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Abstract. Empirical evidence from the humid tropics shows
that informal housing can increase the occurrence of rainfall-
triggered landslides. However, informal housing is rarely ac-
counted for in landslide hazard assessments at community or
larger scales. We include informal-housing influences (vege-
tation removal, slope cutting, house loading, and point water
sources) in a slope stability analysis. We extend the mech-
anistic model CHASM (Combined Hydrology and Stabil-
ity Model) to include leaking pipes, septic tanks, and roof
gutters. We apply this extended model (CHASM+) in a re-
gion of the humid tropics using a stochastic framework to
account for uncertainties related to model parameters and
drivers (including climate change). We find slope cutting to
be the most detrimental construction activity for slope stabil-
ity, and we quantify its influence and that of other destabil-
ising factors. When informal housing is present, more fail-
ures (+85 %) are observed in slopes that would otherwise
have had low landslide susceptibility and for high-intensity,
short-duration precipitations. As a result, the rainfall thresh-
old for triggering landslides is lower when compared to non-
urbanised slopes and comparable to those found empirically
for similar urbanised regions. Finally, low cost-effective “low
regrets” mitigation actions are suggested to tackle the main
landslide drivers identified in the study area. The proposed
methodology and rainfall threshold calculation are suitable
for data-scarce contexts, i.e. when limited field measure-
ments or landslide inventories are available.

1 Introduction

Global and regional landslide records reveal an increase
in rainfall- and human-triggered landslides during the last
century, mainly in economically developing countries with
rapid population growth and urbanisation (Kirschbaum et al.,
2015; Froude and Petley, 2018). This increase might be partly
due to continuing improvements in landslide recording, but it
also indicates the growing impact of climate and urban pres-
sure on landslide occurrence (Larsen, 2008). Understanding
the mutual interactions between the natural and urban envi-
ronment becomes particularly relevant in the humid tropics,
where high-intensity and long-duration rainfall events are the
main landslide triggers, and urban expansion is poorly regu-
lated (Lumb, 1975; UN-Habitat, 2015). The natural landslide
susceptibility of these regions coupled with the lack of urban
planning and regulations can increase risk in terms of not
only vulnerability and exposure but also hazard.

Potential anthropogenic landslide drivers include slope
cutting and filling for house and road construction (Sidle and
Ziegler, 2012; Smyth and Royle, 2000), slope degradation
with clearance of forested areas (Gerrard and Gardner, 2006;
Vanacker et al., 2003), inadequate drainage networks, un-
planned redirection of storm run-off, and poorly maintained
septic systems (Diaz, 1992; Anderson et al., 2008). In this
paper, we use the term “informal housing” to refer to the
combination of these urban modifications which influence
slope stability by altering its geometry, hydrology, and mate-
rial strength (Fig. 1).

However, informal housing is usually neglected or not
quantified in landslide hazard assessment at community and
larger scales. There are two main reasons for this: lack of re-
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Figure 1. Examples of informal housing affecting land stability. Panels (a) and (b) show examples of unsupported cut slopes, respec-
tively, in Dumsi Pakha (Kalimpong, India) and Saint Lucia (Caribbean). Panel (c) shows the effect of the lack of water management
in an informal community of Saint Lucia (Caribbean). From the AGU Landslide Blog (https://blogs.agu.org/landslideblog/2016/03/14/
managing-urban-landslides-1/, last access: 21 November 2020) and the community-based project Mossaic (Management of Slope Stability
In Communities; Anderson and Holcombe, 2013).

porting and the highly localised scale and heterogeneous na-
ture of human landslide drivers. A landslide is defined as trig-
gered by human activities when there is a direct (and easily
recognisable) connection with the failure process (e.g. dur-
ing mining activities). Landslides of this type are small and
often not recorded (Petley, 2012). When considering rainfall-
triggered landslides, human landslide drivers are often ei-
ther not considered or not distinguished from the natural
drivers (SafeLand, 2011). Urban construction activities are
localised, and even if they contribute to land instability, they
remain difficult to observe either in situ (e.g. leaking pipes)
or via satellite images. For these reasons, there are numerous
site-specific analyses that investigate the influence of urban
construction activities for individual slopes with known soil
and rainfall trigger characteristics (e.g. Preuth et al., 2010;
Zhang et al., 2012), but there are few studies that explore
the influence of informal housing more widely for different
combinations of human landslide drivers, soils, slope geom-
etry, and rainfall triggers. This limits the transferability of
the findings from slope to larger scales, where fewer detailed
data are available.

Empirical-statistical and heuristic methods have been used
in regional studies to link informal housing to the spatial
and temporal occurrence of landslides. For example, pre-
cipitation and landslide records have been analysed in re-
lation to lithology and land use change (Meusburger and
Alewell, 2008; Gerrard and Gardner, 2006) or in relation to
soil type and type of settlement (Smyth and Royle, 2000).

Here, most of the recorded landslides were found to be asso-
ciated with poorly regulated construction techniques, water
management, and land degradation. Rainfall thresholds for
triggering landslides were observed to depend on the pro-
portion of impervious surfaces (Diaz, 1992). However, these
analyses did not enable the differentiation of the relative role
of natural and human landslide drivers, precluding the trans-
lation of the results into actions at the slope, i.e. engineering,
scale (Anderson et al., 2013; Maes et al., 2017).

Mechanistic slope hydrology and stability models can be
used to represent the landslide drivers for historical, current,
and potential future climate conditions (e.g. Ciabatta et al.,
2016; Almeida et al., 2017). If these models included the
effect of informal housing, the analysis of different combi-
nations of slope, urban, and climate properties could lead
to the assessment of the relative role of natural and urban
properties in triggering landslides and to the identification of
the conditions at which urban construction activities become
most detrimental. This could be useful information for engi-
neers to prioritise slopes that are currently at risk, to identify
those at higher risk of being impacted in the future, and to de-
duce appropriate hazard mitigation or preparedness actions.
The inclusion of informal housing in slope stability analy-
sis could also lead to considerations about the reliability of
rainfall thresholds for triggering landslides within highly ur-
banised communities since they might be underestimating
the level of the hazard (Mendes et al., 2018).
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However, the use of data-intensive mechanistic models
can be challenging in data-scarce locations, such as in low-
income urban settlements. The more complex the model is,
the more data will be required to set its parameters and model
forcing and the more uncertainties might be introduced into
the analysis. Sources of uncertainties can relate to slope and
soil properties, urban features, and a limited understanding
of physical processes or future scenarios (epistemic uncer-
tainties; see Beven et al., 2018a, for a review of this issue).
Many researchers have assessed the impact of uncertainties
related to slope properties (e.g. Cho, 2007) and future cli-
mate (e.g. Ciabatta et al., 2016) on slope stability at dif-
ferent scales. However, to the best of our knowledge, there
are no analyses that consider both sources of uncertainties
when modelling informal housing in landslide hazard as-
sessment. Urban construction activities are considered sep-
arately (e.g. slope cutting or leaking pipes; e.g. El-Ramly et
al., 2006), or the slope properties are varied using discrete
conservative values under fixed rainstorm conditions (An-
derson et al., 2008; Holcombe et al., 2016). This separation
might overlook significant changes in the slope’s behaviour
for combinations of urban construction activities and/or com-
binations of slope, soil, and rainfall properties that have not
been considered in the analysis but are still likely to occur.

Almeida et al. (2017) demonstrated how mechanistic
landslide models can consider uncertainties due to both
poorly defined slope properties and to potential future cli-
mate changes. The mechanistic model CHASM (Combined
Hydrology and Stability Model) was used in a Monte
Carlo framework and applied in Saint Lucia, in the east-
ern Caribbean, where data support is limited, but landslide
hazard is particularly high. The uncertainties in slope and
soil properties were characterised through probability distri-
butions extrapolated from available data and the literature,
while the rainfall properties were varied uniformly across
wide ranges also considering rainfall intensity–duration com-
binations that were not observed in the past but that might
occur in the future. A sample of tens of thousands of rain-
fall events and slopes were stochastically generated from
these distributions and simulated in CHASM. By this ap-
proach the possible effects of climate change were explored
widely instead of focusing on one (or a few) climate projec-
tion scenarios (such as those provided by downscaled gener-
alised circulation models) propagated through the modelling
chain (Groves and Lempert, 2007; Wilby and Dessai, 2010).
This strategy can be extended to include the exploration of
both feasible climate and feasible land use futures (Singh et
al., 2014). Statistical and data-mining algorithms were then
used by Almeida et al. (2017) to quantify the relative role
of the input factors (and thus their uncertainties) in the sta-
bility of the simulated slopes as well as to identify critical
thresholds in slope properties and rainfall drivers likely to
lead to slope failure. In this study we extend the work of
Almeida et al. (2017) by including informal housing into
such a slope stability analysis. We consider the same location

of the humid tropics and the same core model, CHASM, but
with new functions to represent the mechanistic influences of
informal housing (new CHASM+). The core model is a two-
dimensional model which has a relatively low data require-
ment for a mechanistic model even with the inclusion of the
new informal-housing functions. In addition to the original
ability to represent the mechanical and hydrological effects
of vegetation and the effects of slope cutting and loading, we
have added the effects of point water sources resulting from
leaking septic tanks, water supply pipes, and houses without
roof gutters. By varying both the natural and urban factors,
we aim to identify the slope and climate conditions under
which landslide hazard is significantly increased by the pres-
ence of informal housing and how this information can be
used for deducing landslide mitigation measures. Thus, for
our humid tropical case study scenario, we aim to address
the following questions:

1. How can we identify which informal urban housing
characteristics are most detrimental to slope stability?

2. How is the rainfall threshold for triggering landslides
modified when informal housing is considered?

3. Which landslide mitigation strategies and practices can
be deduced from the analysis for current and potential
future scenarios of urbanisation and rainfall?

The proposed methodology is suitable for data-scarce con-
texts, i.e. when not many field measurements or landslide
inventories are available. If applied in countries with similar
natural, climate, and urban characteristics (so with similar in-
put space variability), we might expect similar slope stability
responses and thresholds. Conversely, a change in (part of)
the input data (or their probability distributions) to reflect a
different urban-landslide context could potentially produce
quite different outputs (Wagener and Pianosi, 2019).

2 Method

We want to analyse the relative role of informal housing in
slope stability under different natural and climate conditions.
The methodology we introduce here entails the following
steps:

– Choose a model that represents the main instability
mechanisms of the case study area. We are interested
in representing the rainfall-triggered landslides and the
informal housing of Saint Lucia (Caribbean). We there-
fore use the mechanistic model CHASM, which repre-
sents not only the hydrology-stability routing but also
vegetation, slope cutting, and, with the addition of new
functions, various forms of water management (creating
the extended CHASM+).

– Define the input factors necessary to run the model and
their variability space. In our case study, the input fac-
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tors are the parameters defining the slope soil, geome-
try, urban characteristics, and rainfall-forcing data. Each
input factor is assumed to be a random variable, and
its range of variability is determined by a probability
distribution. The probability distributions can be de-
fined based on the physical meaning of the input factors,
available data, and/or the existing literature. We use in-
formation gathered both from fieldwork in Saint Lucia
and also from the literature.

– Create synthetic combinations of input factors by
stochastically sampling from their probability distribu-
tions, and run CHASM+ to generate an equivalent num-
ber of model outputs. We select the minimum factor of
safety (FoS) and the slip surface where the minimum
FoS is calculated as summary output variables to anal-
yse. We repeat the stochastic sampling with and without
including the urban properties among the input factors
in order to facilitate considerations about the role of in-
formal housing in land stability.

– Identify the input factors that most influence slope sta-
bility using global sensitivity analysis (Wagener and Pi-
anosi, 2019). In particular, we use a regional sensitivity
analysis (RSA) approach (Hornberger and Spear, 1981)
to identify which input factors are most influential in
leading to slope failure.

– Identify parameters’ thresholds beyond which the
slopes become unstable. The threshold of an input fac-
tor over or below which failure is predicted might de-
pend on the value of the other input factors (e.g. slopes
with higher slope angles require higher soil strength to
maintain stability). Machine learning is a set of methods
that computers use to understand trends from data, also
considering their mutual interactions. We use CARTs
(classification and regression trees) to develop a set of
decision rules that predict the combination of soil, ge-
ometry, urbanisation, and rainfall input values for which
a particular slope is more likely to fail.

In the following paragraphs we describe in detail the tools
and the data used to implement our analysis on the island of
Saint Lucia.

2.1 The case study: Saint Lucia, eastern Caribbean

Saint Lucia is an eastern Caribbean island with a humid trop-
ical climate. The main landslide trigger is rainfall, and shal-
low rotational landslides dominate on both steep and shal-
low slopes (Van Westen, 2016; Anderson and Holcombe,
2013). The geology is almost entirely comprised of vol-
canic bedrock and deep volcanic deposits. Due to the trop-
ical climate, these volcanic parent materials are subjected
to deep weathering, which decreases their strength and in-
creases landslide susceptibility. The strata of a typical slope

cross section comprise weathered residual soils overlying de-
composed rock and volcanic bedrock. These three types of
strata typically correspond, respectively, to the weathering
grades V–VI, III–IV, and I–II of the Hong Kong Geotechnical
Engineering Office weathering grade classification (GEO,
1988). There is a high variability in terms of engineering
soils, but they can broadly be classified as fine-grained soils
such as silty clays, clayey silts, and sandy clays (DeGraff,
1985). The combination of tropical climate, steep topogra-
phy, and volcanic geology renders the region particularly sus-
ceptible to rainfall-triggered landslides. Furthermore, land-
slide risk is increased by informal housing which occupies
steep slopes and employs unregulated engineering practices
(World Bank, 2012, 226–235). Various sources of informa-
tion on the slope, soil, rainfall, and urban properties of this
region are available from previous studies by government en-
gineers and planners, the local water company, and consul-
tants (e.g. CHARIM, 2015; Mott MacDonald, 2013; Klohn-
Crippen, 1995) as well as from community-based projects
for the improvement of slope stability with surface water
drainage works (Anderson and Holcombe, 2013). In this
project, estimates of soil strength properties are based on di-
rect shear tests of local soils (Anderson and Kemp, 1985;
DIWI, 2002; Holcombe, 2006) and secondary data sources
on similar volcanic tropical residual soils such as those in
Hong Kong (Anderson, 1982; Anderson and Howes, 1985).
Information about soil type, soil depth, type of house con-
struction, cut slope angles, and the management of surface
run-off and waste water on slopes was based on community-
based mapping and elicitation of local expert knowledge
undertaken by Anderson and Holcombe (2013), who co-
developed these datasets with residents, government, and lo-
cal experts.

2.2 CHASM: a mechanistic model for
rainfall-triggered landslides

CHASM (Combined Hydrology and Stability Model) is a 2-
D mechanistic model which analyses dynamic slope hydrol-
ogy and its effect on slope stability over time. A full descrip-
tion of the model can be found in Anderson and Lloyd (1991)
and Wilkinson et al. (2002a, b). Here we briefly describe
its hydrology and stability components, whereas the repre-
sentation of the urban properties is detailed in Sect. 2.3. In
CHASM the slope cross section is represented with a regular
mesh of columns and cells. Hydrological and geotechnical
parameters are specified per cell, while the initial hydrolog-
ical conditions define the position of the water table and the
matric suction of the top cell of each column. The dynamic
forcing for CHASM is rainfall specified in terms of inten-
sity and duration. For each computational time step (usually
10–60 s), a forward explicit finite-difference method is used
to solve the Richard’s (1-D, vertical flow) and Darcy’s (2-D
flow) equations, which regulate, respectively, the unsaturated
and saturated groundwater flow. At the end of each simula-
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tion hour, the resulting soil pore water pressures (positive and
negative) are used as input for the slope stability analysis,
which implements Bishop’s simplified circular limit equi-
librium method (Bishop, 1955) and uses the coordinates of
the slope surface. An automated search algorithm identifies
the location of the slip surface with the minimum factor of
safety, FoS, which is given as output at the end of each sim-
ulated hour. In a validation exercise in Hong Kong, CHASM
showed an accuracy of 72.5 % (Anderson, 1990), which is
comparable to the performances of other models used for
the stability analysis (e.g. Formetta et al., 2014, p. 639).
CHASM has been employed in Malaysia, Indonesia, eastern
Caribbean, and New Zealand to propose landslide mitigation
measures as well as to identify land instability drivers along
roads and in urban and rural areas (Brooks et al., 2004; Lloyd
et al., 2001). Almeida et al. (2017) used CHASM stochasti-
cally in a Monte Carlo framework to account for uncertain-
ties in both slope properties and future climate scenarios.

2.3 A new functionality in CHASM: urban point water
sources

The new CHASM+ can now represent not only slope cut-
ting, additional (house and tank) load, and vegetation re-
moval but also the presence or absence of roof gutters on
houses and localised water leakages from buried septic tanks
and superficial water supply pipe networks. Slope cuttings
are represented by a corresponding change in slope geome-
try; additional loads are simulated by appropriately increas-
ing the unit weight of the soil underneath the loading object
(i.e. house and tanks); vegetation, which is removed during
the urbanisation process, is represented through rainfall in-
terception, evapotranspiration, root water uptake, vegetation
surcharge, and increased permeability and soil cohesion due
to the root network (see Wilkinson et al., 2002b). Pipes above
ground and buried tanks can be added to the slope with spec-
ified dimensions and leakage rates. Pipe leakage is accounted
for as additional surface water which infiltrates into the slope
according to the infiltration capacity of the soil. If water ex-
ceeds the infiltration capacity of the soil, it is stored as pond-
ing water. If the ponding water exceeds the maximum wa-
ter detention capacity (set at 10 mm), the water excess is re-
moved (no run-off considered). Leakage from tanks is added
to the water moisture content in the soil cells underneath the
tank. Where houses are present, rainfall is intercepted by the
roof. If roof gutters are not included, the intercepted rain-
water is discharged onto the slope cells adjacent to the house
in accordance to the roof type (double- or single-pitch). More
details on the new functionality and its benchmarking against
another model are given in the Supplement that accompanies
this paper (Sect. S1.1 and S1.2).

2.4 Definition of the input factors and their probability
distributions

We use 30 input factors to characterise our case study area in
CHASM+. These factors fall into the following categories:
slope profile geometry, soil geotechnical and hydrological
properties, urban characteristics, initial hydrological condi-
tions, and rainfall properties. Table 1 reports the full list of
these input factors and the probability distributions that de-
fine their range of variability, while Fig. 4 shows an example
of a slope derived from a combination of input factors.

The slope geometric properties consist of the natural slope
(and associated slope height) and the material thickness.
Slope angles vary between 20 and 45◦ to represent typical
scenarios of informal housing on moderate and steep slopes.
The highest slope angle on which a settlement can be lo-
cated without some form of engineered slope stabilisation
measures is considered to be 45◦. The cross-sectional profile
is discretised into three parallel layers of materials to rep-
resent the typical weathering profile of volcanic parent ma-
terial, with a layer of residual soil at the surface (layer 1),
underlain by a layer of weathered material (layer 2) and then
unweathered bedrock (layer 3). Ranges of material thickness
and geotechnical properties are derived from previous field-
work and lab tests, as described in Sect. 2.1.

The height of the water table is defined as an initial hydro-
logical condition. This water table height is varied between
0 % and 90 % of the slope height (H in Fig. 4) to account
for its variability across the region and for the variability in
the initial soil moisture conditions due to antecedent rainfall
events.

The model is forced with rainfall events which are spec-
ified in terms of their duration (in hours) and hourly in-
tensity. The aim is to create both rainfall events that have
been observed in the past and rainfall events that might oc-
cur in the future (e.g. with higher intensity and duration
than observed historically). To constrain the rainfall variabil-
ity space, we use the intensity–duration–frequency relation-
ships (IDFs) derived from a Gumbel analysis of 40 years of
daily rainfall data from weather stations across the island by
Klohn–Crippen (1995; Fig. 2). From these IDFs we derive a
range of rainfall intensities between 0 and 200 mm h−1 and a
range of rainfall durations between 0 and 72 h. We then sam-
ple independently from the two uniform distributions, thus
obtaining combinations of intensity and duration that might
have been observed in the past (light-grey area in Fig. 2) or
not (dark-grey area in Fig. 2). Prior to the initiation of the
rainfall event we include 168 h (7 d) of simulation with rain-
fall intensity equal to 0. This ensures a redistribution of water
moisture in the unsaturated zone of the slope and allows hy-
drological equilibrium with steady-state seepage to be estab-
lished. A further 168 h of zero-rainfall simulation was added
after the storm in order to consider the groundwater response
after the rainfall event.
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Table 1. Input factors of CHASM+ and their probability distributions.

Parameter Symbol/unit Range values

Layer 1∗ Layer 2∗ Layer 3∗

Slope geometric properties

Slope angle δ (◦) U (20, 45)
Thickness of layer H (m) U (1, 6) U (1, 6)

Soil properties

Effective cohesiona c (kPa) Ln (2.3688, 0.5698) Ln (3.4121, 0.5774) 80
Effective friction angleb ϕ (◦) Ln (3.2937, 0.2092) Ln (3.1559, 0.3251) 60
Dry unit weightc γ d (kN m−3) U (16, 18) U (18, 20) 23
Saturated moisture contentd VG θsat (m3 m−3) N (0.413, 0.074) N (0.413, 0.074) N (0.413, 0.074)
Residual moisture contentd VG θres (m3 m−3) Ln (−1.974, 0.376) Ln (−1.974, 0.376) Ln (−1.974, 0.376)
VG α parameterd VG α (m−1) Ln (1.264, 1.076) Ln (1.264, 1.076) Ln (1.264, 1.076)
VG n parametersd VG n Ln (0.364, 0.358) Ln (0.364, 0.358) Ln (0.364, 0.358)
Saturated hydraulic conductivity Ksat (m s−1) Ln (−11.055, 0.373) Ln (−13.357, 0.373) 1× 10−8

Initial hydrological condition

Water table heighte DWT (%) U (0, 90)

Rainfall properties

Rain intensity I (m h−1) U (0, 0.2)
Rain duration D (h) Ud (1, 72)

Urban properties

Cut slope anglef β (◦) N (65.18, 12.61)
Roof guttersg – Ud (0, 1)
Vegetationh – Ud (0, 1)
Septic tank and pipe leaki Qt/p (m3 s−1) Ud (0, 1)

U: uniform distribution; Ud: discrete uniform; N: normal distribution; Ln: log-normal distribution. ∗ Layer 1: residual soil, weathering grade V–VI; layer 2: weathered material grade III–IV;
layer 3: bedrock grade I–II; weathering grades defined according to GEO (1988). a Effective cohesion> 0. Effective cohesion c (layer 3)>c (layer 2)>c (layer 1). b Effective friction
angle> 0. Effective friction angle ϕ (layer 3)>ϕ (layer 2)>ϕ (layer 1). ϕ < 90◦. c γs = γd + 2, where γs is the saturated unit weight. γd (layer 3)>γd (layer 2)>γd (layer 1). d Values from
Hodnett and Tomasella (2002) for sandy clay loam material. We impose n > 1; θsat > θres; θres > 0. VG: Van Genuchten parameters for defining suction moisture characteristics curve. e Water
table height is defined as a percentage of slope height measured to the toe of the slope. f Slope of the cut forced to be between 39 and 89◦, and it is always greater than natural slope angle. g A
0 stands for house without rain gutters; 1 stands for house with rain gutters. Roof type: double pitch. h Vegetation presence: 0 – no vegetation, 1 – insert vegetation in the spare spaces. i The
leak of the septic tank is equal to the leak of the pipe. When 0 is selected there is no leak, whilst with 1 there are both. The leak rate is constant and equal to 4.2× 10−6 m3 s−1.

Informal housing is represented by four urban properties:
slope cutting, absence of roof gutters, vegetation removal,
and leaking pipes and tanks. While the angle of the cut slope
is varied according to its probability distribution, the vege-
tation, roof gutters, and water leakage are defined as present
(option 1: yes) or absent (option 0: no; Fig. 3). The cut slope
angle is varied between 39 and 89◦, with a maximum cut
slope height equal to 4 m. We represent the maximum num-
ber of cut slopes that can accommodate a house that is 4 m
wide (+1 m of surrounding space) on a slope that is 70 m
long. We therefore obtain either five or six cut slopes and
a corresponding number of houses on each slope depending
on the angle of the cut slope. The house width and house
load (8 kN m−2) are not varied and correspond to the size
and load of informal houses constructed with shallow con-
crete strip or block foundations, wooden walls, and sheet-
metal roofing that are typically observed in Saint Lucia (Hol-
combe et al., 2016). When vegetation is present on the orig-
inal non-urbanised slope, it is removed on the surface of the

cuts for the urban scenario. The vegetation properties used
represent a tropical forest cover, a sensitive choice for this
study site (see Holcombe et al., 2016, and online Supple-
ment, Table S5). These properties are kept fixed throughout
the sampling; therefore the effect of different types of vege-
tation on slope stability is not analysed. Both the tank and the
pipe leakage rate are assumed to be half of 4.2×10−6 m3 s−1,
which corresponds to the estimated leakage of 15 % of the
total water supply for low-income households in Saint Lucia
(Anderson and Holcombe, 2013). When present, the leak is
kept constant during the simulation time.

The input factors that define the discretisation of the
model, such as the cell size of 1 m× 1 m and the computa-
tional time step of 60 s (both used by CHASM+’s dynamic
hydrology functions), and the slip search grid location and
dimensions are not varied. These values are chosen because
they typically ensure numerical stability relating to the mass
balance of the moisture in the domain and thus a minimum
number of failed model runs. A smaller cell size would en-
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Figure 2. Rainfall intensity–duration–frequency (IDF) curves for
Saint Lucia developed by Klohn–Crippen (1995) using Gumbel
analysis of 40 years of daily rainfall data from 15 rainfall gauges.
The light-grey section includes rainfall events from observed data
(below IDF curves); the dark-grey section represents combinations
of rainfall intensity–duration not recorded in the past but that might
occur in the future (above IDF curves).

Figure 3. Urban properties of informal housing included in the
slope stability analysis. Each house corresponds to a cut on the
slope. Cut slope angle varies according to its probability distribu-
tion, defined in Table 1. Vegetation, roof gutters, and leaking tanks
and pipes are stochastically inserted or not. The house on the cut
slope is always present, and its load is not varied. The height of the
cut slope varies relative to the cut slope angle, but it is forced to be
maximum 4 m.

able a more detailed representation of the slope hydrology,
but it would require smaller time steps to preserve the mois-
ture content mass balance and numerical stability. Smaller
time steps would result in significantly longer simulation
time. The resolution chosen is therefore a trade-off between
acceptable accuracy and calculation time. The influence of
the variation in these two discretisation parameters on slope
stability is not explored.

2.5 Creation of synthetic combinations of input factors
and model simulation

We use Latin hypercube sampling (McKay et al., 1979) to
generate 10 000 different combinations of the 30 indepen-
dently varying input factors shown in Table 1. Figure 4 illus-
trates one example of a slope defined by a single combination

of these input factors. Due to the randomness of the process,
checks are undertaken to ensure that realistic combinations
of factors are generated; if not, they are discarded (around
70 % of the time) and replaced by another randomly gen-
erated, feasible combination. These “feasibility” checks are
reported in the footnote of Table 1 (letters a–f). The stochasti-
cally generated simulations are then run in CHASM+ using
the high-performance computer BlueCrystal Phase 3 at the
University of Bristol. The outputs considered for each sim-
ulation are the minimum factor of safety (FoS) and the slip
surface where the minimum FoS is calculated. We divide the
completed simulations according to whether the minimum
FoS is less than 1 (slope predicted to have failed, i.e. a land-
slide) or greater than 1 (slope is predicted stable). We exclude
the simulations predicting that the slope is failed before the
start of the rainfall event, which represents inherently unsta-
ble slopes (for example steep slopes with deep soil thick-
ness). We repeat the same procedure with and without in-
cluding the urban properties. We therefore obtain two sets
of model outputs: 10 000 representing urbanised slopes and
10 000 representing non-urbanised slopes.

2.6 Regional sensitivity analysis (RSA) and
classification and regression trees (CART)

Global sensitivity analysis is a set of statistical techniques
that evaluate how the variations in a model’s outputs can be
attributed to the variations in the model’s input factors. In
this case we want to identify which input factors – among
geometry, soil, hydrology, rainfall, and urban properties –
have the strongest impact on slope stability. Since in our
case the model output is binary as simulated slopes are cat-
egorised as failed (if FoS< 1) or stable (FoS> 1), we use
the regional sensitivity analysis (RSA) approach (Hornberger
and Spear, 1981), which is particularly suitable when dealing
with categorical outputs. In the RSA approach, the cumula-
tive marginal distribution of each input factor is computed
for each output category, i.e. the stable slopes and the failed
ones. If the distributions significantly separate out, it is taken
as evidence that the model output (slope stability) is signif-
icantly affected by variations in the considered input factor.
The level of separation between the cumulative distributions
can be formally measured with the Kolmorov–Smirnov (KS)
statistic and used as a sensitivity index. The confidence inter-
vals of the sensitivity indices can be estimated via bootstrap
technique. The bootstrap randomly draws N samples (with
replacement) from the available data to computeN KS statis-
tics for each input factor. The magnitude of fluctuations in the
KS statistic from one sample to another represents the level
of confidence in the estimation of the sensitivity indices. For
this application, we use the SAFE (Sensitivity Analysis For
Everybody) toolbox (Pianosi et al., 2015) to perform RSA
and to calculate the sensitivity indices and their confidence
intervals by the bootstrapping technique.
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Figure 4. Example of slope generated by stochastically sampling from the ranges of input factors specified in Table 1. H is the slope height
resulting from the fixed slope length and varying slope angles. The dimensions of the slip circle search grid are fixed, with an initial height
of 20 m and width equal to the slope length. The grid extends downslope parallel to the slope as shown.

Classification and regression tree (CART) analysis is a su-
pervised machine learning method which we use to predict
critical thresholds in input factors over or below which a par-
ticular slope is more likely to fail (Breiman et al., 1984). In
this analysis, the predictor model takes the form of a binary
tree. Starting from the whole set of simulations, CART finds
the best possible input factor (e.g. slope angle rather than
rainfall intensity) and the best possible value of that input fac-
tor (e.g. slope angle greater or less than 30◦) that divide the
simulations into stable and failed simulations. This process is
recursively repeated, creating at every split two branches and
two (“child”) nodes of the tree. In choosing the best splitter,
the model seeks to maximise the “purity”, i.e. to maximise
the number of stable or failed simulations at the two gener-
ated nodes. Amongst the different measures of purity avail-
able, we use the Gini purity index defined as

1−
m∑
i=1

p2(i), (1)

where m is the number of categories for the output (in this
case two: stable or failed), and p(i) is the fraction of sim-
ulations in the node belonging to category i. The Gini pu-
rity index is 0 when all the simulations in the considered
node belong to the same category (a “pure” node, i.e. all sta-
ble or failed). The splitting process typically continues until
all final leaf nodes show Gini purity indices below a chosen
threshold. The final nodes express the prediction for the cor-
responding branch. While a high number of nodes increases
predicting accuracy, it also makes the model more difficult
to interpret and generalise to other datasets (i.e. the prob-
lem of overfitting). A pruning technique can be applied to
avoid this overfitting and to identify an acceptable trade-off

between predictive power and number of nodes. In this anal-
ysis, we build a CART within the MATLAB Statistics and
Machine Learning Toolbox (Mathworks, 2018) using the K-
fold cross-validation to better estimate its predictive power.
In particular, we use 10-fold cross-validation, which ran-
domly divides the original dataset (10 000 simulations) into
10 subgroups. A total of nine subgroups are used to construct
10 CARTs, while the remaining subgroup is used to test the
CARTs’ performance. The average value of the 10 misclas-
sification errors so obtained represents the cross-validation
error, which can be used to select suitable pruning levels. To
reduce the number of nodes without increasing the misclas-
sification errors, auxiliary variables can be used to combine
correlated input factors. Auxiliary variables can simplify the
tree’s structure (by using fewer combined input factors) and
potentially modify the input space in a way that the division
of failed and stable simulations is more effective (see rotation
of the coordinate systems in Dalal et al., 2013). Three auxil-
iary variables are used in this analysis: the ratio of soil thick-
ness and effective soil cohesion of layer 1, the ratio between
rainfall intensity and duration introduced (both introduced by
Almeida et al., 2017), and a weighted combination of natural
and cut slopes angles. These variables are described in the
results (CART analysis) section and Sect. S2.

3 Results

In this section we analyse the 10000×2 outputs generated by
CHASM+ for the urbanised and non-urbanised slope scenar-
ios. As previously mentioned, we split the simulations into
stable and failed according to the value of the minimum FoS
(respectively, greater or less than 1). As a first analysis we
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compare the percentage of failed slopes against stable slopes
for each of the urban properties. Figure 5 shows that the pres-
ence of cut slopes significantly influences the percentage of
predicted slope failures: the steeper the cut slope angle, the
higher the percentage of failed slopes. Vegetation removal
and roof gutters instead have a negligible role in dividing the
two sets. Last, septic tanks and leaking pipes have some ef-
fect, generating about 10 % more failed slopes when present.

3.1 Regional sensitivity analysis

We then perform RSA on both sets of urbanised and
non-urbanised slope simulations, calculating the cumulative
marginal distributions of the failed and stable simulations for
each input factor. The maximum distance between the two
distributions (KS statistic) is computed and used as a sensi-
tivity index. A high value of the sensitivity index suggests
that the variation in that input factor significantly influences
slope stability. The results are shown in Fig. 6 for both ur-
banised and non-urbanised slopes. Figure 6 shows that slope
stability is insensitive to many input factors and highly sen-
sitive to few, namely effective cohesion and thickness of
layer 1 (residual soil), slope angle, and rain intensity and du-
ration. These sensitive input factors represent the main land-
slide drivers. The sensitivity indices of the urban properties
(in orange) are consistent with the findings of Fig. 5, where
only the variation in cut slope angle influences slope stabil-
ity. When looking at the comparison between urbanised and
non-urbanised slopes, it appears that the urban presence de-
creases the sensitivity indices of all the input factors, except
for the effective cohesion of layer 1 and the rainfall intensity.

We further explore the change in sensitivity caused by
urbanisation by plotting the percentage of failed slopes for
the main landslide drivers (Fig. 7). The figure shows how
this percentage varies for the urbanised (full colour bars and
lines) and non-urbanised cases (pale colour bars and lines).
In general, urbanised slopes produce more failures than non-
urbanised slopes, though they both display similar trends: an
increased percentage of predicted landslides when we would
expect the slope to become more susceptible (e.g. when slope
angles are higher) or the trigger more severe (when rainfall
intensity and duration are larger). For example, in Fig. 7b the
percentage of failed slopes in the non-urbanised case linearly
increases from ∼ 5 % (for soil thickness 1–2 m) to ∼ 50 %
(thickness of 5–6 m). In the same figure, urbanised slopes
show higher failure rates for all values, though the great-
est increase occurs for soil thicknesses less than 4 m (up to
+46 % for the 2–3 m category). This means that the most sig-
nificant increase in number of landslides occurs for thin soil
thicknesses, i.e. on slopes less susceptible to failure when
non-urbanised. The same can be said for slope angles less
than 25◦ and rainfall duration less than 10 h, where percent-
ages of slope failures pass from less than 15 % to more than
40 % when urbanisation is introduced (Fig. 7a and c). In the
lower plots instead, more urban landslides are observed on

slopes that show high percentage of failures also when ur-
banisation is not present (+43 % for low values of soil co-
hesion; Fig. 7d; +35 % for high rainfall intensities; Fig. 7e).
The difference in failure rates with variations in input factors
also explains the change in sensitivity found in Fig. 6: when
urbanised, a slope’s response varies less (less sensitive) to
variations in the input factors in the upper plots (whose sensi-
tivity indices get smaller) and more (more sensitive) to varia-
tions in the input factors of the lower plots (whose sensitivity
indices get larger).

3.2 CART analysis

We use the CART analysis to formalise the critical thresh-
olds of input factors above or below which slopes are most
likely to be predicted as stable or failed. Figure 8 represents
the two trees for the non-urbanised (Fig. 8a) and urbanised
case (Fig. 8b). As expected, the best predictors selected in
CART are the same input factors previously identified as
most influential (Fig. 6). The boxes with double colour rep-
resent the auxiliary variables that combine correlated input
factors: the ratio between effective cohesion and thickness of
layer 1 to account for their counterbalancing effect on slope
stability (i.e. slope with more cohesive soil can be thicker
without experiencing failure); the negative ratio between the
logarithm of rainfall intensity and rainfall duration, which
represent the slope of the rainfall threshold for triggering
landslides; and the weighted average of the natural and the
cut slope angles to account for the fact that slope suscep-
tibility can significantly increase for low natural slope an-
gles but high cut slopes angles (see Sect. S2 for details about
the auxiliary variables and the change in the model’s per-
formance when they are not considered). Using these few
predictors, both trees correctly classify more than 85 % of
the simulations as stable or failed (details about the pruning
in Sect. S3). Each branch of the tree shows the paths and
thresholds of input factors that lead to slopes most likely to
fail (black branch) or most likely to not fail (grey branch).
At the end of each branch the black and grey bar shows the
fraction of failed and stable simulations, while the thickness
of the branch is proportional to the number of simulations
following that path. For example, in the tree resulting from
non-urbanised slopes (left-hand side), the thickest grey line
shows that more than 50 % of simulated slopes were sta-
ble 91.2 % of the time for cohesion / thickness of layer 1
ratios greater than 2.5 kPa m−1. The thick black branch in-
stead shows that the greatest proportion of simulations pre-
dicted as failed occurred for cohesion / thickness of layer 1
ratios less than 2.5 kPa m−1, rainfall intensity duration ratios
(− log(I )/ log(D)) greater than 0.9 m h−2, and slope angles
greater than 25◦.

In the trees resulting from non-urbanised slopes (right-
hand side), the black branch leading to the majority of fail-
ures is similar to the non-urbanised tree, but it presents higher
splitting thresholds: from the top, the split happens for cohe-
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Figure 5. Percentage of predicted stable and failed slopes per urban property. An urban property influences slope stability if the percentage
of the predicted failures changes with the variation in that urban property.

Figure 6. Sensitivity index for each input factor in the urbanised (full colour) and non-urbanised (pale colour) cases. The bars correspond to
the mean value of sensitivity for each input factor calculated with bootstrapping, while the vertical black lines at the top of the bars represent
the confidence interval (number of bootstrap resampling N = 100; significance level for the confidence intervals: 0.05).

sion / thickness of layer 1 ratios less than 4.9 (instead of 2.5)
and for a rainfall intensity / duration ratio of 1.06 (instead
of 0.9). The branch then leads to the majority of failures for
values of effective cohesion of layer 1 less than 12.6 kPa,
regardless of the natural slope angle. A higher threshold
in cohesion / thickness ratios indicates that when urbanisa-
tion is present, more failures occur on slopes with higher
soil cohesion and/or thinner soil layers than non-urbanised
slopes (compatible with Fig. 7b and d), while higher rain-
fall intensity duration ratios suggest that more failures occur
for higher rainfall intensity and/or lower rainfall durations
when compared to non-urbanised slopes (as shown in Fig. 7c
and e). Finally, going back to the top and looking at the thick
grey branch of the urbanised tree, it can be noted that a ratio
between the effective cohesion and the thickness of layer 1
greater than 4.9 ensured 95 % of slope stability only when
the weighted slope angle is less than 48◦.

4 Discussion

4.1 Slope cutting is the urban construction activity
most detrimental to slope stability

In this analysis, slope cutting is the urban construction ac-
tivity with the strongest effect on slope stability’s response
(Figs. 5 and 6). Figure 7 indicates that when urbanisation is
present, more slope failures are observed, mainly on slopes
with relatively low slope angles and with low values of both
soil (layer 1) thickness and cohesion (Fig. 7b and d; also
reflected by higher effective cohesion / thickness ratios in
CART in Fig. 8b). This is interpreted as being caused by cut
slopes: when cut slope angles are steep, a higher effective co-
hesion and thus a higher soil strength are required to main-
tain stability, regardless of the natural slope angles; when soil
layers intersect the cuts, low soil strength is not sufficient
to ensure slope stability even on thin – and therefore less
landslide-prone – soil layers. The interaction between the
depth of soil layer 1 and the cut slope geometry is deduced
from Fig. 7b: almost 50 % more failures are observed for a
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Figure 7. Percentage of slope failures for urbanised and non-urbanised slopes for different categories of input factors. Throughout, urbanised
slopes show higher failure rates than non-urbanised slopes. In (a–c) the distribution of failure rates for urbanised slopes is more uniform for
variations in input factors than the non-urbanised case, while in (d, e) it is more pronounced. Panels (a–c) represent the input factors whose
sensitivity indices are smaller when urbanisation is introduced in Fig. 6, while (d, e) show the input factors whose sensitivity gets larger
when urbanisation is introduced in Fig. 6.

Figure 8. Classification tree of slope response for non-urbanised slopes (a) and urbanised slopes (b). Black branches represent the paths
that lead to simulations predicted as failed, while grey branches lead to simulations predicted as stable. The bar under each leaf shows the
proportion of simulations that were failed (black) or stable (grey) for that leaf. The thickness of the branch is proportional to the number of
simulations following that path. Note that 14 % and 22 % of the simulated slopes have been excluded, respectively, for the non-urbanised and
urbanised case because they failed before the start of the precipitation.

thickness of layer 1 smaller than the slope’s height (4 m),
i.e. when the interface of soil (layer 1) and weathered ma-
terial (layer 2) outcrops in the cut slope face (as illustrated in
Fig. 4). For these slopes, visual inspection reveals that the
slip surface is generally located between layer 1 (residual

soil, weathering grade V–VI) and layer 2 (weathered ma-
terial, grade III–IV). This is explained by the different soil
strength of the two layers, which constrains the slip surface
within the weaker layer 1, and the different hydraulic con-
ductivities. As rainfall infiltrates, the lower hydraulic con-
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ductivity of the underlying weathered material leads to a pro-
gressive accumulation of water, promoting a perched water
table. The raised pore water pressure decreases the effective
soil strength and consequently the stability of the soil layer.
Part of the increase in pore water pressure might be caused
by the presence of water leakages at the top of the cut slope.
However, the low sensitivity of the slope response to leakage
(Fig. 6) does not allow for more considerations.

Slope cutting is therefore considered in this analysis to be
the practice most detrimental to slope stability. This result is
consistent with studies carried out in the humid tropics at re-
gional scales, for which slope cutting was identified as one of
the major causes of landslides (e.g. Brand et al., 1984; Froude
and Petley, 2018; Holcombe et al., 2016). Cuts with slope
angles greater than 60◦ are also considered to be at particu-
larly high risk (e.g. Cheng, 2009), while excess of pore water
pressure was shown to be a dominant process in triggering
shallow failures on cut slopes (Anderson, 1983). CHASM+
therefore successfully captures these physical mechanisms,
confirming, despite the uncertainties, the governing role of
soil properties and soil thickness in determining slope equi-
librium. The other urban construction activities considered
seem to have a less significant role on landslide hazard. Pre-
vious studies found that vegetation can be both beneficial and
detrimental to slope stability (Wu et al., 1979; Collison et al.,
1995). Here we find that its effect is negligible, probably due
to its limited presence in urbanised slopes (trees are left at
the crest of each cut slope, where they add loading and may
actually be detrimental to the local cut slope stability). Also,
adding roof gutters does not seem to decrease the number
of failed slopes. However, in the scenarios generated here
we have only reached a maximum of 30 % slope coverage
by houses, i.e. about 30 % of impervious surface (five to six
households on 70 m slope) due to our inclusion of cut slopes
for every house. Evidence shows that roof guttering effec-
tiveness becomes evident only when the house coverage is
above 50 %, and thus a considerable portion of rain does not
infiltrate into the slope (Anderson and Holcombe, 2013). On
the other hand, leaks from septic tanks and pipes lead to 10 %
more failures despite the low house coverage. When higher
house densities are considered, the lack of water manage-
ment might become even more significant (Di Martire et al.,
2012).

4.2 The rainfall threshold for triggering landslides is
lower when informal housing is included

We found that when slopes are urbanised, the most sig-
nificant increase in the percentage of failed slopes occurs
for rainstorm events with high intensity (> 20 mm h−1) and
low duration (< 20 h; Fig. 7c and e). Accordingly, our
CART analysis identifies a higher threshold of rainfall in-
tensity / duration ratio to divide the stable and failed slopes
in the urbanised case (Fig. 8b). In landslide analysis, so-
called minimum rainfall thresholds are defined as the combi-

Figure 9. In (a) and (b) the red line represents the minimum rain-
fall thresholds calculated from our stochastic sample (99.9 % of the
failed slopes in the sample are above the thresholds). Panel (c) rep-
resents the radius of the slip surfaces of the recorded landslides plot-
ted against the corresponding triggering rainfall intensity / duration
ratio. Note as in (a) and (b) the x and y axis are in logarithmic base
10 scale, but the notation is linear for easier readability.

nations of rainfall intensity (I ) and duration (D) above which
we would expect landslides to start occurring. These thresh-
olds are generally expressed by a power law relationship
I = γDα (Guzzetti et al., 2007), and they are constructed
based on inventories of observed landslides and the rainfall
that triggered them (e.g. Caine, 1980; Larsen and Simon,
1993; Guzzetti et al., 2007). Many countries in the humid
tropics have limited empirical data on landslides, and there-
fore it would be useful to be able to generate such thresh-
olds from stochastic analyses of the type we performed here.
To demonstrate how this could be done, we applied a multi-
objective optimisation method to our sample of stochastically
generated slopes (details about our approach in Sect. S4).
We do not use the more commonly employed frequentist
methods (Brunetti et al., 2010; Melillo et al., 2018) be-
cause the high frequency of failed slopes for high-intensity
and long-duration events would strongly bias the position of
the threshold. Figure 9a and b show the calculated thresh-
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olds on a log–log scale, respectively, for the non-urbanised
and urbanised case (red lines). In both cases, 99.9 % of the
failed simulations fall above them. The thresholds present
the typical descending trend found in empirical analysis, for
which lower rainfall intensities are needed to trigger a land-
slide when rainfall durations increase. The fact that this trend
can be replicated by our synthetic simulations indicates that
CHASM+ and our stochastic modelling framework are giv-
ing realistic hydrological and stability responses to the rain-
fall forcing.

The higher the intensity and/or the duration of the rain-
fall event is, the more slope failures will occur in both cases.
However, when informal housing is present, more failures are
observed for rainfall durations less than 10 h (short events;
Larsen and Simon, 1993). This pushes down the intercept of
the rainfall threshold, as reflected in the change in the co-
efficients of the power law equations (reported in each fig-
ure). The slope of the threshold line (i.e. the exponent of the
power law) is also steeper in the urbanised case, implying
the presence of more failures for lower rainfall intensities
throughout the duration axis. These results are compatible
with the increase in small-scale landslides previously com-
mented (failure depths less than cut slope’s height): to reach
saturation at shallow depths, relatively low rainfall intensities
and durations can be sufficient to initiate slope failure. Fig-
ure 9c confirms this assumption: when slopes are urbanised
(black dots), failures tend to occur with smaller radius of
slip surface and for higher values of intensity / duration ra-
tio. The findings reflect the empirical evidence in low-income
communities which report a high frequency of small-scale
landslides, particularly associated with cut slopes, for high-
intensity and short-duration events (“the everyday disasters”;
Bull-Kamanga et al., 2003). Finally, we compare our results
with the empirical rainfall threshold proposed by Larsen and
Simon (1993) for Puerto Rico, which is based on landslide
inventories that also include failures observed on slopes mod-
ified by construction activities (mainly slope cuts for road
network; see Larsen and Parks, 1997). When informal ur-
banisation is considered, the two thresholds are almost over-
lapping (Fig. 9b). This reinforces both the potential of using
mechanistic models within a stochastic framework to gener-
ate synthetic thresholds in data-scarce locations and the pos-
sibility of using the resulting thresholds for regions of the
humid tropics with similar geophysical, climatic, and urban
properties.

4.3 Guidelines for landslide mitigation actions to tackle
the main instability drivers

The identification of the main instability drivers and their
thresholds can contribute to create objective rules to classify
slopes as hazardous in a region with scarce data availability.
For example, in Saint Lucia our analysis suggests that slopes
with effective cohesion of layer 1 less than 12 kPa and thick-
ness less than 2.5 m (effective cohesion / thickness of layer

1< 4.9) are particularly at risk for rainfall events with inten-
sity / duration ratios greater than 1.06 m h−2 (Fig. 8b). These
rules can shape look-up tables or priority ranking to clas-
sify human-made slopes as dangerous (Anderson and Lloyd,
1991; Cheng, 2009). Figure 6 shows that only few input fac-
tors particularly influence slope stability with or without ur-
banisation. These are effective cohesion and thickness of the
layer 1 (residual soil), natural slope angles, and rain intensity
and duration. The crucial role of these factors in regulating
slope stability is broadly recognised (Guzzetti et al., 2007;
van Westen et al., 2006). The results presented here demon-
strate how the influence of these instability drivers can be
ranked and quantified. The other input factors might have
a smaller direct or indirect effect, but they are not domi-
nant. This is an expected finding in global sensitivity anal-
ysis (Wagener and Pianosi, 2019), even if different outputs
(e.g. the timing of the failure) might be sensitive to dif-
ferent input factors (e.g. variations in the moisture suction
curves, as demonstrated in Sect. S1.2). The identification of
these main landslide drivers helps to address data acquisition
efforts, while the comparison between urbanised and non-
urbanised simulations quantifies the different relative role
(e.g. weight) of preparatory factors in landslide susceptibility
assessment when informal urbanisation is present. For exam-
ple, a weighted average of natural and cut slope angle can be
used to identify areas (not) at risk.

All the results presented are subjected to the assumptions
made in our study. The large variation in some of the in-
put factors can lead to overestimating the hazard. Almeida
et al. (2017), for example, varied the slope angles between
27 and 30◦ (instead of between 20 and 45◦) and hence found
a lower value of the cohesion / thickness ratio to separate sta-
ble and failed slopes than we found (in the non-urbanised
case). Data acquisition can help to reduce these uncertain-
ties. However, when data are not available, our approach al-
lows for the identification of so-called “low regrets” miti-
gation measures, i.e. actions that have a positive impact on
slope stability regardless of the uncertain factors. According
to our analysis, the most effective action would be avoiding
slope cutting since it was shown to be the urban construction
activity most detrimental to slope stability. However, this is
of scarce utility since informal housing often outstrips ur-
ban regulations (Fekade, 2000). Better hazard awareness and
construction practices should therefore be suggested. These
include for example reducing surface water infiltration on
slopes, especially when the topsoil layers intersect the cut
slope, and the resulting perched water tables reduce shear
strength in a critical location. Slope surface and subsurface
drainage can be designed to reduce the infiltration of rain-
water to a level that, in effect, reduces the total rainfall in-
tensity below the rainfall threshold calculated. Another cost-
effective landslide mitigation strategy can be the planting of
deep-rooting grasses, shrubs, or small trees, which increases
slope strength (e.g. soil cohesion) in the top couple of metres
of soil and also reduces soil moisture content though root wa-
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ter uptake and evapotranspiration (Holcombe et al., 2016; Ng
et al., 2011; Wilkinson et al., 2002a, b).

Finally, Fig. 9b shows that when slopes are urbanised,
high-intensity, short-duration rainfall events lead to an in-
creased number of small-scale landslides (failure depths less
than 4 m; Fig. 7b; and radius of slip failure less than 10 m;
Fig. 9c). Future climate change could potentially increase
the frequency of intense precipitation events (e.g. O’Gorman
and Schneider, 2009) and therefore the occurrence of these
types of landslides in informal communities. However, if
small-scale failures produced by anthropogenic factors are
neglected in the calculation of rainfall thresholds, current
rainstorms events could also be excluded as triggering fac-
tors (Crozier, 2010; Mendes et al., 2018). Small-scale, high-
frequency landslide events might not lead to major disasters,
but they are increasingly seen as indicators of risk accumu-
lation, detrimental to disaster resilience and economic devel-
opment (Bull-Kamanga et al., 2003). For this reason, these
types of landslides deserve greater attention from the scien-
tific community.

5 Conclusions

We include informal housing into slope stability analysis
using a newly extended version of the mechanistic model
CHASM in a Monte Carlo framework. In this way, we con-
sider uncertainties due to both poorly known slope proper-
ties and potential future changes in urban and climate condi-
tions. We demonstrate that informal housing increases land-
slide hazard and that slope cutting is the most detrimental
construction activity when compared to vegetation removal,
lack of roof gutters, and presence of water leaks. The pres-
ence of informal housing also modifies the relative role that
natural slope angle, soil cohesion, and soil thickness have
in maintaining stable slopes, with increased hazard occur-
rence for low values of these three main landslide drivers.
CART analysis identifies the thresholds of input factors sep-
arating stable and unstable slopes. These thresholds can be
used as objective criteria for guiding local engineers in iden-
tifying slopes at risk, deducing landslide mitigation actions,
and targeting data acquisition to reduce model prediction un-
certainty. Moreover, this analysis allows for the estimation of
critical rainfall thresholds at which slope failure is predicted
to occur. This rainfall threshold is lower when informal hous-
ing is present, with an increased number of small-scale land-
slides (+85 %, with failure depth less than 4 m and radius
of slip surface less than 10 m) for high-intensity and short-
duration events. The rainfall threshold resulting from the ur-
banised slopes is comparable to the one proposed by Larsen
and Simon (1993) for the region of Puerto Rico, suggesting
its potential validity also for other similar (data-scarce) re-
gions of the humid tropics.

Future work will seek to vary the properties that were kept
constant in this study, such as the degree of urbanisation and

house dimensions, to evaluate their significance for slope sta-
bility. This might confirm the importance of household water
management such as roof guttering and leaking water sup-
ply pipes and septic tanks when the number of households
is increased. Analysis of slopes where slope cutting is re-
placed by other possible construction techniques (such as
houses suspended on pile foundations) can identify whether
the construction of future hillside settlements could be done
in a manner less detrimental to slope stability. Different bio-
engineering techniques to mitigate hazard likelihood could
also be modelled and their effectiveness evaluated. Finally,
we seek to transfer the thresholds found in our CART analy-
sis into spatial-scale susceptibility maps in order to identify
slopes at higher risk within low-income urban settlements.
This would confirm whether the areas suggested to be most
hazardous correspond to areas where more landslides have
been observed.
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