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Abstract. This contribution tests the added value of includ-
ing landslide path dependency in statistically based land-
slide susceptibility modelling. A conventional pixel-based
landslide susceptibility model was compared with a model
that includes landslide path dependency and with a purely
path-dependent landslide susceptibility model. To quantify
path dependency among landslides, we used a space–time
clustering (STC) measure derived from Ripley’s space–time
K function implemented on a point-based multi-temporal
landslide inventory from the Collazzone study area in central
Italy. We found that the values of STC obey an exponential-
decay curve with a characteristic timescale of 17 years and
characteristic spatial scale of 60 m. This exponential space–
time decay of the effect of a previous landslide on landslide
susceptibility was used as the landslide path-dependency
component of susceptibility models. We found that the per-
formance of the conventional landslide susceptibility model
improved considerably when adding the effect of landslide
path dependency. In fact, even the purely path-dependent
landslide susceptibility model turned out to perform bet-
ter than the conventional landslide susceptibility model. The
conventional plus path-dependent and path-dependent land-
slide susceptibility model and their resulting maps are dy-
namic and change over time, unlike conventional landslide
susceptibility maps.

1 Introduction

Landslide susceptibility modelling calculates the likelihood
of landslide occurrence in a certain location (Brabb, 1985).
The resulting landslide susceptibility maps from landslide
susceptibility models indicate where landslides are likely to
occur (Guzzetti et al., 2005). These maps are useful in land
use planning and insurance, among other functions. In this
context, different methods and techniques have been used for
landslide susceptibility modelling. Reichenbach et al. (2018)
classified these methods and techniques into five groups:
(i) direct geomorphological mapping, (ii) analysis of land-
slide inventories, (iii) heuristic or index-based approaches,
(iv) physically or process-based methods, and (v) statistically
based techniques.

Statistically based landslide susceptibility techniques have
been the preferred technique in the modelling of landslide
susceptibility (Reichenbach et al., 2018). In statistical land-
slide susceptibility modelling, empirical quantitative rela-
tions are explored between the spatial distribution of land-
slides and a set of environmental factors (e.g., slope and
geology; Van Westen et al., 2003; Guzzetti et al., 2005).
The spatial distribution of historic landslides, documented in
landslides inventories, is therefore a crucial input for statis-
tically based landslide susceptibility modelling (Guzzetti et
al., 2012; Van Westen et al., 2008). Direct field mapping, vi-
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Figure 1. Multi-temporal landslide inventory dating from 1939 to 2014 (left map; adapted from Samia et al., 2017a, b, 2018). Collazzone
study area and Umbria region (right upper map). The coordinate system of maps is EPSG:32633 (https://www.spatialreference.org/). Land-
slide points were constructed by placing a point in the geometric centre of each landslide polygon (map in the right lower corner). The red
rectangle shows the extent of the map in the lower right.

sual interpretation of aerial photographs and other remote-
sensing images are the main sources for such mapping of
landslide inventories (Guzzetti et al., 2012). Landslides in
such inventories are stored as points or polygons. Although
polygon-based landslide inventories (Ardizzone et al., 2018;
Schlögel et al., 2011; Galli et al., 2008) are becoming in-
creasingly available, in many landslide-prone regions, only
less-detailed point-based landslide inventories are collected
(Gorum et al., 2011; Sato et al., 2007; Keefer, 2000). Condi-
tioning attributes used in landslide susceptibility modelling
are mainly derivatives of digital elevation models (DEMs)
along with geological, soil and land use data (Günther et
al., 2014; Neuhäuser et al., 2012; Reichenbach et al., 2018).
While geology, land use and soil data are not always avail-
able in high detail, DEM derivatives are easily computed and
globally available at a range of resolutions. Therefore, the
minimum available dataset for landslide susceptibility mod-
elling includes a point-based landslide inventory and a set of
DEM-derived conditioning attributes.

Traditionally, landslide susceptibility is considered time-
invariant: susceptibility of a place to landslide occurrence is
constant over time, at least over decadal scales. Recently, we
proposed the concept of time-variant landslide susceptibility,
where susceptibility changes over time due to the transient

effect of previous landslides on future landslide occurrence
(Samia et al., 2017a, b). We referred to such a transient effect
as “path dependency”, a term adopted from complex system
theory where it is used to describe the concept that the his-
tory of a system specifies the future behaviour of a system
through legacy effects (Phillips, 2006). In our study area in
Umbria, central Italy (Fig. 1), we identified the existence of
path dependency among landslides: earlier landslides locally
increased the susceptibility for future landslides for about
2 decades, during which the susceptibility decays exponen-
tially over time (Samia et al., 2017b). We first implemented
the effect of this landslide path dependency in landslide sus-
ceptibility modelling at the scale of slope units. Such units di-
vide an area into hydrological units bounded by drainage and
dividing lines (Carrara et al., 1991; Alvioli et al., 2016). We
found that the impact of path dependency on landslide sus-
ceptibility models at the slope-unit scale was limited (Samia
et al., 2018). This limited impact of landslide path depen-
dency on model predictions was probably due to the fact that
landslide path dependency affects landslide patterns at spa-
tial scales smaller than slope units, and we hypothesized that
differences between models were likely to increase when in-
cluding path dependency at smaller spatial scales.
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Figure 2. DEM (digital elevation model) and its derivatives used in conventional and conventional plus path-dependent landslide suscep-
tibility models. TPI means topographic position index, TWI means topographic wetness index, and LS factor stands for slope length and
steepness factor.

The objective of this work is thus to consider the effect of
landslide path dependency in landslide susceptibility mod-
elling at the resolution of 10 m× 10 m pixels. We hypothe-
size that including landslide path dependency will improve
the performance of landslide susceptibility models. We also
explore whether a purely path-dependent landslide suscep-
tibility model, i.e., based solely on landslide inventory in-
formation, can provide a meaningful landslide susceptibility
map. We use the unique multi-temporal landslide inventory
from the Collazzone study area (Fig. 1; Guzzetti et al., 2006a;
Ardizzone et al., 2007, 2013).

2 Study area and data

The Collazzone study area in Umbria, central Italy (Fig. 1),
extends to about 80 km2, with a terrain elevation between
140 to 632 m and terrain slope derived from a 10 m×10 m
DEM (Fig. 2) between 0 and 64◦. The DEM was prepared by
interpolating 5 and 10 m contour lines shown in 1 : 10000
topographic maps (Guzzetti et al., 2006b). A set of DEM
derivatives that has been widely used in landslide suscepti-
bility modelling was computed in SAGA GIS and ArcGIS.
We expect that these DEM derivatives capture topographical,
geomorphological and hydrological properties of locations in
our study area.
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The DEM derivatives (Fig. 2) are the slope angle, curva-
ture, plan and profile curvature, aspect, northness and east-
ness as cosine and sine transformations of aspect, topo-
graphic position index (TPI) representing different geomor-
phological settings (Costanzo et al., 2012), stream power in-
dex (SPI) representing the erosive power of streams (Moore
et al., 1993), and topographic wetness index (TWI) as an
index for hydrological processes in the slope (Jebur et al.,
2014). Additionally, for every pixel, we computed the dis-
tance to the nearest river, the slope length and steepness fac-
tor (LS factor) as an index for soil erosion on slope (Moore
and Wilson, 1992), the vertical distance to the slope’s chan-
nel network, and the relative slope position representing the
relative position of slope in cells between the valley bot-
tom and ridgetop. Additionally, we calculated topographic
roughness, which expresses the difference in the values of
elevation in the neighbouring cells in the DEM (Riley et al.,
1999), and the standard deviation of elevation and slope in
a 3 pixel×3 pixel window. These 16 DEM derivatives were
used as independent explanatory variables in logistic regres-
sion for modelling of landslide susceptibility (see Sect. 3.2).

Landslides are abundant in this area and range from recent
shallow landslides to old deep-seated landslides (Guzzetti
et al., 2006a). Intense and prolonged rainfall and rapid
snowmelt are the main triggers of landslides in the area (Car-
dinali et al., 2000; Ardizzone et al., 2007). A unique multi-
temporal landslide inventory with 3391 landslides has been
mapped in 19 different time slices. The age of the landslides
ranges from relict and very old landslides with an uncer-
tain date of occurrence to landslides that occurred in 2014.
Aerial photographs, direct geomorphological field mapping
and satellite images were used for the preparation of the
multi-temporal landslide inventory (Ardizzone et al., 2013;
Guzzetti et al., 2006a; Galli et al., 2008). Only time slices
of the multi-temporal inventory for which the relative date of
occurrence is known (Fig. 1) were used in this study because
time between landslides is a key element in the quantifica-
tion of landslide path dependency (Samia et al., 2017a, b). In
addition, the first time slice, with the known date of 1939,
was only used in the computation of the landslide path-
dependency parameters and not in landslide susceptibility
modelling because of its unknown past. Ultimately, a multi-
temporal landslide inventory was used that contains the dis-
tribution of landslides in 16 time slices dating from 1947
to 2014 (Fig. 1). This multi-temporal landslide inventory was
mostly prepared at the scale of 1 : 10000, which is sufficient
for conversion to a 10 m×10 m pixel-based landslide inven-
tory. However, time slices from 1939 to 1997 were prepared
from aerial photographs with scales ranging from 1 : 15000
to 1 : 33000, and this may introduce some positional inaccu-
racy in landslides of the order of one pixel. Given that the
median size of landslides in this period is 19 pixels, we be-
lieve that this is an acceptable level of inaccuracy.

More information about the Collazzone study area and
the multi-temporal landslide inventory is given in Galli et

al. (2008), Guzzetti et al. (2006a, 2009) and Ardizzone et
al. (2007).

3 Methods

We used logistic regression to construct three different land-
slide susceptibility models (Fig. 3): (i) a conventional land-
slide susceptibility model using DEM derivatives, (ii) a
conventional plus path-dependent landslide susceptibility
model using 16 DEM derivatives and two landslide path-
dependency variables (explained below), and (iii) a purely
path-dependent landslide susceptibility model using only
the two landslide path-dependency variables. We compared
the performance of these models using area-under-the-
curve (AUC) values from the receiver operating characteris-
tic (ROC; Mason and Graham, 2002) and selected the op-
timal model using the Akaike information criterion (AIC;
Akaike, 1998), which penalizes the use of additional vari-
ables in a model. Ultimately, the coefficients of the variables
selected by three landslide susceptibility models and the re-
sulting landslide susceptibility maps were compared.

3.1 Quantifying landslide path dependency using
Ripley’s space–time K function

The spatio-temporal dynamics of landslide path dependency
was recently quantified for the Collazzone study area (Samia
et al., 2017a) and was implemented in landslide suscepti-
bility modelling at the scale of slope units (Samia et al.,
2018). Our previous quantification of landslide path depen-
dency used simplified information about the spatial overlap
among landslides in a polygon-based multi-temporal land-
slide inventory (Samia et al., 2017b). The novel aspect of
the present paper is that now, at finer spatial resolutions, we
quantify landslide path dependence simultaneously in space
and time. For this quantification, we use Ripley’s K func-
tion (Ripley, 1976; Diggle et al., 1995). Ripley’s K function
has been used mainly in spatial point pattern analysis and
reflects the degree of spatial clustering of events (e.g., land-
slides – Tonini et al., 2014; forest fires – Gavin et al., 2006;
crimes – Levine, 2006; and disease outbreaks – Hinman et
al., 2006). The function determines whether events are clus-
tered, dispersed or randomly distributed. A modified Ripley’s
K function was also used to quantify the degree of cluster-
ing of point events in space and time (Lynch and Moorcroft,
2008; Ye et al., 2015). In the landslide path-dependency con-
text, we used Ripley’s space–time K function to reflect the
degree to which landslides occur near previous landslides
and how this changes with increasing distance to the previ-
ous landslide in space and time. The starting point to derive
Ripley’s K is a point-based multi-temporal landslide inven-
tory consisting of points in the geometric centre of polygons
of landslides (Fig. 1).
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Figure 3. Flowchart of methods.

Figure 4. Space–time cylinder neighbourhood (Smith, 2016) for a
landslide event (ei ).

Ripley’s space–time K function tests whether the number
of events that is observed in a space–time cylinder around an
initial event is equal to what is expected given the average
point density in space and time (Ripley, 1976, 1977; Diggle
et al., 1995). The space–time cylinder I(h,1) (Fig. 4) is de-
fined as

I(h,1)
(
dij , tij

)
=

{
1,

(
dij ≤ h and

(
tij ≤1

))
0, otherwise , (1)

where h shows the spatial distance increment, 1 shows the
time increment, i and j are two landslide centre points, and
d and t reflect the distance and time between the two land-
slide centre points, respectively.

The expected RipleyK function for one space–time cylin-
der of size h and 1 is defined as

K(h,1)=
1
λst

∑
j 6=i

E
[
I(h,1)

(
dij , tij

)]
, (2)

where E is the expected number of landslides in the cylin-
der, and λst reflects the average space–time intensity of the
landslides, i.e., the expected number of landslides per unit of
space–time volume, which is calculated as

λst =
n

a(R)× (tmax− tmin)
, (3)

where n is the number of landslides in the entire inventory,
t is time and a(R) reflects the size of the area. Therefore, the
expected Ripley space–time K function for the space–time
cylinders around each landslide point is defined as

K(h,1)=
1

n · λst

n∑
i=1

∑
j 6=i

E
[
I(h,1)

(
dij , tij

)]
. (4)

Similarly, the observed Ripley space–time K function is cal-
culated from the landslide inventory:

K̂(h,1)=
1

n · λ̂st

n∑
i=1

∑
j 6=i

I(h,1)
(
dij , tij

)
. (5)

Finally, we defined the space–time clustering (STC) mea-
sure, which reflects how much more likely it is that a land-
slide will occur given a time and space distance from a pre-
vious landslide, as follows:

Empirical STC(h,1)=
K̂(h,1)

K(h,1)
− 1. (6)

STC values> 0 indicate clustering, and values< 0 indicate
dispersion. We calculated STC (h, 1) for a wide range of h
and 1: values of h ranged from 0 to 500 m in 30 steps, and
values of 1 ranged from 0 to 38 years in 30 steps. This
yielded 900 empirical values of STC (h,1). We then fitted an
exponential-decay function of h and 1 to the empirical STC
values. This exponential-decay function was used to calcu-
late STC values for each pixel, depending on when and where
a landslide last occurred closely to that pixel.

www.nat-hazards-earth-syst-sci.net/20/271/2020/ Nat. Hazards Earth Syst. Sci., 20, 271–285, 2020
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Figure 5. Procedure to compute the two landslide path-dependency variables using Ripley’s space–time K function.

Based on this, we calculated two landslide path-
dependency variables (Fig. 5). The first variable reflects the
maximum value of all STC values for all previous landslides
near a pixel. This variable results in high values when one
particular previous nearby landslide is expected to have a
large impact on the susceptibility of landslides. The second
variable is the sum of all STC values of all previous land-
slides near a pixel. This variable results in high values when
all previous nearby landslides are expected to have a large
impact on the susceptibility of landslides. This approach mir-
rors what we did in our slope-unit-based susceptibility model
(Samia et al., 2018) in the sense that the variables separate the
impact of the most impactful previous nearby landslide from
the impacts of all previous nearby landslides.

3.2 Logistic regression

Logistic regression is considered a reference model in sta-
tistically based landslide susceptibility modelling (Reichen-
bach et al., 2018). Relations between presence and absence
of landslides as a binary target variable are explained by a set
of independent variables such as slope steepness and slope
position in logistic regression. In this paper, DEM deriva-
tives (Sect. 2 and Fig. 2) as well as the two landslide path-
dependency variables computed using Ripley’s space–time
K function (see Sect. 3.1) were used as independent vari-
ables. Landslide presence or absence was the binary target
variable.

3.3 Training and testing

When using a multi-temporal landslide inventory in land-
slide susceptibility modelling, the selection of time slices for
the training and testing is crucial. In Rossi et al. (2010) and
Samia et al. (2018), a sequential splitting sampling strategy
was used in such a way that landslides in older time slices
were used to train the model and landslides in newer time
slices were used to test the model. However, such a sequen-
tial sampling strategy does not provide an equal range of
landslide histories between training and testing datasets, and
this could bias the role of time in path-dependent landslide
susceptibility modelling. To avoid such a timing inequality,
Samia et al. (2018) also introduced a non-sequential sam-
pling strategy in which the span of timing segregation among
time slices in the training and the testing datasets is compa-
rable. In this study, we used this sampling strategy to split
the multi-temporal landslide inventory into training and test-
ing datasets. To achieve this, all landslides in the time slices
of 1947, 1954, 1981, 1985, 1999, May 2004, and March
and May 2010 were used for training, and all landslides in
the time slices of 1965, 1977, 1991, 1997, December 2004
and 2005, and April 2013 and 2014 were used for testing
(Fig. 1). It is important to note that the time slice in 1939 was
used only for quantification of landslide history of the other
time slices and not for training or testing. Thus, the first time
slice in the training dataset is 1947 (Fig. 1).

The number of pixels with landslides was smaller than the
number of pixels without landslides in both training and test-
ing datasets. Therefore, we randomly selected 5000 pixels
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with landslides and 5000 pixels without landslides from both
training and testing datasets in order to create equal datasets
both for training and testing of the models. This random se-
lection of pixels was repeated 10 times both in the training
and testing datasets. Therefore, we trained the conventional,
conventional plus path-dependent and purely path-dependent
landslide susceptibility 10 times and later tested 10 times. Af-
ter preparation of the 10 training datasets, logistic regression
was applied to the 10 training datasets with an entry proba-
bility of 0.05 and removal probability of 0.06 for independent
variables to diminish the chance of overfitting in the model.
We only allowed inter-variable correlations of less than 0.8
to avoid multicollinearity. Conventional landslide suscepti-
bility was modelled using DEM derivatives only once for the
defined training dataset and was tested using the indepen-
dent testing dataset. The conventional plus path-dependent
landslide susceptibility model was constructed using DEM
derivatives plus the two landslide path-dependency variables.
The purely path-dependent landslide susceptibility was mod-
elled only by using the two landslide path-dependency vari-
ables. All three models were constructed only once. Model
performance was assessed using AUC and AIC values. The
AUC values for testing were assessed using 10 training mod-
els and 10 independent testing datasets. The models with
highest performance in terms of AUC values were used to
map susceptibility to landslides. Finally, we compared land-
slide susceptibility maps resulting from conventional, con-
ventional plus path-dependent and purely path-dependent
susceptibility.

4 Results

4.1 Spatio-temporal dynamic of landslide path
dependency

Ripley’s space–time K function confirmed the existence of
landslide path dependency at small spatial and small tem-
poral distances from a previous landslide (Fig. 6). The STC
measure (Eq. 6) is high in the space–time vicinity of an ear-
lier landslide, and it then decreases rapidly. Apparently, land-
slide susceptibility is relatively high immediately after occur-
rence of an earlier, nearby landslide.

The exponential-decay function that was fitted to the em-
pirical STC values is

Smoothed STC(td)= 0.44 · e(−t/16.7)
· e(−d/58.8). (7)

This function shows that the STC measure decays exponen-
tially over a characteristic timescale of 16.7 years and char-
acteristic spatial scale of 58.8 m. The residual standard er-
ror of the exponential function is 0.01, in units of STC (–),
which compares favourably with the actual values that range
up to 0.44.

Figure 6. Space–time dynamic of landslide path dependency. The
colours represent the intensity of STC measure. Red indicates high
STC, and green indicates low STC.

Table 1. Performance of the three landslide susceptibility mod-
els. The values of AUC represent the average AUC values in the
10 training and 10 testing datasets. The values of AIC represent the
average AIC values in the 10 training datasets.

AUC and AIC Conventional Conventional Path-dependent
values susceptibility plus path- susceptibility

model dependent model
susceptibility

model

AUC training 0.704± 0.006 0.764± 0.003 0.721± 0.004
AIC training 12678± 82 11711± 53 12469± 62
AUC testing 0.682± 0.007 0.732± 0.004 0.698± 0.004

4.2 Model performance

We compared performance of the conventional, conventional
plus path-dependent and purely path-dependent landslide
susceptibility models, using AUC (greater is better) and AIC
(lower is better) values as measure of performance (Table 1
and Fig. 7). The best-performing landslide susceptibility
model was the conventional plus path-dependent model, both
when expressed as AUC values and as AIC values (Table 1).
The purely path-dependent landslide susceptibility model,
constructed with only the two landslide path-dependency
variables, performed better than the conventional landslide
susceptibility model with its 16 DEM-derived variables.

For conventional susceptibility models, six DEM deriva-
tives were selected in all 10 models (Table 2). Adding
two landslide path-dependency variables into DEM deriva-
tives variables affected the inclusion and exclusion of DEM-
derivative variables only slightly. For example, the variables
of TPI and distance to river were selected four and seven

www.nat-hazards-earth-syst-sci.net/20/271/2020/ Nat. Hazards Earth Syst. Sci., 20, 271–285, 2020
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Table 2. Selection of independent variables in conventional, conventional plus path-dependent and purely path-dependent landslide suscep-
tibility modelling. Variables selected six or more times are shown. The numbers in brackets indicate how often variables were selected.

Three landslide Number of variables’ selection in 10 Average
susceptibility models repetitions number of

variables
selected

in the three
susceptibility

models

Conventional (16 DEM Elevation (10), standard deviation of slope (10), 8.7
derivatives) LS factor (10), standard deviation of elevation

stream power index (10), aspect (10),
(10), distance to river (7), vertical distance to channel
network (6), relative slope position (6)

Conventional plus path- Elevation (10), standard deviation of slope (10), 10.4
dependent (16 DEM LS factor (10), standard deviation of elevation
derivatives plus two (10), stream power index (10), aspect (10), max
landslide path-dependency smoothed STC value (10), sum of all smoothed
variables) STC value (10)

Path-dependent (two max smoothed STC value (10), sum of all 2
landslide path-dependency smoothed STC values (10)
variables)

Figure 7. Receiver operating characteristic (ROC) curves of the
three landslide susceptibility models in the 10 training datasets (left)
and in the 10 testing datasets.

times, respectively, in the conventional susceptibility mod-
els, whereas after adding the two landslide path-dependency
variables, these variables were selected five and four times,
respectively. The variable eastness, which was selected twice
in the conventional susceptibility models, was never selected
in the conventional plus path-dependent susceptibility mod-
els.

In all the training and the testing datasets, the contingency
tables (Table 3) showed that conventional landslide suscep-
tibility models differed substantially from the conventional
plus path-dependent and path-dependent landslide suscep-
tibility models. In particular, the percentage of false posi-
tives (the percentage of pixels without landslides predicted
with landslides) for the conventional susceptibility models is
higher than for the two other susceptibility models. However,
there are also fewer true negatives (the percentage of pixels
without landslides predicted without landslides) in the con-
ventional than in the conventional plus path-dependent and
path-dependent susceptibility models. The variation in the
differences is larger in the training datasets than the testing
datasets, suggesting that all fitted models are robust.

4.3 Conventional, conventional plus path-dependent
and purely path-dependent landslide susceptibility
maps

The landslide susceptibility maps derived from the three
models illustrate different patterns of landslide susceptibil-
ity (Fig. 8). For the models that include path dependency,

Nat. Hazards Earth Syst. Sci., 20, 271–285, 2020 www.nat-hazards-earth-syst-sci.net/20/271/2020/
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Figure 8. Conventional landslide susceptibility map (a), the conventional plus path-dependent landslide susceptibility map (averaged out
over 16 time slices) (b) and path-dependent landslide susceptibility map (averaged out over 16 time slices) (c). The pie charts show the
percentage of pixels in each map in different probability levels of landslide occurrence.

Table 3. Contingency tables computed with cut-off value of 0.5 for the three models. The numbers in the table represent the average values
computed in the 10 training and 10 testing datasets.

Conventional plus path-
Conventional landslide dependent landslide Path-dependent landslide

susceptibility susceptibility susceptibility

Observed landslides Observed landslides Observed landslides

Yes No Yes No Yes No

Predicted Yes 35± 0.33 19± 0.60 34± 0.42 14± 0.23 31± 0.8 13± 0.32
landslides No 15± 0.33 31± 0.60 16± 0.42 36± 0.23 19± 0.8 37± 0.32
(training)

Predicted Yes 33± 0.50 19± 0.21 29± 0.35 13± 0.43 23± 0.24 12± 0.41
landslides No 17± 0.50 31± 0.21 21± 0.35 37± 0.43 27± 0.24 38± 0.41
(testing)

the presented maps give the average values of all simulated
time slices. Differences between the maps correspond with
the considerable differences in the performance of their land-
slide susceptibility models in terms of AUC and AIC values
(Table 1). The path-dependent landslide susceptibility map
is visually different from both other landslide susceptibility
maps, with the pattern dominated by regions of high suscepti-
bility around locations where landslides previously occurred.

The 16 conventional plus path-dependent landslide sus-
ceptibility maps are dynamic and change over time (Fig. 9).
These changes reflect the exponential decay with increasing
time, since previous nearby landslides (Fig. 6) and the sudden
increase in susceptibility in areas close to recent landslides.
The gradual decrease in susceptibility levels is clearest when
comparing the 1981 and 2004 susceptibility maps, whereas
the sudden increase is clearest when comparing the 2004 and
2014 maps. The 2014 susceptibility map has higher suscepti-
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bility levels because of the impact of recent landslides in the
year 2013.

Similar dynamics are visible when comparing land-
slide susceptibility maps constructed with the purely path-
dependent model for different years (Fig. 10). These maps
show only the pure influence of earlier landslides on suscep-
tibility to future landslides (Fig. 6). Again, the susceptibil-
ity of landslides decreases where distance from earlier land-
slides in space and time increases but jumps back up when
more recent landslides become part of the landslide history.
The pure influence of each individual landslide on the sus-
ceptibility to the future landslide is strong when a landslide
is fresh, which is reflected in the high percentage of suscep-
tibility levels of 0.6–0.8 and 0.8–1.0 in 1947 and 2014. As
time passes since the previous landslide has occurred, the
susceptibility decreases, with an exponential-decay response
which is reflected in the low percentage of susceptibility lev-
els of 0.6–0.8 and 0.8–1.0 in 1981 and 2004.

5 Discussion

In this section, we focus first on the quantification of land-
slide path dependency in the pixel-based multi-temporal
landslide inventory and then discuss its role in susceptibil-
ity models. We also discuss the susceptibility model perfor-
mance for all three model types. At the end, the exportability
of landslide path-dependency parameters and the implication
of dynamic time-variant path-dependent landslide suscepti-
bility in landslide hazard are discussed.

5.1 Quantification of landslide path dependency

The quantification of landslide path dependency using Rip-
ley’s space–time K function (Ripley, 1976; Diggle et al.,
1995) indicates, in our study area, an exponential-decay re-
sponse in the STC values (Fig. 6). This means that there is a
positive influence of earlier nearby landslides on susceptibil-
ity that decays exponentially in time and space with a charac-
teristic timescale of about 17 years and a characteristic spa-
tial scale of about 60 m. This is in accordance with our pre-
viously quantified landslide path dependency using a follow-
up landslide fraction in which the decay period of landslide
path dependency was found to be about 2 decades (Samia
et al., 2017b). Landslide clustering manifests in the form of
spatial association among landslides, where follow-up land-
slides occur immediately after and close to a previous land-
slide (Samia et al., 2017a). Samia et al. (2017b) discussed the
possible mechanism in the formation of clusters of landslides
in which the size of the initial landslide and changes in hy-
drology of slope destabilized by a landslide could facilitate
the occurrence of follow-up landslides and hence clusters of
landslides.

STC values and their exponential decay to some extent
depend on the method that we have chosen to determine

the centre point of landslides when converting polygons
of landslides to points of landslides. Our approach was to
take the geometric centre, but other options exist (Haines,
1994) and their impact should be explored. Also, in the com-
putation of STC values with Ripley’s space–time K func-
tion, distance between landslides was calculated using the
Pythagorean theorem without distinguishing between dis-
tances in the x and y direction. Also we did not include dif-
ferences in the elevation of centre points in our distance cal-
culations. For future work, it could be interesting to define
one dimension as the distance along the slope in the downs-
lope direction and another dimension as the distance in the
slope parallel direction, keeping these two spatial dimensions
separate in addition to the temporal dimension.

5.2 Effect of landslide path dependency on
performance of landslide susceptibility models

Our results demonstrated that including the landslide path-
dependency effect in a pixel-based landslide susceptibility
model constructed by DEM derivatives improves model per-
formance substantially. This is in line with high AUC and low
AIC values for the conventional plus path-dependent land-
slide susceptibility model (Table 1 and Fig. 7). This confirms
our main hypothesis that adding the effect of landslide path
dependency boosts the performance of landslide susceptibil-
ity models and is in accordance with our previous expecta-
tions regarding the stronger effect of landslide path depen-
dency in a pixel-based landslide susceptibility model than in
a slope-unit-based landslide susceptibility model (Samia et
al., 2018). Landslide path dependency is a local effect (ap-
parently with characteristic spatial scale of about 60 m) in
which an earlier landslide increases the likelihood of follow-
up landslide occurrence. Such a local effect is obviously
more visible at pixel resolution of 10 m rather than at slope-
unit resolution (with a median size of 51 486 m2 in our study
area).

Strikingly, the purely path-dependent landslide suscepti-
bility model constructed with only the two landslide path-
dependency variables performs better than the conventional
landslide susceptibility model made by DEM-derivative vari-
ables (Table 1 and Fig. 7). This is potentially interesting,
since it implies that the landslide inventory itself can be
used to map susceptibility to landslides without using DEM
derivatives which have been conventionally used in land-
slide susceptibility modelling (Varnes, 1984; Guzzetti et al.,
2005). The performance of this path-dependency-only model
thus highlights that proximity to previous landslides can ad-
equately capture susceptible locations. It also suggests that
the path-dependent models’ success in our experiments may
be partly due to the fact that they capture static spatial effects
that have not been resolved with our explanatory factors. It
is attractive to imagine follow-up work that attempts to dis-
entangle this static spatial effect that is unrelated to land-
slide history from dynamic spatial effects that are related to
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Figure 9. Examples of four dynamic conventional plus path-dependent landslide susceptibility maps in the years 1947, 1981, 2004 and 2014.
Zoomed maps show the places where there are large changes in susceptibility over time.

Figure 10. Examples of four dynamic path-dependent landslide susceptibility maps in the years 1947, 1981, 2004 and 2014. Zoomed maps
show the places where there are large changes in susceptibility over time.
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landslide history. The key to such disentangling should be
that the former does not decay over time, whereas the latter
does. More advanced statistical approaches that simultane-
ously estimate purely spatial and spatio-temporal effects may
be needed. More complex explanatory variables such as ge-
ology, soil and land use can also be used along with DEM
derivatives to improve landslide susceptibility models and
maps. However, these are not always available. In fact, con-
sidering the landslide path-dependency effect in such com-
plete explanatory factors improves their performance as well.
We confirmed this in an additional exploration where we con-
structed a conventional landslide susceptibility model used in
this paper, with the same DEM derivatives but also with land
use and geology as explanatory factors. The results demon-
strated that adding our two landslide path-dependency vari-
ables to such an improved conventional landslide susceptibil-
ity increased its performance (from an AUC value of 0.771
to an AUC value of 0.801).

Another important aspect of considering the landslide
path-dependency effect in landslide susceptibility modelling
is providing dynamic landslide susceptibility maps. Land-
slide susceptibility maps are usually classified into five levels
of probability of landslide occurrence, ranging from 0 to 1.
In the conventional landslide susceptibility map (Fig. 8a), the
five probability levels of susceptibility by definition remain
constant over time, since the DEM derivatives in the model
are constant (although DEM derivatives also change when
a landslide occurs, but DEMs are not updated frequently
enough to reflect this). The usage of conventional static land-
slide susceptibility maps and dynamic landslide susceptibil-
ity maps taking landslide path dependency depends on the
goal and task of audience. In reality, static susceptibility
maps created (either with a conventional susceptibility model
or as the static portion of a conventional plus path-dependent
model) can be used in sustainable planning, whereas dy-
namic susceptibility maps can be considered in short-term
land use planning.

However, adding landslide path dependency in landslide
susceptibility models provides dynamic landslide suscepti-
bility maps (Figs. 9 and 10) in which the levels of sus-
ceptibility change over time, reflecting the exponential-
decay response of landslide path dependency (Fig. 6). The
changes are in the places where landslides have already oc-
curred, mainly in probability levels of susceptibility, ranging
from 0.6 to 1.0. This suggests that the part of the area located
in the high-probability level of susceptibility could switch
to the low-probability level of susceptibility (0 to 0.6) after
a decade. This is exemplified between the 1947 and 1954
landslide susceptibility maps, in which about 9 km2 of the
study area drops by more than 0.1 in its probability of land-
slide occurrence. After adding the two path-dependency vari-
ables in the conventional landslide susceptibility modelled
with DEM derivatives, it turns out that the coefficients of all
DEM-derivative variables become lower (e.g., the LS factor
becomes less important).

5.3 Can landslide path-dependency parameters be
transported to other areas?

In landslide-prone areas where landslides are documented
and mapped in the form of polygon-based multi-temporal
inventories, the landslide path dependency can be quanti-
fied based on geographical overlap among landslides and
hence used in landslide susceptibility modelling (Samia et
al., 2017b, 2018). However, polygon-based multi-temporal
landslide inventories are rare to the best of our knowledge,
and hence in many areas geographical overlap among land-
slides cannot be computed. In this paper, we proposed using
Ripley’s space–time K function to compute landslide path
dependency where point-based multi-temporal landslide in-
ventories are used. Using such inventories, our STC measure
(Eq. 6) can be used to quantify path dependency among land-
slides.

It is attractive to think that the STC measure (Eq. 6) and
its parameters (Eq. 7) can be directly exported to landslide-
prone areas with substantial geological and topographical
similarities. However, to gain confidence in this approach,
multi-temporal landslide inventories from such places (e.g.,
Schlögel et al., 2011) need to be questioned to find out
whether path dependency occurs, whether it occurs over
a similar space and timescales, and whether it adds value
to susceptibility modelling. This would also allow us to
start exploring what determines the characteristic space and
timescales.

5.4 Implications of path-dependent landslide
susceptibility in landslide hazard assessment

We have already modified the definition of conventional
landslide susceptibility modelling (Varnes, 1984; Guzzetti et
al., 2005) using spatial temporal dynamics of landslide path
dependency (Samia et al., 2017a, b) as follows:

Landslide susceptibilitys,t = f (conditioning attributess ,

landslide path dependencys,t
)
.

(8)

In this study, both conventional plus path-dependent and
path-dependent landslide susceptibility models turned out to
perform better than a conventional landslide susceptibility
model (Table 1 and Fig. 7). In both models, availability of a
space–time component – reflecting the exponential decay of
landslide path dependency – indicates that landslide suscepti-
bility is dynamic. This challenges the way in which landslide
hazard is assessed, as landslide susceptibility is an important
element of landslide hazard.

In landslide hazard assessment, landslide susceptibility as
a proxy of “where landslides occur” is combined with the
temporal probability of landslide triggers (mainly rainfall) to
determine “when landslides occur” (Guzzetti et al., 2006a).
In this context, dynamic landslide susceptibility (Eq. 8) needs
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Figure 11. Conceptual model of the implication of dynamic path-dependent landslide susceptibility model in landslide hazard assessment.
When susceptibility is low, the hazard is also low (providing the other components of landslide hazard, e.g., size, remain unchanged) and
large rainfall events are needed to trigger new landslides. Then, when susceptibility is raised by such landslides, the hazard is also high and
small rainfall events may trigger new landslides.

to be considered in combination with the temporal infor-
mation of landslide triggers in the assessment of landslide
hazard. When substantial landslides happen during a rain-
fall event, susceptibility in and around such landslides can be
raised for a few decades in which moderate rainfall events
may already cause substantial landslides, which raises sus-
ceptibility levels again (Fig. 11). Such dynamics have been
observed in a site near Seattle, Washington, where several
new landslides occurred in a slope that had recently experi-
enced landslide activity, whereas a nearby hillslope with the
same characteristics but without recently landslide activity
did not experience new landslides (Mirus et al., 2017). If no
substantial triggering event happens over the characteristic
timescale of roughly 17 years, the increased susceptibility
will be substantially reduced, and a later rainfall event may
have less influence on landslides; the probability of experi-
encing a follow-up landslide will have decreased.

6 Conclusion

In the Collazzone study area, in central Italy, quantifica-
tion of landslide path dependency reveals an exponential-
decay response in landslide susceptibility as a function of
spatio-temporal distance to earlier nearby landslides. For our
study area, the characteristic timescale of this effect is about
17 years, and the characteristic spatial scale is about 60 m.
Adding such an exponential-decay response of landslide path
dependency in conventional pixel-based landslide suscepti-
bility modelled by DEM derivatives improves the perfor-
mance of model substantially. Taking into account landslide
path-dependency effects in landslide susceptibility results in
dynamic landslide susceptibility models where susceptibil-

ity changes over time. We stress that landslide susceptibil-
ity modelling should take the effect of landslide path depen-
dency into account, since it provides an estimation of the
temporal validation of different probability levels of land-
slide occurrence in a landslide susceptibility map. The ob-
tained landslide path-dependency parameters can possibly
be used for dynamic landslide susceptibility modelling in
landslide-prone areas with environmental and data similar-
ities. We proposed a conceptual model that considers the im-
pact of dynamic path-dependent landslide susceptibility on
landslide hazard.
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