the 49 storms.

H = A
A+C

F = B
B+D

CSI= A
A+B+C

[%] [%] [%]

Mean 91.32 0.73 71.80
Min 43.95 0.00 19.01
Max 99.99 3.10 95.38
SD 12.62 0.69 15.65

(2) false alarm rate (F ), which is the fraction of dry areas
incorrectly predicted; and (3) critical success index (CSI),
which represents the ratio between the correctly predicted
flooded area and the total estimated flooded area. Table 1
shows the equations for each parameter, where A is the
flooded area correctly predicted, B is the area over-predicted,
C the area under-predicted, andD the correctly estimated dry
zones. We show the mean, minimum, maximum, and stan-
dard deviation for the set of storms. For H and F , the ideal
results would be 100 % and zero, respectively. The mean val-
ues of H and F indicate that the model tends to underesti-
mate the flooded zones.
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Figure 10. Qualitative error to assess the performance of a set of surrogate models working in parallel to predict flooded area in the study
area. The results correspond to a randomly selected storm with the input parameters P = 3.22 mm, M2P = 8.42 mm2, TMin = 0.45 ◦C, and
C = 29.05 %. The green area is where the surrogate model correctly predicts the flooding, the orange shows zones where the surrogate model
does not predict the flood, and the blue color represents zones where the surrogate model predicted flood but the high-fidelity model does
not. Background image from © Google Earth.

In terms of efficiency, building this model requires 2 h with
the current database of 49 cases. The number of outputs is
equivalent to the number of nodes in the discretization of the
high-fidelity hydrodynamic model, which is 2 728 058 nodes.
It is important to note that this process needs to be done
only once; then the prediction for different scenarios is quasi-
instantaneous.

5 Discussion

In this investigation we develop the first surrogate model ap-
plied to rapid flood events in mountain regions. We focus
on assessing the performance and applicability of this type
of model in Andean regions, with complex generation and
propagation of floods, and poorly monitored. The results can
also contribute to identify some considerations for future ap-
plications guided to operational systems for water depth and
flooded area predictions.

In terms of implementing the model, the accuracy of re-
sults is highly related to the quality and size of the precom-
puted database: having a good representation of the physics
of flood propagation to perform high-fidelity simulations de-
termines the base error of all the predictions. From the hydro-
logical standpoint, we use a continuous rainfall–runoff model
implemented in HEC-HMS, which is one-way coupled with
the high-resolution two-dimensional hydrodynamic model to
solve the propagation of the flood over the urbanized area. In
this aspect, using field measurements to calibrate and vali-
date both models, including additional physical phenomena
that might have significant effects in other rivers such as
the erosion and deposition of sediments, and having a better
description of spatially distributed parameters (for instance
friction coefficients and land use changes, among others) can
contribute to improve the accuracy of the high-fidelity mod-
els. In this sense, we must clarify that all the errors analyzed
in this research are only associated with the prediction of the
surrogate model, but we do not include the error of the high-

fidelity results, since it is unrealistic to have detailed mea-
surements for every storm at each location of a city.

Another important step is building a database that is broad
enough to cover the entire range of possible cases, and with a
sufficient number of storms to provide a robust set of events
for the interpolation method. Since the surrogate model is
based on kriging, predicting cases outside the range of pa-
rameters simulated for the database can lead to results that
are completely controlled by statistical errors. This is partic-
ularly relevant for the most extreme low-frequency floods,
but having a good representation of them in the database is
crucial to predict them. For operational purposes, a broader
set of precomputed storms is required in order to have two
different sets of data to cross-validate the surrogate model.
However, since the record of precipitation in the study area
is not long enough, synthetic storms might be required for
regions with limited information.

To calibrate the surrogate model, we choose the best com-
bination of regression and correlation functions based on the
mean square error and the percent of cases predicted within
1 standard deviation. The significant difference between the
results for a zero- or first-order regression function versus the
second-order function shows that a linear function can cap-
ture the primary trend between inputs and outputs, and the
correlation function provides the fluctuations from the struc-
ture of the statistical linear dependence. Over-constraining
this relationship to a quadratic function results in a deterio-
ration of the results of the surrogate approach. The different
correlation functions seem to be more flexible to represent
the noise associated with the regression function.

To study the performance of the surrogate model to pre-
dict water depths at specific points in the watershed, we use a
model built with a first-order regression function and a linear
correlation function. From the results, we can clearly select
events that are correctly predicted by the surrogate models in
terms of relative and absolute error. They correspond to the
∼ 90 % of the predictions, with absolute and relative errors
smaller than 0.25 m and ∼ 6 %, respectively. On the other
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hand, we observe that the remaining ∼ 10 % of the events
are predicted with very significant errors that reach 0.73 m
or a∼ 20 % relative error. We notice the association between
low accuracy and high values of the standard deviation of the
prediction s. We suggest considering this relationship to dis-
tinguish events that are not captured by the model. While not
predicting all the events is a limitation for operative-oriented
models, we consider it to be a positive outcome that based on
the value of the standard deviation we can determine whether
the prediction is correct. In this sense, more sophisticated fil-
ters can be applied to determine the accuracy of the predic-
tions, but our observations show that the model yields signifi-
cantly larger standard deviations of the prediction s when the
event is not correctly predicted. Additionally, the short com-
putational times used to predict single-point water depths al-
low us to assess different combinations of inputs that might
contribute to identify outliers in the predictions.

We must also mention that the current database is built
based on the historical record of events in the study area. This
means the events are not uniformly distributed in the entire
range of possible values for each input. In fact, the events that
are the most represented in the database have maximum flow
rates at the critical point lower than 35 m3 s−1; therefore they
are not the most destructive storms. For this reason, we study
whether specific values of the input parameters or maximum
flow rate at the prediction point might diminish the accuracy
of the prediction, and we do not see that specific storms are
consistently not predicted by the model. On the contrary, we
highlight that the current database is able to predict frequent
but also infrequent storms, with high values of P ,M2P , TMin,
andQMax. This shows that a uniformly populated database is
recommended but might not be required, as long as the entire
range of possible cases is precomputed.

We predict flooded areas to try to take advantage of the
spatially distributed information in the database. Our ap-
proach, estimating the maximum water depth at each point
of the domain, presents new challenges since the prediction
of each node does not consider the condition of surround-
ing points, and discontinuities in the water surface might be
predicted. In addition, this methodology does not accurately
predict very shallow water depths. The wide variety of storms
influences the prediction of water depth at points that are
rarely flooded, oftentimes with values on the order of a mil-
limeter or less. We propose solving this by applying a filter
that neglects all the flooded zones with water depths shal-
lower than 10 cm, which works for mountain regions where
the slopes are steep, as in the study case. However, there can
be significant differences in the flooded area predicted for
different values of the filter, especially during larger floods
that reach flatter areas or watersheds characterized by very
flat floodplains. In those cases, we suggest for future appli-
cations assessing different approaches that they incorporate
information of surrounding points. Thus, we only do a qual-
itative analysis to determine whether the areas could poten-
tially be flooded, which is enough for quick-response sys-

tems. In terms of efficiency, this methodology provides the
quasi-instantaneous response the surrogate models seek to
provide.

In general terms, the main advantage of this statistical ap-
proach is to produce fast scenarios for decision makers, ob-
tained directly from the characteristics of the meteorological
event with no need of the high-fidelity approach, which re-
quires running the computationally expensive hydrological
and hydrodynamic models. While the accuracy of the pre-
diction is affected by the statistical approach, the low errors
of most of the prediction allow thinking on possible applica-
tions for quick-response systems, specially if a highly popu-
lated database that covers the entire range of possible storms
is used.

However, we are aware of some of the limitations of this
methodology. First, since the region is poorly monitored, and
there are very scarce historical hydrologic and streamflow
data, a more robust database must include synthetic storms.
Additionally, to deal with the lack of information regard-
ing sediment concentration, we suggest including as part of
the database the same events with different concentrations.
This might contribute to improve the accuracy of predictions
when assessing a storm with different potential concentra-
tions. For the long term, applications would need to include
updates of the database, especially in the context of continu-
ous modifications of the topography and land use. The repli-
cability of this methodology to other watersheds might not
be an easy task. While we can use the same interpolation
methods in other watersheds, we would need to implement
the high-fidelity models with the local data and build a new
database, which is by far the most time-consuming and com-
putationally expensive step. Additionally, depending on the
local physics of the study area, the inputs and outputs of the
surrogate model (X and Y ) might need to be redefined as
well.

6 Conclusions

The simulation of flood hazards by extreme precipitation in
mountain streams requires numerical models capable of cap-
turing complex flows that are influenced by the geomorphic
features of the channel and by high sediment concentrations
that are common in these regions. In this investigation we
develop two models for simulating the flow in an Andean
watershed in central Chile: (1) a hydrologic model combined
with a 2D hydrodynamic model that is coupled with the sed-
iment concentration in mass and momentum and (2) a surro-
gate model that employs precalculated scenarios of the pre-
vious models, to interpolate new cases using kriging.

With the combination of the hydrological and hydrody-
namic models, we can capture the complexity of the flows
and estimate accurate responses to different storms. How-
ever, they require expensive computational resources and
many CPU hours, which cannot be a tool suited for real-
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time predictions. We propose using surrogate models to re-
duce the computational cost, provide a fast prediction, and
evaluate different scenarios to deal with the uncertainty of
different future conditions, while preserving the effect of the
physics of the flows in the prediction. To develop this sur-
rogate model, we characterize the extreme flood events by
statistical parameters of the storm (see Contreras and Escau-
riaza, 2020, for details), and by the sediment concentration.
We develop a database of 49 storms by using the high-fidelity
hydrological and hydrodynamic models. We perform kriging
interpolation, based on the precomputed database, to obtain
water depth at a critical point in the domain and flooded ar-
eas.

Results show a promising performance of the surrogate
models for water depth prediction at a critical point in the
domain. The current database can describe the flow propaga-
tion of floods, incorporating the connection of the hydrology
and the complex hydrodynamics of the flow, highly affected
by rapid slope variations and high sediment concentrations.
Despite having only 49 storms measured in the entire histor-
ical record of the study area, the surrogate model can pre-
dict 90 % of the storms with errors lower than 6 % or 0.25 m.
The remaining 10 % of the storms are clearly not predicted,
based on the high values of the standard deviation of the pre-
diction. More importantly, the surrogate model shows good
predictions for the most extreme events, with high values of
mean precipitation, minimum temperature, storm duration,
and peak flow, which are sparsely represented in the cur-
rent database. This shows that the most critical factor to de-
sign the database is covering the entire spectrum of possible
storms, rather than the uniformity of the storm representation
in the database.

The implementation of surrogate models to predict flooded
areas needs a more careful processing of the results. Since
using individual surrogate models to predict maximum water
depth at each point of the domain does not consider the influ-
ence of surrounding points, discontinuities in the water sur-
face can emerge in the map. However, our results show that
this could be a powerful tool to qualitatively predict flooded
areas, especially in mountain rivers where changes of the wa-
ter depths and the location of the wet–dry interface are more
abrupt and easier to identify, compared to smoother topogra-
phies.

In the future, this surrogate approach can be considered
for a real-time automated forecast framework and as an ad-
vanced tool for decision makers and stakeholders, who can
evaluate scenarios without the technical expertise on the cal-
culation of complex flows during extreme hydrometeoro-
logical events. However, some important issues need to be
resolved first: we recommend increasing the high-fidelity
database by using synthetic storms distributed with methods
such as the Latin hypercube sampling. This will improve the
cross-validation process to determine the regression and cor-
relation function, and it will also improve the accuracy of the
predictions, as the interpolation model will have more infor-

mation to estimate cases that have not been precomputed. In
addition, we will test more sophisticated filters to improve
the predictions and clean areas of the map with almost zero
water depth, which also acquire great importance on flatter
watersheds. Other future topics of research include the in-
corporation of the time dependence, to predict water depths
at different times during storm events. This new feature will
present new challenges since the database has been built with
storms of different durations; therefore a normalization of the
storm durations will be required.

Data availability. The hydrodynamic code and data are available
at https://doi.org/10.5281/zenodo.3597889 (Contreras, 2020). The
surrogate model was implemented with DACE, which can be
found here: http://www.omicron.dk/dace.html (last access: Decem-
ber 2020) (Lophaven et al., 2002).
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