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Abstract. Landslides are major hazards that may pose seri-
ous threats to mountain communities. Even landslides in re-
mote mountains could have non-negligible impacts on pop-
ulous regions by blocking large rivers and forming dam-
breached mega floods. Usually, there are slope deforma-
tions before major landslides occur, and detecting precursors
such as slope movement before major landslides is impor-
tant for preventing possible disasters. In this work, we ap-
plied multi-temporal optical remote sensing images (Land-
sat 7 and Sentinel-2) and an image correlation method to de-
tect subpixel slope deformations of a slope near the town of
Mindu in the Tibet Autonomous Region. This slope is lo-
cated on the right bank of the Jinsha River, ~ 80 km down-
stream from the famous Baige landslide. We used a DEM-
derived aspect to restrain background noise in image cor-
relation results. We found the slope remained stable from
November 2015 to November 2018 and moved significantly
from November 2018. We used more data to analyse slope
movement in 2019 and found retrogressive slope movements
with increasingly large deformations near the riverbank. We
also analysed spatial-temporal patterns of the slope defor-
mation from October 2018 to February 2020 and found sea-
sonal variations in slope deformations. Only the foot of the
slope moved in dry seasons, whereas the entire slope was ac-
tivated in rainy seasons. Until 24 August 2019, the size of
the slope with displacements larger than 3 m was similar to
that of the Baige landslide. However, the river width at the

foot of this slope is much narrower than the river width at the
foot of the Baige landslide. We speculate it may continue to
slide down and threaten the Jinsha River. Further modelling
works should be carried out to check if the imminent land-
slide could dam the Jinsha River and measures should be
taken to mitigate possible dam breach flood disasters. This
work illustrates the potential of using optical remote sensing
to monitor slope deformations over remote mountain regions.

1 Introduction

Landslides are major natural hazards in mountain regions and
cause widespread disasters every year around the globe (Pet-
ley, 2012; Zhang et al., 2020). Major landslides in remote
mountain regions may pose serious threats to downstream
communities by choking channels, which increases the risks
of landslide-dammed-lake outburst floods (Fan et al., 2020;
Liu et al., 2019). For example, a hillslope near the Baige
village had two landslides, damming the Jinsha River twice
in 2018. The outburst floods caused widespread damage
along its route and affected areas as far as Yunnan Province,
> 500 km from the landslides (Fan et al., 2019). In 2000, a
super-large landslide dammed the Yigong River in Tibet, and
2 months later the outburst flood caused widespread damage,
including to five main bridges, to highways and to communi-
cation cables in downstream areas (Shang et al., 2003). The
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1786 breach of the landslide-dammed lake in the Dadu River
consumed > 100000 lives along its route (Dai et al., 2005).
Similar cases could occur in many mountain regions in the
world, and detecting precursors (such as slope movement)
before major landslides is crucial for preventing such disas-
ters (Intrieri et al., 2018; Carla et al., 2019).

Remote sensing techniques have been an efficient way to
monitor slope movement over large mountain regions (Du et
al., 2020; Handwerger et al., 2019). Optical passive and radar
remote sensing provides the most frequently used data to de-
tect slope displacements. There are two kinds of mainstream
methods to derive slope movement. Synthetic-aperture radar
(SAR) interferometry processing uses the difference in phase
images to derive subtle slope movement of a few millimetres
(Intrieri et al., 2018; Samsonov et al., 2020). However, large
ground displacements (e.g. of a few metres), dense vegeta-
tion or long time intervals can lead to incoherence in phase
images in this type of method (Wasowski and Bovenga,
2014). Image correlation methods (also referred to as pixel
offset tracking used in SAR intensity images) constitute an-
other type of approach that uses SAR amplitude or optical
images to correlate image patches to measure slope move-
ment and can derive subpixel ground displacements from
1/10 to 1/30 of a pixel (Li et al., 2020). The latter type is
good at detecting larger slope movements that are visible on
images (Bradley et al., 2019; Lacroix et al., 2020). In recent
years, image correlation methods have been proposed and
widely used to detect subpixel slope displacements in optical
images (Bontemps et al., 2018; Lacroix et al., 2018, 2019;
Yang et al., 2020).

In this work, using subpixel optical image correlation
methods we report a landslide along the Jinsha River. Differ-
ent from previous retrospective studies, the landslide in this
work has not yet collapsed. We used multi-temporal Sentinel-
2 images and found the slope is unstable and could pose a
threat to downstream areas by blocking the Jinsha River.

2 Methods
2.1 Study area

The reported slope is ~ 80km downstream from the Baige
landslide (Fan et al., 2019) along the Jinsha River near
the town of Mindu, Tibet Autonomous Region, bordering
Sichuan Province (Fig. 1a). The slope is located on the right
bank of the Jinsha River. Similar to the Baige landslide, the
geomorphology of this section of the Jinsha River is at the
bottom of a V-shaped valley. The elevation of the study area
ranges from 2660 m at the valley bottom to > 4500 m on the
mountain ridge. This rough topography indicates strong flu-
vial incision against the rapid uplift of the Tibetan Plateau.
We estimated the mean annual precipitation (MAP) by us-
ing the GPM v6 monthly precipitation (from 2001 to 2019)
and found the MAP of this area to be ~ 665 mm. The region
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is controlled by a monsoon climate with > 90 % of the rain
occurring from May to October.

This area is tectonically active, and active faults run
through this slope from north to south. To the west of the
faults are upper Palacozoic strata and to the east are Meso-
proterozoic metamorphic rocks. Cracks and fissures on the
slope are visible from a 15 m resolution pan-sharpened false-
colour Landsat 7 image acquired in 2001 (Fig. 1b). These
cracks and fissures may be relics of historic earthquakes or
precipitation. This part of the slope has a percent slope of
45 % and a southeast aspect, with an azimuth between 112.5
and 157.5° (Fig. 1c). The slope is mainly covered by grass
and sparse shrubs and less affected by anthropogenic ac-
tivities. Field reconnaissance has not been carried out for
this slope due to outbreak of the COVID-19 pandemic. In-
stead, we examined the slope via Google Earth images. Fis-
sure cracks are clearly visible on the uppermost part of the
slope, and there are widespread cracks on the lower part of
the slope. Evidenced by very high spatial resolution Google
Earth images, the landslide in this work is a translational type
(Highland and Bobrowsky, 2013).

In this work, we mainly relied on Sentinel-2 optical images
to derive slope movement. The European Space Agency’s
Sentinel-2 mission has two twin satellites in orbit, with a re-
visit time of less than 5d. The Sentinel-2 optical imagery
has 12 optical bands with wavelengths ranging from 440 to
2200nm (Gascon et al., 2017). There are 4 bands with a
spatial resolution of 10 m: blue, green, red and near-infrared
bands. To derive slope movement, we used the red band be-
cause its wavelength is longer than those of other visible
bands and is less influenced by the atmosphere. Compared to
the near infrared, this band is less sensitive to vegetation and
is more reliable for measuring slope deformation (Yang et al.,
2019). We used the Level-1C product, which is orthorectified
before distribution (Gascon et al., 2017).

2.2 The COSI-Corr method

This work used the COSI-Corr method, a correlation method
for optical images to detect slope displacements (Leprince et
al., 2007). To derive slope movement, two images in a roll
should be used to form an image pair, including the base im-
age and the target image. The base image is an earlier image,
based on the image correlation algorithm (here we use the
COSI-Corr) implemented to detect slope displacements in
the target image (Leprince et al., 2007). For detailed parame-
ters to use the COSI-Corr method, please refer to Yang et al.
(2020).

In this work, we used three steps to detect slope displace-
ments for the Mindu slope studied. For the first step, we used
two image pairs (no. 1-no. 2) to find the stable and moving
periods before and after November 2018. For the second step,
we used 19 images in the stable period to estimate cumulative
slope displacements in 5 target images in the moving period
(image pair no. 3—no. 97). For the third step, we used another
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Figure 1. Topographic maps of the study area. (a) Geographic locations of the Baige landslide and the downstream landslide around the town
of Mindu, Tibet Autonomous Region. (b) A 15 m resolution pan-sharpened Landsat 7 false-colour image on 18 February 2001 and (c) aspect
of the study area around the Mindu landslide. The elevation data in (a) are a product of NASA’s Shuttle Radar Topography Mission (SRTM),
and the aspect in (c¢) is a derivative of the DEM. The red polygons in (b) and (c) are the selected stable zone. Both the SRTM DEM in (a) and
its derivative (c¢) were downloaded from the Geospatial Data Cloud website (http://www.gscloud.cn/sources, last access: 22 November 2020).
The Landsat image in (b) is a joint product of the United States Geological Survey and NASA and was downloaded via the Google Earth
Engine (GEE).

Table 1. List of the 19 base images in early 2018 and 9 targeted

images in 2019. Base images were used to detect cumulative slope . R 5 ] Z
displacements in targeted images. Image pairs used in this step are Aa. - P T Pair #1 b L e Bair #2 :

no. 3-no. 97. _' An ey 7 T, A

19 base images in the stable 5 target images in the moving
period (in early 2018) period (in 2019)

January: 11, 13, 16, 23, 28 13 Apr, 17 Jul,
February: 5, 12, 17, 25 24 Aug, 5 Oct, 12 Nov
March: 4, 9, 14, 19, 29

April: 3, 16, 23

May: 21

June: 5 Figure 2. Detected slope displacements in image pair no. 1 (a)
and no. 2. (b). Background Sentinel-2 images were acquired on 13
November 2015 and 12 November 2018, respectively. Both images
were produced by ESA’s Sentinel-2 satellites and downloaded via
9 images to derive displacements for every 2 adjacent images the GEE.

(image pair no. 98-no. 105).

2.2.1 Deriving slope displacements
Table 2. Eight periods (image pair no. 98-no. 105) were used to

In the first step, we used three Sentinel-2 images (on 13 derive the Mindu slope movement.

November 2015, 12 November 2018 and 12 November 2019)

to compose two image pairs (no. 1 and no. 2). The first im- Image pairs  Base image Target image
age pair (no. 1) is composed of a Sentinel-2 image on 13 No. 98 28 Oct 2018 24 Nov 2018
November 2015 and a Sentinel-2 image on 12 November No. 99 24 Nov 2018 23 Jan 2019
2018. Sentinel-2 images of the second pair (no. 2) were ac- No. 100 23Jan2019 14 Mar 2019
quired on 12 November 2018 and on 12 November 2019. No. 101 14 Mar 2019 18 May 2019

By using the first two image pairs, we found the slope was No. 102 18 May 2019 17 Jul 2019
stable from 13 November 2015 to 12 November 2018 and No. 103 17 Jul 2019 28 Sep 2019
.o No. 104 28 Sep 2019 29 Nov 2019

moved significantly from 12 November 2018 to 12 Novem- No. 105 29 Nov 2019 7 Feb 2020

ber 2019. Therefore, in the second step, we used two image
groups, a base image group in the stable period and a target
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Table 3. Detected image shifts (system error) in the stable zone. The EW (east—west) SD and NS (north—south) SD indicate uncertainties in
the method, and the EW mean and NS mean were used to derive the final displacements in image pairs no. 1 and no. 2. The signal-to-noise

ratio is denoted by snr.

Image pairs Dates EW mean EW SD NS mean NS SD  snr mean snr SD

No. 1 13Nov 2015 —0.495077 0.181026 —7.275188 0.253885 0.989819  0.001601
12 Nov 2018

No. 2 12 Nov 2018 4.115833  0.056559 9.914275 0.136149  0.989803  0.001434
12 Nov 2019

image group in the moving period, to detect cumulative slope
displacements (Table 1). For the base image group, there are
19 clear images without clouds in 2018. For the target image
group, we selected 5 images in 2019 (13 April, 17 July, 24
August, 5 October and 12 November) to detect cumulative
displacements. In all, there are 19 x 5 image pairs (no. 3—
no. 97) calculated in the second step. In the third step, we
used 9 images from 28 September 2018 to 7 February 2020
(Table 2) to form another 8 image pairs (no. 98-no. 105) to
derive slope displacements.

2.2.2 Error assessment and postprocessing

Misalignments between images can be estimated by select-
ing a stable zone (Bontemps et al., 2018; Lacroix et al., 2018;
Yang et al., 2019). In this work, the stable zone was selected
on the upper part of the landslide (red rectangles in Fig. 1b
and c¢). Mean displacements estimated within the stable zone
were used to correct image shifts. SDs of the displacements
within the stable zone represent uncertainties, indicating the
quality of the derived results for a given image pair. We se-
lected this area because this stable zone is on the same slope
as the landslide, which can minimize the influence of illumi-
nation and orthorectification errors.

In this work, we cross-validated measured slope displace-
ments for 5 target images in 2019 identified in the second
step. Uncertainties in the slope displacements for a given tar-
get image were estimated from all 19 base images in the sta-
ble periods. Standard deviations of these 19 measurements
were used to indicate their reliability. We further filtered out
displacements with moving directions that did not agree with
the SRTM DEM-derived aspects. If there are 15° deviations
between the derived slope movement and the aspect, the de-
rived slope movement is defined as invalid and is not used for
further analysis.

3 Results
3.1 Detected stable and unstable periods
In Table 3, the EW mean and NS mean indicate the east—

west (EW) and north—south (NS) shifts in images in both im-
age pairs calculated from the stable zone. The EW SD and
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NS SD are SDs of displacements in the stable zone to indi-
cate image distortions. Low EW SD and NS SD values in-
dicate good performances during image orthorectifications.
The derived EW mean and NS mean were used to correct
misalignments in image pairs. The base and target images for
image pair no. 1 are from 13 November 2015 and 12 Novem-
ber 2018, respectively. The base and target images for image
pair no. 2 are from 12 November 2018 and 12 November
2019, respectively. The slope remains stable in the first image
pair, whereas detectable slope displacements can be found in
the second image pair (Fig. 2). The durations of image pair
no. 1 and pair no. 2 span 3 years and 1 year, respectively. In
Fig. 2a, we can see that the slope displacement from 2015 to
2018 was less than 2 m, whereas there was > 6 m slope dis-
placement from 2018 to 2019 (Fig. 2b). In image pair no. 2,
larger displacements were observed near the Jinsha River and
smaller displacements were farther away from the river. This
increasing displacement magnitude indicates the slope may
start to move from its toe.

3.2 Cumulative slope displacements in 2019

As in Fig. 2, we can see that this slope remained stable from
November 2015 to November 2018 and moved after Novem-
ber 2018. To derive time series of the Mindu slope displace-
ments after November 2018, we used 19 base images in the
stable period and 5 target images in 2019. All 19 base images
are from early 2018, during which the slope was stable. Five
selected target images were acquired on 13 April 2019, 17
July 2019, 24 August 2019, 5 October 2019 and 12 Novem-
ber 2019. For each target image in 2019, we calculated slope
movement by using all base images. Therefore, there are 19
estimated slope displacements for each target image. We cal-
culated the means and SDs of slope displacements for all tar-
get images (Fig. 3).

From Fig. 3, we can see that the mean displacements are
a magnitude larger than the SDs, which indicates that the
displacements derived between each target image and their
base images agree with each other quite well. Minor slope
displacements were detected until April 2019 (maximum 3—
4 m), whereas larger slope displacements can be observed in
the later four target images (> 5 m). All displacements in the
five target images show a similar pattern to results in image

https://doi.org/10.5194/nhess-20-3215-2020
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Figure 3. Means and standard deviations of the derived slope dis-
placements in the five targeted images (Table 1). Detected means
and SDs of slope displacement on 13 April 2019 (al-a2), 17 July
2019 (b1-b2), 24 August 2019 (c1-¢2), 5 October 2019 (d1-d2)
and 12 November 2019 (el—e2).

https://doi.org/10.5194/nhess-20-3215-2020

pair 2 (Fig. 2b), demonstrated by larger displacements near
the river and less movement further from the river.

We further selected six points on the slope to analyse time
series of the slope displacements in 2019 (Fig. 4). For most
target images for the first five points (p1—p5), most base im-
ages could derive > 10 valid displacements (2-D columns).
For all six points, accumulated displacements show similar
growing trends from April 2019 to November 2019. Max-
imum displacements for all six points occurred on 24 Au-
gust 2019. These unreasonably large values may be caused
by a difference in solar elevation and zenith angles in target
images. For example, compared to the August image there
are more mountain shadows in the November images in the
Northern Hemisphere. Despite abnormal displacements in
August 2019, we can see that displacements from July to
November 2019 are still larger than displacements in April
2019. Therefore, from the time series of these six points, we
can see that major slope displacements occurred from April
to August 2019.

3.3 Slope displacements in eight selected periods after
November 2018

To analyse spatial deformation patterns in different periods,
we selected nine Sentinel-2 images forming eight image pairs
(image pair no. 98-no. 105 in Table 2, corresponding to eight
periods in ~ 2 months). The first two image pairs (Fig. 5a
and b, no. 98 and no. 99) show that the middle and lower
parts of the slope deformed significantly and 4-6 m of dis-
placement occurred at multiple locations. The study area has
a monsoonal climate with most precipitation occurring from
May to September (Fig. 6). There are seasonal differences in
the deformation of this landslide. In the dry seasons of win-
ter and spring, deformation occurs at the foot of the slope
near the Jinsha River and the deformation rate is generally
less than 1 m per month (from January to May, Fig. S5c and
d and periods 3—4 in Fig. 6, image pairs no. 100-no. 101).
In the rainy seasons of summer and autumn, deformation af-
fects the entire slope with some parts at a rate of more than
3 m per month (from May to September, Fig. 5¢ and f and
periods 5-6 in Fig. 6, image pair no. 102-no. 103).

4 Discussion
4.1 Possible impacts of this imminent landslide

Major landslides in mountains may dam river channels form-
ing transient lakes, the breach of which can result in catas-
trophic floods affecting downstream communities (Dai et al.,
2005; Fan et al., 2019; Liu et al., 2019). In this work, we ex-
amined a hillslope near the town of Mindu along the Jinsha
River. We found the slope had significant movement from
November 2018 to November 2019. Despite the area of the
detected moving slope (715 577 m? for displacements larger
than 3 m) being similar to the area of the Baige landslide

Nat. Hazards Earth Syst. Sci., 20, 3215-3224, 2020
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Figure 4. Time series of the slope displacements. Image to the left shows the slope displacements on 12 November 2019, and the map colour
is shown as a minimum-maximum linear-stretch type. Sub-panels (p1-p6) to the right show means (points), SDs (vertical bars) and valid
numbers (histograms) of cumulative displacements between the 19 base and 5 target images for the six selected points (stars) in the left

image.

(830624 m?), the width of the Jinsha River channel below
the Mindu slope (~ 50) is half that of the Baige (> 100 m,
in Fig. 7). Considering the similar morphology of both river
sections, the collapse of the Mindu slope could pose a threat
to downstream communities by blocking the Jinsha River.
We call for further frequent monitoring of the hillslope in
combination with other tools, such as InSAR (Intrieri et al.,
2018; Samsonov et al., 2020).

4.2 Comparison of image matching and InSAR
methods

In this work, we used the COSI-Corr method to derive slope
displacements for the Mindu slope along the Jinsha River.
The principle of this method is to use a sliding window to
find pattern matches to derive displacements in image pairs
(Leprince et al., 2007). Compared to the InNSAR methods,
this method is easier to understand and implement. In addi-
tion, image correlation methods favour larger displacements
than InNSAR methods. Limited by the wavelength of the SAR
image, InNSAR methods are versed in monitoring ground de-
formations on a millimetre to centimetre scale (Intrieri et
al., 2018), whereas the capability of image correlation meth-
ods depends on spatial resolution of images. In general, im-
age correlation methods are more reliable for deriving large
ground displacements on a metre scale (Bradley et al., 2019;
Lacroix et al., 2020). In this work, it might be quite chal-
lenging for InNSAR methods to detect such large displace-
ments. Long temporal intervals of a few months could lead
to incoherence in SAR images (Li et al., 2019), whereas im-
ages (taken in the same season) with long temporal inter-
vals of a few years can be used to derive reliable displace-
ments given a stable land cover (Yang, 2020). Both meth-
ods can be affected by the atmosphere. Clear optical images
without clouds should be used in image correlation methods.

Nat. Hazards Earth Syst. Sci., 20, 3215-3224, 2020

Although SAR images can penetrate thin clouds, the atmo-
sphere could cause phase delay and lead to uncertainties in
derived results (Li et al., 2019).

Both methods work well on bare land without vegetation,
though dense vegetation could seriously affect InNSAR meth-
ods (Intrieri et al., 2018). On the contrary, image correlation
methods are less affected by vegetation cover as long as im-
ages in the pair are from the same season (Yang, 2020). As
image correlation methods use pattern matches within an im-
age pair, we speculate that vegetation density may not be a
major challenge for the method. The Sentinel-2 images used
in this work have four 10 m resolution optical bands (Gas-
con et al., 2017). In theory, any of these four bands may
be used to derive slope displacements. But, an ideal band
should not be sensitive to ground cover change unrelated
to ground displacements, which could minimize background
noise. In general, optical bands with shorter wavelengths are
more prone to be affected by moisture in the atmosphere.
Considering that the near-infrared band is very sensitive to
vegetation, we used the red band in this work.

Both InSAR and image correlation methods can be im-
pacted by complex terrains in mountain regions. Layover
and shadow areas in SAR images should not be used in In-
SAR methods (Li et al., 2019). Similarly, shadows in opti-
cal images also influence derived results (Yang et al., 2020).
To derive reliable results, optical images acquired during
larger solar angles should be prioritized to minimize the in-
fluence of mountain shadows. Fortunately, there are algo-
rithms that have been developed to restore information in
mountain shadows in optical images (Shahtahmassebi et al.,
2013), which may promote the efficacy of optical image cor-
relation methods.

https://doi.org/10.5194/nhess-20-3215-2020
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Figure 5. Slope displacements in different periods after the Baige
floods (background images are Sentinel-2 data produced by ESA’s
Sentinel-2 satellites and downloaded via the GEE).

4.3 Measures taken to reduce uncertainties

Many other factors may also influence the accuracy of slope
deformation from image correlation methods, which include
image orthorectification errors, different viewing angles dur-
ing image acquisition and different illuminations in images
(Stumpf et al., 2016; Yang et al., 2020). This work used the
Sentinel-2 Level-1C product, which is orthorectified before
distribution (Gascon et al., 2017). To correct for possible
misregistration between the base and target images, we used

https://doi.org/10.5194/nhess-20-3215-2020

a stable zone to calculate and correct image shifts. To reduce
errors caused by different illuminations, all images used for
the first two Sentinel-2 image pairs are from similar dates of
different years.

The first two image pairs (no. 1 and no. 2) we mentioned
above are composed of images of very similar acquisition
dates in different years. Images of similar dates have sim-
ilar zenith and elevation angles, which could minimize the
influence of mountain shadows (Yang et al., 2020). To assess
and reduce uncertainties in the second step, we first identi-
fied a stable period. Then, we used 19 base images in this
stable period to derive cumulative displacements for a given
target image in the moving period. The mean displacements
from these 19 image pairs are expected to be more reliable
than results from a single image pair. In addition, these 19
measurements can cross-validate each other and be used to
estimate uncertainties by SD (Figs. 3 and 4).

There are a few strategies to suppress background noise in
derived results, including selecting results with high signal-
to-noise ratios (Lacroix et al., 2018; Yang et al., 2020) and
integrating redundant information in time series of images
(Bontemps et al., 2018). This work introduced a simple and
efficient method by using the slope aspect to filter out slope
movement that is different from the aspect. This is reasonable
for this translational landslide as the mass moves downbhill
driven by gravity. This procedure could eliminate false slope
movements and reserve true slope movement of the Mindu
landslide. By integrating topographic information, this new
procedure is expected to work well for ground movement in
other regions that is consistent with slope configurations.

4.4 Potential applications of the method in landslide
monitoring

As we used orthorectified images, slope displacements de-
rived in this work are horizontal movements. To derive
ground movement along the slope, we need to consider lo-
cal slope configurations. Because image correlation meth-
ods use sliding windows to detect similar patterns between
the base and target images, precursors with horizontal rather
than vertical ground movements can be detected. Landslides
that have intact moving surfaces can be detectable by image
correlation methods. For translational and rotational land-
slides, there are more horizontal than vertical ground move-
ments, the former of which constitute the ideal landslide type
to use in image correlation methods, whereas precursors of
avalanches and rockfalls may be difficult to detect due to lim-
ited horizontal ground movement (Highland and Bobrowsky,
2013).

In addition, the smallest displacements that can be de-
tected depend on the spatial resolution of optical images
(Li et al., 2020; Stumpf et al., 2016). Although image cor-
relation methods can detect subpixel ground movement, it is
very challenging to detect moving surfaces that cover an area
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Figure 7. High-spatial-resolution images from © Google Earth. The image to the left was acquired on 30 March 2015 for the Mindu slope
(a), and the right image was acquired on 18 July 2017 for the Baige slope (b).

of a few pixels, as smaller window sizes could result in more
background noise (Yang et al., 2020).

5 Conclusions

In this work, by using the COSI-Corr method and multi-
temporal Sentinel-2 images, we found precursors of a major
landslide along the Jinsha River in southwest China. Fissures
on the slope probably existed before 2001, but the slope re-
mained stable between November 2015 and November 2018.
From November 2018 to August 2019, we detected signifi-
cant slope displacements. The size of the activated part on
the Mindu slope is similar to that of the 2018 Baige landslide,
whereas the river width under the Mindu slope is half that of
the Baige section. If this landslide continues to slide down
and fails completely, it may block the Jinsha River leading to
similar consequences to the Baige landslide.

By using an image correlation technique, we can track
subpixel slope movement in optical remote sensing images.
We also adopted an aspect constraint to pick out downs-
lope movement and significantly reduced background noise.
However, optical images, such as the Sentinel-2 images, can
only detect slope movements of up to a few metres. To con-
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tinuously monitor this slope, other data and methods (such as
higher-spatial-resolution data or InSAR techniques) should
be used. We also call for intensive monitoring of this slope
and modelling of landslides that cause river blocking and
subsequent flooding.

Data availability. All Sentinel-2 images and the Landsat 8 image
in this work were downloaded from the GEE. The SRTM DEM
and its derivative were downloaded from the Geospatial Data Cloud
website (http://www.gscloud.cn/sources, Computer Network Infor-
mation Center and Chinese Academy of Sciences, 2020).
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