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Abstract. Rainfall thresholds are a simple and widely used
method to forecast landslide occurrence. We provide a com-
prehensive data-driven assessment of the effects of rainfall
temporal resolution (hourly versus daily) on rainfall thresh-
old performance in Switzerland, with sensitivity to two other
important aspects which appear in many landslide studies –
the normalisation of rainfall, which accounts for local cli-
matology, and the inclusion of antecedent rainfall as a proxy
of soil water state prior to landsliding. We use an extensive
landslide inventory with over 3800 events and several daily
and hourly, station, and gridded rainfall datasets to explore
different scenarios of rainfall threshold estimation. Our re-
sults show that although hourly rainfall did show the best
predictive performance for landslides, daily data were not far
behind, and the benefits of hourly resolutions can be masked
by the higher uncertainties in threshold estimation connected
to using short records. We tested the impact of several typ-
ical actions of users, like assigning the nearest rain gauge
to a landslide location and filling in unknown timing, and
we report their effects on predictive performance. We find
that localisation of rainfall thresholds through normalisation
compensates for the spatial heterogeneity in rainfall regimes
and landslide erosion process rates and is a good alternative
to regionalisation. On top of normalisation by mean annual
precipitation or a high rainfall quantile, we recommend that
non-triggering rainfall be included in rainfall threshold esti-
mation if possible. Finally, while antecedent rainfall thresh-
old approaches used at the local scale are not successful at the
regional scale, we demonstrate that there is predictive skill in
antecedent rain as a proxy of soil wetness state, despite the
large heterogeneity of the study domain.

1 Introduction

Landslides are a natural hazard that affects alpine regions
worldwide, resulting in substantial economic losses and hu-
man casualties (Kjekstad and Highland, 2009). Landslides
can be initiated by different triggering factors but mainly
rainfall and earthquakes. Economic losses connected to land-
sliding are estimated to be between USD 0.5 billion and 5 bil-
lion annually for the European Alps region (e.g. Salvati et al.,
2010; Trezzini et al., 2013; Klose, 2015; Kjekstad and High-
land, 2009), and similar losses are also reported for Canada
and the United States (e.g. Kjekstad and Highland, 2009;
Schuster, 1996; Mirus et al., 2020). Petley (2012) carried out
a global study over a 7-year period (2004–2010) and found
a total of 2620 non-seismically triggered landslides causing
32 322 fatalities. Clearly, the socio-economic impact of land-
slides is large and this natural hazard requires attention in the
form of risk mapping, better prediction, and early warning
systems.

The focus in this work is on rainfall-induced shallow
landslides, which are the predominant type of landslides in
Switzerland and other alpine environments. These are land-
slides where the entire soil (upper regolith) fails along a
weathered bedrock interface, and they develop quickly, lead-
ing to mass failure following soil-saturating rainfall (e.g.
Highland and Bobrowsky, 2008). Despite their smaller size,
these landslides can be widespread and have the poten-
tial to damage infrastructure (railways, roads), homes, and
even lead to fatalities. For instance, in Switzerland, a total
of EUR 520 million in damage was recorded in the period
1972–2007 and 32 people lost their life due to shallow land-
slides (Hilker et al., 2009).
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One of the most widespread approaches for the prediction
of triggering conditions leading to rainfall-induced landslides
is that of rainfall thresholds (e.g. Stevenson, 1977; Caine,
1980; Guzzetti et al., 2007), which are used operationally in
many countries (e.g. see reviews in Guzzetti et al., 2020; Pici-
ullo et al., 2018). These can be based on any rainfall property
but most frequently are assumed to be power law curves in
the intensity-duration (ID) or the total rainfall-duration (ED)
space. The reasoning behind this choice is that two differ-
ent storm types may be responsible for the initiation of land-
slides: short and intense, or long-lasting and typically less
intense. Many approaches exist to formulate and estimate ID
or ED curves, and they differ in the accuracy of the landslide
inventory, the rainfall records used, the definition of rainfall
events, the statistical methodology for threshold definition,
and the validation technique, among others (see review in
Segoni et al., 2018).

One of the main aspects in which the approaches differ
is the choice of rainfall temporal resolution, typically forced
by data availability. The short and intense events responsi-
ble for local soil saturation and triggering of landslides are
usually associated with convective activity, which can last
for just a few hours (e.g. Molnar and Burlando, 2008). For
this reason, hourly thresholds are expected to be more appro-
priate for landslide prediction. There is some evidence for
this in the literature. For example, Marra (2019) shows the
underestimation of rainfall thresholds as the temporal reso-
lution of rainfall is coarsened with a numerical experiment,
while Gariano et al. (2020) demonstrate a similar effect on
a real case dataset where reported landslides are combined
with rain gauge records aggregated to different temporal res-
olutions. At the same time, daily rainfall thresholds or ID
curves may also exhibit good predictive power for landslid-
ing, e.g. as shown in a comprehensive analysis in Switzerland
(Leonarduzzi et al., 2017). So the following question arises:
how does the temporal resolution of the rainfall data actually
affect landslide prediction?

We address this question with a data analysis experiment,
where we take into account realistic conditions and conse-
quences of different temporal resolutions of data. For exam-
ple, choosing a higher resolution (e.g. hourly) has several
undesirable consequences: (a) rainfall records are typically
shorter (hourly records are only available in automatic net-
works in more recent decades); (b) rainfall records are likely
to be less dense in space, leading to poorer matching with
landslide locations; and (c) landslide inventories are typically
less rich (requiring timing and not only date of occurrence) or
more uncertain, especially for older events that were recon-
structed from newspaper articles or other indirect sources.
All these aspects have to be taken into consideration in an
objective analysis of the effects of temporal resolution on
rainfall thresholds.

In this paper we undertake such an analysis with the high-
quality landslide database available in Switzerland (Hilker
et al., 2009) and several high-quality rainfall records avail-

able for Switzerland from MeteoSwiss. We expand the im-
pact of temporal resolution (hourly versus daily) on land-
slide prediction with sensitivity to two other important as-
pects which appear in many landslide studies: the normal-
isation of rainfall, which accounts for local meteorological
properties (e.g. Marc et al., 2019), and the inclusion of an-
tecedent rainfall, which provides additional information on
soil state prior to landsliding, typically studied at local scales
(Glade et al., 2000; Godt et al., 2006; Mirus et al., 2018a,b).
The objectives of the paper therefore are (a) to provide an
extensive comparison between hourly and daily rainfall data
for the definition of rainfall thresholds, considering several
practical consequences of choosing a higher temporal res-
olution; (b) to compare different strategies for the normali-
sation of rainfall thresholds; and (c) to explore whether an-
tecedent rainfall does provide added predictive power at the
regional/national scale.

2 Data and methods

We use several rainfall datasets and a landslide inventory
(Hilker et al., 2009) (Sect. 2.1) to derive objective landslide-
triggering rainfall thresholds at the daily and hourly scale us-
ing two different statistical methods (true skill statistic max-
imisation and frequentist approach) (Sect. 2.2) and to address
some of the issues associated with higher temporal resolution
data, such as the absence of accurate timing information for
landslide occurrence (Sect. 2.3) and the lower quality (den-
sity) of rainfall data (Sect. 2.4). We follow up with methods
which quantify the impact of rainfall threshold normalisa-
tion (Sect. 2.5) and the added power of antecedent rainfall on
landslide prediction (Sect. 2.6).

2.1 Rainfall and landslide data

The rainfall datasets used differ by type of measurement, du-
ration of record, and temporal and spatial resolutions (Fig. 1
and Table 1). The daily product (rainfall daily interpolated,
RDI) is the longest record (1972–2018), containing daily
sums (06:00 to 06:00 am) over 1 km× 1 km cells covering
Switzerland. It is obtained by interpolating daily measure-
ments from approximately 420 rain gauges, using the cli-
matology (intended here as anomaly relative to the monthly
mean precipitation over the reference period 1971–1990),
and regionally varying precipitation–topography relationship
(procedure explained in detail in Frei and Schär, 1998).

The hourly station rainfall dataset (rainfall hourly gauges,
RHG) is the collection of the hourly rainfall time series
measured continuously since 1981 at 45 gauges across the
country (green dots in Fig. 1). We use two different hourly
datasets that were derived by disaggregating the RDI such
that the daily sums match that of the corresponding RDI cell
at the same 1 km× 1 km resolution. The first dataset (rainfall
hourly interpolated gauges, RHIG) is computed by disaggre-
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Table 1. Description of the different rainfall datasets used.

Rainfall daily interpo-
lated

Rainfall hourly gauges Rainfall hourly interpo-
lated gauges

Rainfall hourly interpo-
lated radar

Abbreviation RDI RHG RHIG RHIR

Data source rain gauges rain gauges rain gauges rain gauges + radar

Type of product gridded (1 km2) gauges (Fig. 1) gridded (1 km2) gridded (1 km2)

Temporal resolution daily hourly hourly hourly

Time frame 1972–2018 1981–2018 1981–2018 May 2003–
December 2010

Methods interpolation of rain
gauges using climatol-
ogy and topography
relationships

measured disaggregation of RDI
using temporal evolu-
tion of RHG

disaggregation of RDI
using temporal evolu-
tion of radar data

Reference Frei and Schär (1998) – – Wüest et al. (2010)

Number of landslides in
time frame

2271 1842 (634 with known
date and time)

1842 (634 with known
date and time)

501 (237 with known
date and time)

Figure 1. Map and scheme of the different rainfall datasets used in the analysis. The daily interpolated product (RDI), the hourly rain gauges
(RHG), and the two derived hourly gridded products, which preserve the daily sums from RDI, but use the sub-daily temporal variability of
a radar composite (RHIR) or of the hourly rain gauges (RHIG).

gating the daily sum RDI into hourly intensities by using the
hourly fractions recorded at the nearest hourly gauge (RHG).
The second dataset (rainfall hourly interpolated radar, RHIR)
instead uses an hourly composite of radar measurements
NASS (Joss et al., 1998; Germann and Joss, 2004; Germann
et al., 2006) for the disaggregation (procedure explained in
detail in Wüest et al., 2010). Due to the quality of the radar
composite, we expect RHIR to be more accurate than RHIG
between stations. In fact, the hourly gauge network measur-

ing continuously since 1981 is quite sparse (see Fig. 1, ca. 1
rain gauge per 900 km2), and it is likely to miss heavy rainfall
intensities especially during convective storms.

The four different rainfall records (RDI, RHG, RHIG, and
RHIR) are combined with the landslides extracted from the
Swiss flood and landslide damage database (Hilker et al.,
2009). This databases collects floods, debris flows, land-
slides, and rockfalls that produced damage in Switzerland
since 1972. Of the total reported landslides in the period
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1972–2018 we selected those with known location and date.
Then, depending on the rainfall dataset used, the time frame
is modified, and for hourly analysis a further selection is
made of the entries with known timing (number of landslides
per rainfall dataset is reported in Table 1).

2.2 Rainfall thresholds

The methodology for the definition of rainfall thresholds fol-
lows the statistical procedure introduced in Leonarduzzi et al.
(2017). First we separate the rainfall time series into events,
by considering a minimum amount of dry hours between
events. We choose 24 h for daily rainfall data and 6 h for
hourly rainfall data. The hourly inter-storm period of 6 h sep-
arating events is selected as the one leading to the best per-
formance (highest true skill statistic; see methodology ex-
plained hereafter), within a range of 2–12 h, which is the
amount of dry hours expected to separate individual storms.
This is longer than the requirement of statistical indepen-
dence between events, which Gaál et al. (2014) showed to be
at least 2 h. This difference reflects the role that antecedent
rain plays in landslide generation.

Then we classify rainfall events as triggering events
if a landslide happens during or immediately after the
event, and non-triggering otherwise. We compute the event
duration, total rainfall, mean, and maximum rainfall in-
tensity for each event. We then define optimal thresh-
olds for each of the precipitation characteristics by find-
ing the threshold that maximises the true skill statistic
TSS= specificity+ sensitivity− 1, where sensitivity is the
rate of true positives and specificity is the rate of true neg-
atives. Additionally we also define total rainfall E versus du-
ration D (ED) thresholds in the form of a power law func-
tion, E = a ·Db, by optimising the two parameters a and b

through TSS maximisation. As a reference, we provide also
the results for the thresholds defined following the frequen-
tist approach, first introduced in Brunetti et al. (2010), which
is one of the most widely used methods for ED fitting (e.g.
Peruccacci et al., 2012; Vennari et al., 2014; Gariano et al.,
2015; Iadanza et al., 2016; Melillo et al., 2018; Roccati et al.,
2018). The optimum threshold in this case is based on trig-
gering events only. The exponent b is obtained by fitting the
ED pairs with a line in log–log space. The intercept a is ad-
justed to match a chosen exceedance probability (in this pa-
per we use the 5 % exceedance probability as a reference).

For all analyses based on the gridded rainfall products, we
consider the rainfall time series for each susceptible cell, for
which we define rainfall events following the procedure ex-
plained above. Susceptible cells are those rainfall cells in
which at least one landslide was recorded in the respective
time frame of each dataset in Table 1.

2.3 Inaccurate landslide timing: triggering and peak
intensities

One problem we face when utilising hourly rainfall records is
that the actual timing of historical landslides is typically not
available or very uncertain/inaccurate. For instance, Guzzetti
et al. (2007) report that, out of the 2626 rainfall events asso-
ciated with shallow slope failures globally, only 26.3 % had
information about the date of occurrence and only 5.1 % also
had information about the timing. Although a common ap-
proach to compensate for the lack of accurate landslide tim-
ing is to assign the landslide to the rainiest hour within a cer-
tain time window, the effect of this approximation is not well
known. Peres et al. (2018) showed the potential impact of
timing and date uncertainty using synthetic databases by cou-
pling stochastic weather generation and a physically based
hydrological and slope stability model. Staley et al. (2013)
showed, using a precise debris-flow database, that using peak
rainstorm intensity instead of the actual triggering intensity
results in an overestimation of the ID threshold.

We study the wrong timing effect similarly to Staley et al.
(2013) by introducing two scenarios as alternatives to the ac-
tual landslide database: one in which we assume that when
the day of a landslide is known its timing is assigned to the
most intense rainy hour within the day (this is the case of
Staley et al., 2013) and a second alternative in which the
timing is assigned to the rainiest hour within a 48 h window
centred on the actual timing recorded in the database (this
is a hypothetical case which considers the fact that we may
not have the right date recorded in the landslide database).
Once the timing is altered accordingly, the modified landslide
databases are used for the definition of ED thresholds follow-
ing the same procedure as with the original true database. We
carry out this exercise utilising landslides with known time of
occurrence recorded between May 2003 and December 2010
(time frame of RHIR).

2.4 Rainfall quality: gauge density and interpolation

In most studies where regional rainfall thresholds are de-
fined, landslides in a region are assigned to the closest rain
gauge, sometimes taking into consideration not only distance
(Finlay et al., 1997; Godt et al., 2006), but also similarities
in topography or other aspects important for precipitation
(e.g. Aleotti, 2004; Berti et al., 2012; Gariano et al., 2012;
Rossi et al., 2012; Melillo et al., 2018; Vennari et al., 2014).
Nikolopoulos et al. (2015) showed that, decreasing the den-
sity of the rain gauge network, the b parameter of the power
law ID curve on average decreases, depending on whether the
closest rain gauge is considered (nearest neighbour) or sim-
ple interpolation methods such as inverse distance weighting
or ordinary kriging are used. In the context of comparing the
impacts of daily and hourly rainfall resolutions on landslide
thresholds, we recognise that gauge density is very impor-
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tant, and we construct an experiment to test the effects of
gauge density and accuracy of spatial interpolation.

To do this, we define rainfall thresholds with the closest
rain gauge based on the very sparse station-based hourly rain-
fall record RHG and compare it to the spatially distributed
disaggregated dataset RHIG. The comparison shows the ef-
fect of improving an hourly record obtained with a very
sparse network, by taking advantage of a daily dataset based
on a much denser network and an advanced interpolation
method in RDI (Frei and Schär, 1998), merged with hourly
station data. We propose two versions of the closest-rain-
gauge approach used in many studies. First we assign each
landslide to the geographically closest rain gauge and then
extract rainfall events for each of the gauges which have at
least one landslide (maximum 45 rain gauges) from the RHG
dataset. Second we assign to each susceptible rainfall cell (as
defined for the gridded rainfall products) the rainfall of the
closest rain gauge, and the event definition is carried out for
each of these cells (maximum as many cells as the number of
landslides) from the RHIG dataset.

2.5 Rainfall normalisation

One of the methods suggested to improve the predictive
power of regional rainfall thresholds is to localise them. This
can be done through regionalisation by dividing the area into
homogeneous regions and defining a different threshold for
each of them (e.g. Peruccacci et al., 2012; Leonarduzzi et al.,
2017; Peruccacci et al., 2017) or by normalisation, which is
defining thresholds based on the ratio between the precipita-
tion parameters and a local scaling value, considered to be
representative of local rainfall characteristics. Typically, the
property chosen is the mean annual precipitation, MAP (e.g.
Dahal and Hasegawa, 2008; Aleotti, 2004; Guzzetti et al.,
2007; Leonarduzzi et al., 2017; Peruccacci et al., 2017); the
rainy-day normal, RDN= MAP

n
, where n is the number of

rainy days in a year (Guidicini and Iwasa, 1977; Wilson and
Jayko, 1997; Guzzetti et al., 2007; Postance et al., 2018); or
other precipitation characteristics (e.g. anomaly relative to
10-year return period rainfall in Marc et al., 2019).

In this paper we test in addition to the well established
MAP and RDN normalisations also quantiles of event prop-
erties and of daily/hourly rainfall as scaling parameters. We
consider both wet quantiles, which are computed only con-
sidering rainy days/hours, and absolute quantiles, which con-
sider all days/hours. Note that there are fundamental differ-
ences between scaling with MAP and absolute quantiles or
RDN, event properties quantiles, and wet quantiles, in that
the former ignore intermittency of rainfall, while the latter
are computed only from the rainy hours/days of the rainfall
dataset.

2.6 Antecedent rainfall

The main criticism raised against rainfall thresholds for land-
sliding in general is that they only consider recent/event rain-
fall, without taking into account the soil status prior to it
(e.g. Bogaard and Greco, 2018). To include this antecedent
soil moisture state into rainfall thresholds, several ad hoc ap-
proaches have been introduced with varying levels of com-
plexity and data demand. The simplest of these consists in ac-
cumulating rainfall over a fixed duration prior to the trigger-
ing event rainfall (e.g. Chleborad, 2003; Frattini et al., 2009).
In other studies the fixed duration has been modified to ac-
count for vanishing memory in rainfall using the antecedent
precipitation index (API), which gives less weight to rainfall
contributions further back in time (e.g. Crozier and Eyles,
1980; Crozier, 1986), often relating the decay coefficient to
the recession curves of storm hydrographs, as first suggested
by Glade et al. (2000). A further development of the API
is the so-called antecedent wetness index, which accounts
also for other hydrological variables by removing from an-
tecedent rainfall the potential evapotranspiration and then
following the same approach as API (e.g. Godt et al., 2006).
Finally, a few studies use estimates of the real antecedent soil
wetness which are based on the soil water balance (Ponziani
et al., 2012) or hydrological modelling (e.g. Segoni et al.,
2009; Thomas et al., 2018), or obtained from on-site (e.g.
Mirus et al., 2018b; Wicki et al., 2020) or remote sensing
measurements (e.g. Brocca et al., 2012; Thomas et al., 2019).

Here, we follow a new approach to assess the informa-
tion content of antecedent rainfall, with the goal of testing
whether it is still recognisable over such a large and hetero-
geneous area. To do this, we follow an approach opposite
to what is normally done, where events are separated into
with and without antecedent rainfall a priori (e.g. Frattini
et al., 2009). We start from the rainfall events, as described
in Sect. 2.2. For each of those, we compute the antecedent 5
and 30 d rainfall, which is simply the sum of rainfall over
the N days prior to the beginning of the rainfall event it-
self. All these events were either observed as triggering, if a
landslide happened during them, or non-triggering. Accord-
ing to the optimised ED threshold, we can also separate them
into predicted triggering, above the ED power law curve, or
predicted non-triggering, below it. The intersection of these
predictions/observations gives us four groups of events: false
alarms, true positives, misses, and true negatives. If the an-
tecedent rainfall is the parameter explaining the failures of
the ED threshold, we would expect that misses were asso-
ciated with high antecedent rainfall and false alarms with
very low antecedent rainfall. We investigate this by aver-
aging within each of the four groups the antecedent rain-
fall for each event duration (all events of duration 1 d, all
events of duration 2 d, etc.). We decide to do it separately for
each event duration because we suspect there could be dif-
ferences related to the duration, as a proxy of storm/weather
system type. Averaging antecedent rainfall over these groups
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of events and durations allows us to study the general ten-
dencies (i.e. whether antecedent wetness is generally higher
or lower) and possibly reduce the effect of heterogeneities
unavoidable at such a regional scale.

3 Results

3.1 Daily and hourly thresholds

We define several rainfall thresholds by maximising TSS for
the different rainfall datasets, as well as the associated time
frames (Fig. 2). Comparing the results for the three differ-
ent rainfall products (comparison D in Fig. 2 and Fig. 3a)
it can be seen as expected that performance is best with
the high-quality hourly rainfall product which uses high-
resolution radar information for the disaggregation of daily
sums (RHIR). Disaggregation using the closest hourly rain
gauge (RHIG) seems to lead to worse performance than
the corresponding daily analysis RDI (red and blue bars in
Fig. 3a). However, this may be deceptive, as the time peri-
ods as well as the number of landslides behind the rainfall
datasets are different. This is a critical point we investigate
below.

A fairer comparison would be to compare performance
over the same time period (May 2003–December 2010) and
considering the same landslide events (comparison A in
Fig. 2 and Fig. 3b). In this case, the differences in perfor-
mance across the different rainfall datasets become smaller.
The hourly disaggregated product using radar (RHIR) still
leads to the best performance, but the performance with daily
data (RDI) is improved even with the simple disaggregation
using the closest rain gauge (RHIG), for all rainfall proper-
ties except maximum intensity. Remarkably, the daily rainfall
dataset RDI retains reasonably good predictive power despite
its coarser temporal resolution.

One additional comparison that can be made in the over-
lapping time frame (May 2003–December 2010) is with all
landslide events, regardless of whether the timing is also
known or only the date. The performance obtained with daily
data and all these events is now comparable to the one with
the high-quality hourly product (RHIR). The differences be-
tween the two are even more evident looking at the thresholds
associated with the performance shown here (Fig. 3c). The
daily thresholds considering only events with known tim-
ing rather than all landslides decrease to 22.5 mm d−1 for
the maximum intensity (32.0 mm d−1 considering all land-
slides within the time frame), 35.0 mm for the total rainfall
(47.9 mm considering all landslides within the time frame),
and 14.0 mm d−1 for the mean intensity (19.0 mm d−1 con-
sidering all landslides within the time frame).

While the decrease in the thresholds and performance is
consistent for all rainfall properties as the landslide dataset
is reduced, this is not a general result. Rather it demonstrates
that the size and accuracy of the landslide dataset is impor-

tant and that results based on shorter records are likely to be
less robust as they are more susceptible to individual events,
years, outliers, or mistakenly reported landslides. This short-
record bias is also evident when comparing daily thresh-
olds obtained using the 1981–2018 time frame or the shorter
time frame of May 2003–December 2010 for which RHIR is
available (first and third bars in Fig. 3c). The thresholds ob-
tained with the latter are higher. The reason is that in 2005,
187 landslides occurred, most of them due to a single intense
summer storm in August. Considering all 38 years (1981–
2018) the effect of that outlier year is reduced as it amounts
to ca. 10 % of the total number of landslides available with
known timing (almost 40 % within the period May 2003–
December 2010).

Final visual evidence of the lower robustness of thresh-
olds defined using hourly rainfall data is found in the rel-
ative frequency plots of triggering events for hourly rainfall
data, compared to daily (Fig. 4b and d). The triggering events
at the hourly resolutions (634 events) are much more sparse
than the corresponding daily events (2117 events).

3.2 Inaccurate landslide timing: triggering and peak
intensities

Results of two different approaches are presented here to il-
lustrate the case when historical landslide inventories have
no timing information available. The landslides are assigned
to the actual timing in the database, the most intense hour
within the actual day, or the most intense hour within a 48 h
window centred around the actual timing.

We defined ED thresholds using each of these modified
landslide datasets (comparison B in Fig. 2). Searching for
the most intense hour within the actual day of the landslides
(no. 6 in Fig. 2) leads to optimal thresholds that are not far
off from the ones defined using the actual timing (no. 3 in
Fig. 2). Instead, when the hour with the maximum intensity
is found within a 48 h window centred on the actual timing
(no. 7 in Fig. 2), the threshold changes, leading to a higher
coefficient a and smaller slope b.

This observation is true for both threshold optimisation us-
ing TSS or following the frequentist approach, for which the
change in the threshold parameters is present also when lim-
iting the time to the day of the landslides. The explanation
for this difference is that the TSS maximisation approach
for the definition of ED thresholds is relatively robust, as
altering the timing of the landslides some triggering events
might change their total rainfall and duration values, but non-
triggering events are unaffected. What is important is that for
the TSS maximisation in both scenarios of unknown adjusted
timing, the TSS value associated with the best threshold is
higher than if the timing was known.

All the observations presented here are valid also when
carrying out the same analysis over the 1981–2018 time pe-
riod using RHIG. The TSS maximisation leads to basically
identical thresholds in the three scenarios but the TSS in-

Nat. Hazards Earth Syst. Sci., 20, 2905–2919, 2020 https://doi.org/10.5194/nhess-20-2905-2020



E. Leonarduzzi and P. Molnar: Deriving rainfall thresholds for landsliding at the regional scale 2911

Figure 2. Table containing the coefficients of the threshold power law curve in the total rainfall–duration plane obtained by maximising
the TSS, or selecting the 5 % exceedance probability line following the frequentist approach, for all the different time frames and rainfall
records. To facilitate reading, the different comparisons carried out are indicated, matching the respective results. In the bottom panel, all
the ED threshold curves are shown, separated into daily (above) and hourly (below), obtained with TSS maximisation (left) or following the
frequentist approach (right). The numbers in the legend match the “#REF” entry in the Table above.
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Figure 3. True skill statistic for the different precipitation characteristics and all the different rainfall dataset considered. (a) Comparison of
rainfall products using for each rainfall dataset the entire time frame available. (b) Comparison of the overlapping time frame (May 2003–
December 2010). The right subpanels in panels (a) and (b) show the performance of the ED power law threshold for the corresponding
datasets as reference. (c) The optimum thresholds obtained with daily rainfall data and considering all time frames and landslides with
known date and timing (known timing) or at least date (all landslides).

creases from 0.65 (actual timing) to 0.67 (most intense hour
within the actual date) or 0.70 (most intense hour within a
48 h window). Following the frequentist approach, the TSS
also increases from 0.44 (actual timing) to 0.51 (most intense
hour within the actual date) or 0.60 (most intense hour within
a 48 h window).

This means that if we do not know the timing of landslides
accurately and assign them to some a priori decided rainfall
event property, then we are overestimating the landslide pre-
diction skill of our ED curves. Extending this to a situation
in which the actual timing is unknown and this technique is
applied to compensate for it, while the threshold might not
be very far off, the user would overestimate model perfor-
mance, leading to a false overconfidence in the threshold’s
predictions.

Nevertheless, having to make a choice between the two
methods of correcting timing, limiting the search of the raini-
est hour to the actual date, seems to be slightly better, with
smaller overestimation of the performance (TSS) and thresh-
old curve parameters more similar to the ones obtained using
the actual timing. Considering a 48 h window not only leads
to overestimation of the TSS, but the thresholds are also af-

fected. For both threshold definition methods, the threshold
in this case gets higher (higher a) and less steep (smaller b).

3.3 Rainfall quality: gauge density and interpolation

To test the importance of the general quality of the rainfall
dataset in the context of the daily–hourly temporal resolu-
tion comparison, we use here the hourly gauge measure-
ments (RHG) in a sparse network and the hourly gridded
rainfall dataset (RHIG). The latter takes advantage of the
high-quality daily record (RDI), which is based on a denser
daily rain gauge network and accounts for climatology and
topography (Comparison C in Fig. 2).

As before, the comparison between the different rainfall
datasets should not be based on the thresholds obtained,
since both triggering and non-triggering events can poten-
tially change, but rather on the landslide prediction perfor-
mance associated with them. When the rain gauge rainfall
record is used directly (RHG) at each (closest) landslide lo-
cation (no. 5 in Fig. 2) or just using one time series per
gauge (no. 4 in Fig. 2), the sensitivity drops, and so does the
TSS. The two rainfall datasets (RHIG and RHG) have ex-
actly identical hourly rainfall fractions and differ only by the

Nat. Hazards Earth Syst. Sci., 20, 2905–2919, 2020 https://doi.org/10.5194/nhess-20-2905-2020



E. Leonarduzzi and P. Molnar: Deriving rainfall thresholds for landsliding at the regional scale 2913

Figure 4. Total rainfall–duration (ED) plots with colour scale representing the relative frequency (a, c) of non-triggering and (b, d) of
triggering events. The lines represent the best power law curve thresholds obtained by maximising TSS, (a, b) with hourly (RHIR) and (c, d)
with daily (RDI) rainfall data.

daily sum, which for RHIG is forced to match the RDI daily
rainfall of the corresponding cell. When using the station
hourly time series, the triggering rainfall events have gen-
erally smaller event characteristics than the corresponding
RHIG events. Out of total 634 events, 423 have smaller max-
imum intensity, 382 have smaller mean intensity, 447 have
smaller total rainfall, and 461 have shorter duration. This re-
sults in a decrease in the maximum TSS of up to 0.07, mostly
due to a lower sensitivity (for total rain, the sensitivity drops
from 0.72 to 0.63).

The same drop in performance is observed when following
the frequentist approach (comparison C in Fig. 2). The TSS,
which is 0.44 for the analysis using the hourly time series ad-
justed with the daily product (RHIG), drops to 0.29 or 0.24,
depending on whether the susceptible cells or rain gauge lo-
cations are used. In this case the effect on the threshold (ED
curve) is also very consistent: the curves are lower (smaller
a) and slightly steeper (higher b). This is a consequence of
the fact that it is especially the short (intense) events that
are missed (underestimated) when considering rainfall mea-
surements further away from the actual location of landslides
(RHG rather than RDI).

3.4 Rainfall normalisation

The improvement achieved by defining thresholds not based
directly on the values of the different precipitation char-
acteristics, but scaling them by a certain quantile of the

corresponding event characteristic, a certain quantile of
daily/hourly precipitation, or the mean annual precipitation is
shown in Fig. 5 for the daily RDI and hourly RHIR datasets.
When searching for the event property thresholds, it seems
to be irrelevant which quantile is chosen, as the TSS seems
to be only slightly fluctuating around a value somewhere be-
tween the no normalisation and the mean annual precipita-
tion lines. Completely different behaviour is observed for the
normalisation using quantiles of hourly/daily rainfall. In that
case, performance comparable to the other cases is achieved
only for the highest quantiles, especially for absolute quan-
tiles and for hourly data (Fig. 5b, d, and f).

In general, the best performance is obtained with normali-
sation by mean annual precipitation. In fact, with hourly data,
this level of performance can only be reached/exceeded for
few very high rainfall quantiles of the total rainfall (wet or
absolute quantiles, Fig. 5d) or maximum intensity (absolute
quantiles, Fig. 5b). With daily data instead, performance is
comparable with the mean daily precipitation over a wider
range of quantiles (q > 0.4 for wet quantiles) of daily rain-
fall and event properties. The performance seems to be only
slightly better for the highest quantiles.

With daily rainfall, the performance of wet, which only
considers rainy days, and absolute quantiles is only in the
range of quantiles for which performance is comparable
to the other normalisations (q > 0.4 for wet quantiles and
q > 0.9 for absolute quantiles). Instead, for hourly rainfall,
the normalisation with the absolute quantiles peaks around
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Figure 5. True skill statistic (TSS) values for the best threshold for the different normalisations, (a, c, e) for the daily (RDI) and (b, d, f) for
hourly (RHIR) rainfall data, (a, b) for maximum rainfall, (c, d) for total rain, and (e, f) for mean intensity. For the normalisation by event
properties (event properties) and quantiles of rainfall (wet and absolute), the TSS is computed for each 0.01 quantile value (x axis). For the
normalisation by mean annual precipitation (MAP) and the TSS value of the variable without normalisation (no normalisation), the constant
value of the TSS is indicated as a straight line across all x values.

a very high quantile value (q = 0.95–0.97), reaching per-
formance similar (mean intensity, Fig. 5f) or even superior
(maximum and mean intensity, Fig. 5b and d) to the MAP
normalisation.

The results for the RDN normalisation (not shown here)
are basically indistinguishable from the MAP, not in terms
of value of optimum threshold but of performance, with dif-
ferences in the TSS of the normalised optimum threshold of
less than 0.01.

The improvement of landslide prediction with normalised
rainfall thresholds is statistically demonstrated, but it de-
mands a physical explanation. We hypothesise that the reason
lies in the fact that the rainfall regime (climate) and the lands-
liding process (erosion) are connected through the landscape
balance between weathering and soil formation, as well as
the rainfall-driven erosion of the top soil by landsliding and
other processes (e.g. Norton et al., 2014). In climates with a
highly erosive rainfall regime and high topography, the rate
of landsliding has on the long term adjusted to match the
lower soil formation rates. Consequently, we need on aver-
age higher rainfall intensities to generate landslides there.
The scaling of rainfall thresholds by a high-intensity rain-
fall quantile corrects for landscape-scale differences between
these process rates and leads to better prediction of landslide
occurrence regionally. Evidence for this hypothesis can be
found in some studies (e.g. Leonarduzzi et al., 2017; Pe-
ruccacci et al., 2017) and can also be observed by compar-

Figure 6. Wet quantiles of daily intensities, mean daily precipitation
(MDP = mean annual precipitation / 365) and maximum daily trig-
gering intensities for all the susceptible cells (rainfall cells with at
least one landslide). The cells are sorted (x axis) by value of MDP,
left to right from the cell with the highest to lowest MDP. Markers
show the daily rainfall intensities of triggering events for each cell.

ing the differences in triggering intensities to those of mean
daily precipitation values in our data (Fig. 6). Here cells in
which the mean daily precipitation is higher also have gen-
erally higher triggering intensities. Accounting for this in the
threshold definition, for example dividing the values of max-
imum intensity by the MAP of the corresponding cell, results
in an improvement in the performance.

It is interesting to note that most of the rainfall-
triggering intensities are indeed among the strongest inten-
sities recorded. Most of the triggering intensities (circles in
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Fig. 6) lie between the 0.75 and 1 wet quantiles of rainfall.
This is the foundation for the success of rainfall thresholds
for landslide prediction.

3.5 Antecedent rainfall

Including antecedent wetness or rainfall on a re-
gional/national scale is not a simple task. In fact, while
antecedent-triggering rainfall thresholds are successful in
many local studies (e.g. for the Seattle area, Chleborad,
2003), the results shown in Sect. 3.4 are indicative of the
heterogeneity at the regional/national scale which will make
antecedent rainfall signals difficult to detect. For example,
the approach suggested in Chleborad (2003) of defining
thresholds based on the 3 and the 15 d prior cumulative
rainfall applied to the RDI data 1972–2018 shows no pattern
useful for the definition of thresholds. Nevertheless, the
information content even in the simplest proxy of soil
wetness, that is the antecedent rainfall, is clear (Bogaard and
Greco, 2018).

In our experiment where we separate the events into ob-
served triggering or non-triggering as well as predicted trig-
gering or not-triggering (above or below the ED threshold
obtained by maximising TSS) and plot the mean antecedent
rainfall for 5 and 30 d periods, we can see that antecedent
rainfall can explain some of the misclassifications gener-
ated by the ED threshold (Fig. 7). We expect that some of
the misses (triggering events below ED curve) were actually
landslides caused by low rainfall amounts on very wet soil.
At the same time some false alarms (non-triggering events
above ED curve) were wrongly predicted as triggering, but
no landslide was observed due to the very low antecedent
rainfall. These are exactly the patterns we observe in Fig. 7.
Higher intensity events are generally associated with higher
antecedent rainfall, due to seasonality effects (typically in the
wetter periods of the year); the false alarms are associated
with clearly smaller antecedent rainfall than the true posi-
tives; and, even more importantly, the misses have, for almost
all durations, higher antecedent rainfall than the false alarms.
As expected, the true negative events have on average the
smallest antecedent rainfall for most durations.

The highest antecedent rainfall for misses (triggering
events below ED curve) for events of duration of 1 d could
be indicative of the importance of antecedent conditions, ei-
ther because the wrong event has been identified as trigger-
ing or because those are really triggered due to previous high
soil wetness conditions rather than the event rainfall itself.
However, we cannot provide evidence that this is the case.
The patterns for the 5 and 30 d antecedent rainfall look very
similar, showing that the antecedent conditions are consis-
tent over longer periods. The only difference is in the true
negatives, which for the 30 d, have a much smaller mean an-
tecedent rainfall than the other events.

4 Discussion

In the work presented here we show that the choice of the op-
timal temporal resolution for the definition of rainfall thresh-
olds might not be a straightforward exercise and that many
more aspects should be taken into consideration before con-
cluding that the highest temporal resolution is best for land-
slide prediction.

Previous studies (e.g. Marra, 2019; Gariano et al., 2020)
have focused on the effect of temporal resolution and showed
that using lower temporal resolutions leads to the underesti-
mation of the thresholds. From a theoretical point of view,
we argue that hourly rainfall data are superior to daily data
as they can capture the short convective events lasting a few
hours, which are known to trigger landslides and which get
averaged out in the daily sum. Also in the work presented
here, when we consider the exact same time period and land-
slide events, we see that performance at the hourly temporal
resolution is superior to that at the daily resolution, especially
for high-quality datasets (RHIR). On the other hand, we show
with this work that there are several additional factors that
should be taken into consideration.

Choosing hourly rainfall data usually implies dealing with
shorter historical records, lower quality (sparser) rainfall
datasets, and less rich landslide databases. Typically, in the
past rain gauges were mostly recording precipitation daily,
which means that the daily datasets go further back in time,
allowing for an analysis spanning over many more years.
Taking the example of Switzerland, since 1961 ca. 420
gauges are available for generating the RDI rainfall prod-
uct. The first hourly gauges start to appear around 1981, and
only 45 of those are consistently measuring until 2018. The
much lower density of hourly rain gauges makes the quality
of the interpolated product lower, or the distance between ob-
served landslide and measured rainfall locations greater, and
therefore less representative. In recent years (ca. since 2012)
the number of hourly gauges has increased dramatically, with
270 stations at the moment, but this would allow an analysis
of a maximum 7 years (compared to the 48 years available
at the daily resolution). The variability in the optimal thresh-
old for the different time periods is proof of the risk of using
shorter time frames (see Fig. 3c).

At the hourly resolution also the richness of the landslide
database is affected, as not only the date but also the tim-
ing of the landslide must be known. Staley et al. (2013) ad-
dressed this issue and showed the overestimation of thresh-
olds when considering peak rainstorm instead of triggering
intensity. This is common practice when the actual timing of
the landslides is unknown. It generally leads to overestima-
tion of the triggering events’ maximum intensity but poten-
tially also other triggering events’ parameters. Here, the op-
timum threshold does not seem to change much, especially
when the threshold is obtained by maximising TSS. This is
true if at least the landslide date is known. Constraining the
timing of landslides on the actual date seems a better choice
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Figure 7. Mean antecedent rainfall over (a) 5 or (b) 30 d before the date beginning of the event. All the rainfall events are separated into
true positives (observed triggering events, T , which are above the cumulative rainfall-duration, ED, threshold), false alarms (observed non-
triggering, NT, events which are above the ED threshold), misses (observed triggering events which are below the ED threshold), and true
negatives (observed non-triggering which are below the ED thresholds), and the mean antecedent rainfall is computed for each of these for
each rainfall event duration (1–6 d). Results are based on the RDI rainfall dataset, 1972–2018.

whenever possible. Allowing a larger window (48 h centred
on the actual timing) leads to bigger threshold changes, both
if maximising TSS or following the frequentist approach.
Nevertheless, in both cases, the performance is overestimated
if the peak intensity is used to time the landslide, giving the
user overconfidence in the threshold values themselves.

Some last factors to take into consideration when choos-
ing the temporal resolution are that in many countries hourly
records of rainfall could be even shorter and of lower qual-
ity than in Switzerland, and choosing to work with daily
data might be even more important. Furthermore, thinking
of utilising rainfall thresholds in an operational setting, daily
forecasts are usually more reliable than hourly forecasts (e.g.
Shrestha et al., 2013).

In all the comparisons between hourly and daily rainfall,
we purposely refrained from comparing the value of the op-
timal thresholds and of the ED curves between hourly and
daily analyses. In fact, to allow this comparison, strong as-
sumptions must be made, which are clearly not realistic, such
as assuming that the daily intensity is 24 times the corre-
sponding hourly intensity. This is in agreement with the rec-
ommendation in Gariano et al. (2020) and other studies to not
extend daily ED or ID rainfall thresholds into the sub-daily
domain.

Two methods for rainfall threshold estimation were pre-
sented here (TSS maximisation and frequentist approach) to
show that the threshold optimisation method used does not
impact the main conclusions. While our work does not intend
to compare the two methods, the results presented here show
clearly that accounting for non-triggering events also in the
definition of the threshold (e.g. maximising TSS) increases

the robustness of the obtained threshold. In fact, while the
performance and the parameters of the ED curves are af-
fected using both methods, the frequentist approach seems to
be more sensitive, with greater differences in optimal thresh-
olds and greater variability in performance (e.g. see vari-
ability of the optimum ED thresholds in Fig. 2). Neverthe-
less, there might be conditions in which rainfall records are
not available and only triggering events can be reconstructed
from newspaper and other historical records. In those condi-
tions, a method based only on triggering events would be the
only option.

Lastly, we demonstrate the benefits of normalising the
rainfall thresholds using high quantiles of rainfall intensi-
ties, quantiles of event properties, MAP or RDN. These are
all particularly useful when using daily data, but we suggest
MAP as it is general and a widely available climatological
variable.

5 Conclusions

We define and test rainfall thresholds for triggering of land-
slides by taking advantage of a rich landslide database and
several rainfall products available in Switzerland with the
main objective of providing a comparison between hourly
and daily rainfall resolutions, which considers data limita-
tions associated with choosing a higher temporal resolution.
We explore the impacts of other issues, like shorter datasets,
unknown landslide timing, and more sparse rain gauge net-
works that usually accompany higher temporal resolution
data, and we test the impacts of two typical analysis steps in
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threshold definition: normalisation of the threshold and an-
tecedent rainfall.

Our main findings are:

– Although hourly rainfall is more appropriate for fore-
casting landslides since it better captures triggering in-
tensities, several other aspects should be taken into con-
sideration before utilising it exclusively for threshold
definition. Generally, hourly rainfall records are shorter
(only available in recent years) and of lower quality (e.g.
based on sparser rain gauge networks); the landslide
database only seldom contains accurate timing.

– In ideal conditions, hourly datasets do show the best
predictive performance for landslides, but daily data are
not far behind, potentially since they tend to capture cu-
mulative storm totals that may also be relevant for land-
slide triggering. The benefits of hourly resolutions can
be masked by the higher uncertainties in threshold es-
timation connected to using short records and unknown
timing.

– Whenever continuous rainfall records are available to-
gether with a landslide inventory, our work underscores
the importance of including non-triggering events in the
definition of optimal rainfall thresholds, not only be-
cause false alarms are an essential factor in warning sys-
tems, but also to increase the robustness of the threshold
estimates.

– Localisation of rainfall thresholds through normalisa-
tion is a useful procedure, which allows us to compen-
sate for the spatial heterogeneity in rainfall regimes and
landslide erosion process rates. We recommend using
mean annual precipitation or a high quantile of rainfall
intensity as a normalisation factor as an alternative to
regionalisation.

– Antecedent rainfall as a proxy of soil wetness state can
explain some of the false alarms in rainfall thresholds,
associated with lower antecedent rainfall, and some of
the misses, preceded by heavy rainfall, even when con-
sidering an entire (heterogeneous) country. Although
we did not formulate new rainfall-duration curves in-
cluding antecedent rainfall, it is likely that these would
increase predictive skill.
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