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Abstract. In the framework of the EU Copernicus pro-
gramme, the European Centre for Medium-Range Weather
Forecasts (ECMWF) on behalf of the Joint Research Cen-
tre (JRC) is forecasting daily fire weather indices using
its medium-range ensemble prediction system. The use of
weather forecasts in place of local observations can extend
early warnings by up to 1-2 weeks, allowing for greater
proactive coordination of resource-sharing and mobilization
within and across countries. Using 1 year of pre-operational
service in 2017 and the Fire Weather Index (FWI), here we
assess the capability of the system globally and analyse in de-
tail three major events in Chile, Portugal and California. The
analysis shows that the skill provided by the ensemble fore-
cast system extends to more than 10 d when compared to the
use of mean climate, making a case for extending the forecast
range to the sub-seasonal to seasonal timescale. However,
accurate FWI prediction does not translate into accuracy in
the forecast of fire activity globally. Indeed, when all fires
detected in 2017 are considered, including agricultural- and
human-induced burning, high FWI values only occur in 50 %
of the cases and are limited to the Boreal regions. Neverthe-
less for very large events which were driven by weather con-
ditions, FWI forecasts provide advance warning that could
be instrumental in setting up management and containment
strategies.

1 Introduction

The prediction of fire danger conditions allows fire man-
agement agencies to implement fire prevention, detection
and pre-suppression action plans before fire damages occur.
However, in many countries fire danger rating relies on ob-
served weather data, which only allows for daily environ-
mental monitoring of fire conditions (Taylor and Alexan-
der, 2006). Even when this estimation is enhanced with the
combined use of satellite data, such as hot spots for early
fire detection and land cover and fuel conditions, it nor-
mally only provides 4 to 6h warnings. By using forecast
conditions from advanced numerical weather models, early
warning could be extended by up to 1-2 weeks, allowing
for greater coordination of resource-sharing and mobiliza-
tion within and across countries. Due to the improved skills
of weather forecasting, the use of numerical weather predic-
tion offers a real opportunity to enhance early-warning capa-
bilities (Roads et al., 2005; Mdolders, 2008, 2010). In recent
years institutions such as Natural Resources Canada (NRC)
and the US National Oceanic and Atmospheric Administra-
tion (NOAA) have implemented regional fire danger fore-
casting systems based on their operational weather forecasts
(Bedia et al., 2018). The Global Fire Early Warning System
is also an international initiative, promoted by the Canadian
Partnership for Wildland Fire Science and the United Na-
tions Office for Disaster Risk Reduction, to provide fire dan-
ger forecasts up to 10 d ahead using the Canadian operational
weather forecasting system (https://www.canadawildfire.org/
globalwildfre-ews, last access: 26 August 2020). Parallel ini-
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tiatives are promoted by the European Commission under
the umbrella of the Copernicus Emergency Management Ser-
vice (CEMS), namely the European Fire Forecast Informa-
tion System (EFFIS, http://effis.jrc.ec.europa.eu/, last access:
26 August 2020) and its global counterpart the Global Wild-
fire Information System (GWIS, http://gwis.jrc.ec.europa.
eu/, last access: 26 August 2020). Both systems principally
rely on the Canadian Fire Weather Index (FWI; Van Wagner,
1974; Van Wagner and Pickett, 1985) to rate fire danger and
on numerical weather predictions to provide forecasted fire
danger information at the European and global levels (San-
Miguel-Ayanz et al., 2002).

Systems such as the FWI detect dangerous weather condi-
tions conducive to uncontrollable fires rather than modelling
the probability of ignition and fire behaviours. The FWI (de-
veloped in Canada) is specifically calibrated to describe the
fire behaviour in a jack pine stand (Pinus banksiana) typi-
cal of the Canadian forests. However, its simplicity of imple-
mentation has made it a popular choice in many countries,
and it has been shown to perform reasonably well in ecosys-
tems very dissimilar to the boreal forest (Di Giuseppe et al.,
2016a; de Groot et al., 2007). The FWI calculation only relies
on weather forcings, and no information on the actual vege-
tation status is taken into account. When weather forecasts
are used in place of observations, uncertainties can be intro-
duced. Sources of uncertainty can be (i) the limited knowl-
edge of the initial state and (ii) the misrepresentation of phys-
ical processes. In the former case, errors are randomly dis-
tributed around the true state (Orrell et al., 2001); in the lat-
ter, errors produce systematic deviations from the true state.
In both cases, errors in the weather forecast may be amplified
or damped by non-linear transformations in the fire weather
model (Erickson et al., 2018). Thus, for example, a dry bias
in the model in a certain region will lead to the persistent pre-
diction of higher fire danger values compared to what would
be calculated using local observations.

Handling random errors in weather forecasts is tradi-
tionally done through the use of ensemble prediction sys-
tems, where several simulations are performed starting from
slightly different initial conditions and model configurations
(Molteni et al., 1996; Buizza et al., 1999). Given the expenses
of running an ensemble system, these simulations are usually
conducted at a lower resolution than a single deterministic
run. The forecast is then interpreted as probabilistic rather
than deterministic. While it has been shown that the proba-
bilistic information contained in an ensemble prediction sys-
tem might be difficult to interpret for end users (Pappen-
berger et al., 2013), ensembles can boost confidence in the
decision process during emergency situations as a cost—loss
analysis can be associated with the different scenarios (Cloke
et al., 2017). Moreover, ensemble predictions can have more
information value than the single deterministic simulation
(Richardson, 2000; Zhu et al., 2002). Systematic biases, on
the other hand, can be reduced by model improvements. For
instance, appropriate post-processing (bias correction) of the
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atmospheric model (Piani et al., 2010; Di Giuseppe et al.,
2013a, b) or post-processing of the sectoral application out-
puts (Raftery et al., 2005) can correct resolved processes and
improve the final forecast skill.

Given the above considerations, in this paper we assess
the performance of the fire danger forecasting system devel-
oped for the Copernicus Emergency Management Service by
the European Centre for Medium-Range Weather Forecasts
(ECMWEF) to predict the FWI values where a comparison is
performed against observed weather conditions. The system
is also assessed in terms of its capability to mark high danger
when an event actually occurred, looking at the probability
of detection of fire during 1 year of operation in 2017. As
the Fire Weather Index is the main index of this system, we
concentrate on this model component.

2 Methods
2.1 FWI calculation
2.1.1 General concept

The Fire Weather Index system provides an indication of fire
danger conditions as influenced by four weather parameters:
temperature, relative humidity, precipitation and wind speed
(Van Wagner, 1987). It models the moisture content of dead
woody debris of different diameter classes lying on three fuel
beds and from these indicates what the rate of fire spread
and the fuel available for combustion would be. It also pro-
vides a general indicator of fire danger: the Fire Weather In-
dex (FWI).

A comprehensive description of the FWI system, the in-
teraction between the various components and how these
are used in fire management can be found in Van Wag-
ner (1987) and Wotton (2009). Abatzoglou et al. (2018)
showed that the FWI exhibits strong correlative relationships
to burned area across some non-arid ecoregions globally, al-
beit with only weaker relationships in climatically drier re-
gions (shrubland), with a larger correlation found in the bo-
real and evergreen temperate forests of western North Amer-
ica. Also Bowman et al. (2017) highlighted how high FWI
values are often associated with the most extreme fire ac-
tivities recorded using Fire Radiative Power (FRP) observa-
tions. As an FWI has been shown to provide a good metric
for quantifying fire danger globally, the proposed analysis of
forecast skills will concentrate on this index (Di Giuseppe
et al., 2016a; de Groot et al., 2007).

2.1.2 FWI forecast

For each day indices of the FWI rating system are calcu-
lated operationally at the ECMWEF using real-time forecasts.
A full description of the modelling components can be found
in Di Giuseppe et al. (2016a). The high-resolution (HRES)
and the ensemble prediction systems (ENS) provide weather
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forecasts which extend up to 10d in the future. The atmo-
spheric forcings have a temporal resolution of 3 h and a spa-
tial resolution of 9 km for the high-resolution run and 18 km
for the ensemble prediction simulations. While the HRES
forecast is a single (deterministic) model integration, the
ENS provides 51 realizations from perturbed initial condi-
tions and different model physics (Buizza et al., 1999). These
ENS forecasts are used to assess uncertainties in the predic-
tion.

A model integration at any nominal time simulates atmo-
spheric conditions at a different local time, depending on the
location. FWI calculations are usually performed at 12:00 lo-
cal time (LT) because the model was calibrated using mea-
surements at 12:00 LT against fire behaviour in the most ac-
tive window (between 14:00-16:00 LT; Van Wagner, 1987).
Therefore to produce a snapshot at 12:00 LT, a temporal and
spatial collage of 24 h time model simulations is performed.
Atmospheric fields are cut into 3-hourly time strips using the
closest 3 h forecast outputs and then concatenated together so
that the final field is representative of the conditions around
12:00 LT within the 3 h resolution available (see Di Giuseppe
et al., 2016a, for more details). ECMWF implementation for
the FWI is initialized once, starting from idealized conditions
and following Wotton (2009) values. It also does not imple-
ment any overwintering, meaning that the moisture codes are
not reset to zero during cold winter months.

2.1.3 FWI reference and benchmark

As many forestry agencies still rely on observed meteorolog-
ical data to provide fire danger, a first assessment of the qual-
ity of the forecasted FWI will rely on the comparison with
observations. Despite the fact that several meteorological ob-
servations are available through the Global Telecommunica-
tion System (GTS) SYNOP network, only a subgroup of sta-
tions have at least 30 d of recordings at 12:00 LT during 2017
(spatial coverage is given in Fig. 1). Many fire-prone regions,
such as Australia, would not be covered by this comparison.
In order to overcome this limitation, a reference dataset of
FWI-modelled values is also used. This dataset is publicly
available through the Copernicus Climate Data Store and is
constructed using the ERAS5 reanalysis dataset. ERAS is the
latest of ECMWF reanalysis products and was released at
the beginning of 2019. It replaces the previous ERA-Interim
database (Dee et al., 2011; Vitolo et al., 2019), providing a
much improved spatial resolution and an extensive increment
of assimilated observations. Simulations begin in 1979 and
are updated in quasi real time with less than a week’s delay.
Fields have a spatial resolution of about 30 km and hourly
time resolution. Outputs from ERAS undergo the same tem-
poral interpolation described in the previous section to pro-
vide the model with a composite fire reanalysis product at
12:00 LT. It has to be noted that, compared to local observa-
tions, a reanalysis provides a dynamically consistent estimate
of the climate state at each time step and can, to a large ex-
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tent, be considered a good proxy for observed meteorological
conditions. Moreover, by combining different observations,
reanalysis datasets extend well beyond the natural life of sin-
gle observational networks, and they can provide a more ho-
mogeneous spatial coverage than using local observations.
From ERAS we also derive a climatological benchmark sim-
ulation (called CLIM hereafter). At the pixel level and for
every day of the year, CLIM is constructed using 51 ran-
domly sampled values (with replacements) from observed
meteorological forcing in the period 1980-2019, excluding
the verifying year (2017). CLIM has the advantage of hav-
ing the same climatology of ERAS but has no expected pre-
dictive skill. The advantage of CLIM is that in theory it has
near-perfect reliability with regards to the ERAS runs since
it is produced with the same unbiased forcing data. It should,
therefore, score better or equal to the forecast as a predictor
for time ranges beyond their respective limits of predictabil-
ity. CLIM is therefore used in this study as a benchmark to
rank the expected improvements provided by a forecasting
system. A full validation of the FWI database derived from
ERAS5 can be found in Vitolo et al. (2020).

2.2 Observed fire events

While national inventories of wildfire activities exist in many
countries, they can be heterogeneous and lack the tempo-
ral span desirable for the validation of a fire danger sys-
tem at the global scale. Satellite observations can supply
a valid alternative, especially as they cover remote areas
where in situ observations are sparse (Flannigan and Haar,
1986; Giglio et al., 2003; Schroeder et al., 2008). Daily maps
of FRP (Kaufman et al., 2003; Wooster et al., 2005) have
been available from the ECMWEF since 2003 through the
Global Fire Assimilation System (GFAS; Kaiser et al., 2012;
Di Giuseppe et al., 2017, 2018). This dataset has been de-
veloped in the framework of the Copernicus Atmosphere
Monitoring Services (CAMS) and uses observations from
the MODIS sensors on board the Terra and Aqua platforms
and assumptions on fire evolution to calculate a continuous
record of active fires. The GFAS dataset integrates all avail-
able FRP observations available in a day over a regular 0.1°
grid. According to Wooster et al. (2005), this provides an in-
dication of the cumulative dry mass available for burning,
which can then be related to fire emissions. In this paper,
the FRP products are only used as an observation of fire
events. However, FRP values are ignored and only used to
derive a mask of fire occurrence based on a minimum detec-
tion criteria: FRP > 0.5 W m—2 (Kaiser et al., 2012). A “hit”
is recorded if the fire forecast predicts fire danger above the
90th percentile of its historical values (provided by the ERAS
simulations) when a fire really occurred.
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Figure 1. GFED4 regional classification and the three regions selected to showcase the fire forecast performances (California, Chile and
Portugal). The black dots show the spatial distribution of weather stations from the SYNOP network which have at least 30 observations

recorded at 12:00LT in 2017.

2.3 Score metrics

The performance of the fire forecasting systems to reproduce
observed FWI values is assessed using deterministic and
probabilistic scores. Both the SYNOP database and ERAS
are treated as a proxy for observations in the evaluation. To
assess the quality of the forecasts, we use traditional deter-
ministic skill scores such as the mean bias (MB) and the
mean absolute error (MAE). For a probabilistic assessment,
the continuous ranked probability score (CRPS) is also em-
ployed (Hersbach, 2000). These metrics are defined as

cases

MB =) [Firres — O] (1
p=1
1 cases 2
MAE = JI(Furps — O 2
ases I; [ (Fires )7] 2
| Caies ~+inf
CRPS = f [Fn _ Oz]dn, 3)
cases = .

where F is the forecast at time step  of N number of fore-
casts, and O is the observed value. While the MB and MAE
are applied to a single forecast, the HRES forecast, the CRPS
takes into account the whole distribution of possible values
predicted by the ensemble. The CRPS is the continuous ex-
tension of the ranked probability score, where F), is the cu-
mulative distribution function of the predicted ensemble val-
ues. Then, the CRPS compares the cumulative probability
distribution of the FWI forecast by the ensemble system to
the observation. In this sense the CRPS is sensitive to the
mean forecast biases as well as the spread of the ensemble
(Hersbach, 2000).
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While conventional skill score can be employed to as-
sess the quality of the FWI computation, the verification of
the FWI as a fire indicator is instead extremely challenging.
First, as widely explained, the FWI is not a physical measure
of fire activity but of its potential danger if one were ignited.
Therefore high fire danger, while being correctly forecasted,
might not result in active fires if there is no ignition and/or ag-
gressive fire suppression. From the verification point of view,
this means that the identification of false alarms is not mean-
ingful, and the verification should mainly rely on hits and
misses. Secondly, fires are rare events and, as for any other
infrequent phenomena, the verification statistics are heavily
influenced by the small number of hits when compared to the
total. Still, when the cost of a missed event is high, for exam-
ple in terms of human lives, the deliberate over-forecasting
may be justified (Richardson, 2000; Cloke et al., 2017).

In these cases a positively oriented score such as “hit rate”
may be useful, especially if related to the case of not hav-
ing a forecast at all. Also, forecast quality does not always
equal forecast value (Richardson, 2000). A forecast has high
quality if it predicts the observed conditions well according
to some objective or subjective criteria. It has value if it helps
the user to make a better decision in terms of protective ac-
tions (Cloke et al., 2017). For example predicting high tem-
perature and low precipitation in desert areas might be accu-
rate but carries low information content and therefore limited
value. Following these arguments and to gain an appreciation
of the potential value of the forecasting system globally, we
use as a metric the probability of detection (POD), which
measures the fraction of the observed events that were cor-
rectly forecast: POD = hits/ (hits + misses). Therefore, POD
only takes into account observed fires and, unlike other skill
scores such as the Brier score, does not suffer from artifi-
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cial vanishing due to the high number of correct negative
and false alarms (see Stephenson et al., 2008, and Ferro and
Stephenson, 2011, for a discussion on this problem).

2.4 Fire regions

The global assessment of the fire forecast skills is mostly
provided as an average over selected regions even if the
calculation of the various scores is performed at the pixel
level by interpolating the model grid over the verification
points. For an assessment at the continental scale, we use
the fire macro-regions defined by the Global Fire Emis-
sion Database, GFED4 (Giglio et al., 2013). These macro-
regions are characterized by different fire regimes and are
very roughly homogeneous in their contribution of burning
emissions (Giglio et al., 2013). Inside these regions we also
select three areas at the national and regional level — Califor-
nia, Portugal and Chile — which experience recurrent intense
fire episodes and saw major events taking place in 2017 (Ta-
ble 1). Events in these locations are also analysed in detail.

3 Results
3.1 Skill in the FWI prediction

The first assessment looks at the capability of ECMWEF fire
forecasts to reproduce the same FWI values as would be esti-
mated from the network of local stations but up to 10 d ahead.
The selected stations (Fig. 1), which have at least 30 records
during 2017 at 12:00LT, are used to perform an analysis
of MB and MAE at different lead times (Fig. 2). For compar-
ison FWI calculations using ERAS are also included, which
provides a validation of the assumption that ERAS is a good
proxy for observations. As expected there is a performance
degradation going towards longer lead times; however the in-
crease is in within the distribution, and mean biases are lim-
ited to few units even on day 10. However caution is in or-
der as, depending on the calibration procedure adopted, few
units could mean a mismatch in danger level classification.
The mean absolute error provides information on the resid-
ual amplitudes. The FWI from reanalysis has the sharpest
skills, as expected, while the mean absolute error rapidly in-
creases with lead times. However the distribution of MAE
values clearly shows that in selected events the discrepan-
cies between observed and predicted values are confined to
few units even 10d ahead. As it is recognized that in some
regions in the tropical areas the number of stations is very
reduced, a similar analysis is also performed using ERAS as
the verifying databases (see Fig. 5 in the following section),
which, however, confirms the general conclusions.

Despite its importance, the analysis performed using the
SYNOP network is pointwise and does not homogeneously
cover all the regions where fires are relevant. Moreover,
MB and MAE are based on high-resolution forecasts and do
not provide information about the performance of the ensem-
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ble forecasting system as a whole. A global assessment of the
performances of the system is provided by the comparison
between the CRPS curves for the forecast and CLIM when
both are scored against ERAS in 2017 (Fig. 3). The CRPS
calculated from the CLIM database provided a useful bench-
mark for the forecast as it defines the error above which the
information content stored in the forecast would be equiv-
alent to the information provided by the climate. The first
interesting piece of information from comparing the two ex-
periments is how far in advance there is skill in predicting fire
danger from a weather forecast. In fact the interception be-
tween the CRPS curve from the forecast run and the CLIM
run marks the overall length of the predictability windows,
i.e where the system still provides skills above climatology.
Encouragingly, if we look at the global average, the window
of predictability is longer than the 10 d range provided here,
which also suggests that there is scope for extending the pre-
diction to the sub-seasonal and seasonal timescales. The dis-
continuity visible on day 6 is an artefact due to the change
in temporal resolution in the ECMWF forecast. Up to day 6,
forecasts are stored 3-hourly and only 6-hourly after this time
step.

There are some regional differences in the skill provided
by the ensemble forecast. Regions covered by Boreal forests
(e.g. BOAS, BONA, part of CEAS) have the largest pre-
dictability, with the maximum gaps between the forecast
and the climate CRPS scores (Fig. 4). Savannah regions
(NHAF, AUST, SHAF) tend to have a shorter window of
predictability, with the forecast CRPS curve approaching at
a shorter lead time than the CLIM ones. The regional dif-
ferences in the prediction of the forecast FWI when com-
pared to ERAS-derived databases are related to the skills of
the forecast, which then project in the accuracy in the FWI
simulation. While temperature prediction skills are globally
mostly uniform, a complex picture emerges for the forecast
skills of precipitation in all global models used for numeri-
cal weather prediction, including the ECMWF model. Pre-
diction of precipitation at the mid-latitudes is notoriously
more accurate than in the tropics due to the connection with
frontal systems driven by large-scale dynamics (Simmons
and Hollingsworth, 2002). Convective precipitation, which
is the main source of rainfall in the tropics, occurs stochasti-
cally by nature and is therefore more challenging to predict.
Although the gap has been filled through the years, forecast
predictions in the southern extratropical region are less ac-
curate than the equivalent in the Northern Hemisphere due
to the availability of a better observing system to constrain
the initial forecast conditions (Haiden et al., 2019). These
considerations could largely explain the better performances
of the FWI predictions in the Northern Hemisphere for the
year taken into consideration. However it has to be noted
that forecast skills have strong year-to-year variations, with
expected increased skills in the tropic when large-scale phe-
nomena such as the Madden—Julian Oscillation (MJO) and/or
the El Nifio Southern Oscillation (ENSO) take place. Un-
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Figure 2. Comparison between modelled and observed FWI value across the GFED macro-regions. The FWI calculated using ECMWF
high-resolution forecasts at different lead times is verified against ERAS simulations. The box plots describe the distribution of values across
the observation points for 1 year of simulations in 2017. Mean bias is plotted in the left panel and mean absolute error in the right panel.

Table 1. Event summary table.

Country  Region Start date End date Main event ~ Location

Chile OH’iggins, Maule, Bio Bio 1 Jan 2017 31Jan2017 26Jan2017 36°46’S, 73°03' W
Portugal  Pedrégdo Grande 1 Jun 2017 30Jun2017 18Jun2017 39°55'N, 8°08' W
USA California 21Sep2017 200ct2017 90ct2017  38°34'N, 122°34'W

der these phenomena the predictability of the tropics and of
extratropical regions can substantially improve through tele-
connections (Vitart, 2014).

Exceptionally poor is the performance in the two South
American regions, where the forecast at any lead time is be-
low the climate line. As mentioned CRPS is heavily influ-

Nat. Hazards Earth Syst. Sci., 20, 2365-2378, 2020

enced by the forecast bias, which can induce a fast decline
in the CRPS curve. Looking at the mean bias as a function
of the lead time (Fig. 5), it is evident how these two regions
are indeed strongly affected by systematic biases, with the
largest values recorded at least in the first 3 d of forecasting.
In general, for all the regions the decline in CRPS (Fig. 5)
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Figure 3. CRPS for the ensemble fire danger forecast (blue line)
and the CLIM database constructed using a random selection of
ERAS years not including the verifying year (red line). Data have
been globally aggregated and the forecast is available up to day 10
horizon.

can, to some extent, be explained by the negative bias (too
low FWI values when compared to ERAS-FWI). Interest-
ingly the bias of the forecast is not spatially consistent; it
is generally larger in the Southern Hemisphere regions and
lower in the Northern Hemisphere, in agreement with what
was discussed on the expected skills of the weather forecast.
The consistent negative bias at all lead times also highlights
that there is scope to improve the overall skill of the predic-
tion through bias corrections of the meteorological forcing a
(Piani et al., 2010; Di Giuseppe et al., 2013a, b).

As a general conclusion and provided the possible year-to-
year variability in skills, the general picture that emerges is
that for most of the areas weather forecasting provides pre-
dictive skills for the FWI beyond 10d.

3.2 SKkill in detecting fire events

Being able to predict the observed value of the FWI does
not equal to being able to pinpoint fires that occurred. Fig-
ure 6 shows the location of recorded fires in 2017 based
of FRP observations from Moderate Resolution Imaging
Spectroradiometer (MODIS) sensors as integrated by the
GFAS platform (Kaiser et al., 2012; Di Giuseppe et al.,
2016a; Di Giuseppe et al., 2016b). Fires covered large
parts of the globe in 2017, with 157631 cells recording
FRP > 0.5W m~2. To understand the capability of the FWI
to match the occurrence of actual fires, we assume that an
active fire is correctly predicted if the FWI is greater than
the 90th percentile of its distribution of values, here defined
using the ERAS database. Figure 7 shows a summary table
of the mean probability of detection (POD) by region for
all events in 2017 at forecast day 1 to 10. Given the intrin-
sic limitations of the POD as a skill metric, CLIM could
provide a useful benchmark to understand the incremental
skill provided by the forecast. The POD provided by CLIM
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was found to be below 0.1 in all regions and is therefore not
shown in the table.

CLIM has no skill in predicting fire events as it always pro-
vides the lowest POD, corresponding to a probability of de-
tection below 10 %, even when compared to day 10 forecasts.
On the other side, forecasts’ POD varies widely by region,
with Europe (EURO) and Boreal North America (BONA) be-
ing the only regions with POD above 0.5. These are mostly
temperate regions where vegetation is dominated by forests
and fuel is abundant and where fire danger is limited by mois-
ture. In these regions the FWI is a good predictor of fire dan-
ger (Di Giuseppe et al., 2016a). It has to be noted that the
FWI does not take into account management measures that
could introduce a relevant number of “false alarms”. Cen-
tral America, the Middle East and the areas of Africa in
the Northern Hemisphere are characterized by a POD in the
range of 0.2-0.5, as in most of the tropics, where fires usually
occur in grasslands and shrublands. Here fuel is scarce and
weather plays a less relevant controlling role. Also it has to
be noted that the statistics here are likely to be contaminated
by many agricultural and prescribed fires that are considered
“events” and which would dilute some of the skill in regions
where annual cropland is high or that are heavily managed.

One important exception is the very low performance of
the fire forecast in equatorial Asia (EQAS) and South East
Asia (SEAS), where the system seems to have a predictabil-
ity below 0.2 (only 20 % of fires corresponded to the FWI
above the 90th percentile). De Groot et al. (2007) highlighted
how the FWI is not the best indicator in these areas, and a
fire early-warning system should mostly rely on the drought
code. There are a number of factors that could contribute to
this low usability of the FWI in these areas. Fires in these
regions are mainly caused by humans for the purposes of
cleaning the land for establishing plantations (Field et al.,
2009; Benedetti et al., 2016), and weather, which is the only
driver of the FWI, is not the main fire trigger. However it
has to be noted that 2017 was a very wet year in EQAS, and
anomalously low FWI values were predicted (see for exam-
ple Fig. 7 in Vitolo et al., 2020) with consistently low emis-
sions recorded by the GFED. The low level for fire activities
in 2017 means that the applicability of the results for this re-
gion in 2017 might not extend to other years with stronger
activities. Also Australia (AUST) has a very low POD for
the FWI, possibly being a fuel-limited ecosystem (Krawchuk
et al., 2009). The main picture that emerges is that while
weather forecast can provide skilful prediction for the FWI
at least 10 d ahead, this fire danger index has in many areas a
scarce capability to pinpoint emerging fires.

3.3 2017 case studies
Figure 7 provides an averaged assessment of the global per-
formances of the FWI to mark any fire pixels identified

during 2017. This global statistic includes small fires and
events that are not exclusively driven by weather conditions.
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Figure 4. As Fig. 3 but with aggregation performed on the GFED macro-regions.

FWI skill could improve locally, especial when important
fire events are considered. It is important to understand how
the information provided by a 10d forecast could be used
in real cases when the information is intended to aid emer-
gency responses. Here we will analyse three cases of fire
events that took place in 2017, which proved to be a year
with extreme fire episodes across the globe. The 2017 wild-
fire season involved wildfires on multiple continents and also
possibly unprecedented events when melted peat bogs ig-
nited in Greenland. The year 2017 started with an extended
fire in central Chile that lasted almost all of January. Strong
winds, high temperatures and long-term drought conditions
led to an event that has been described as the worst wildfire
in Chilean history (Bowman et al., 2018). Fires in the central
regions of O’Higgins, Maule and Bio Bio, south of Santiago,

Nat. Hazards Earth Syst. Sci., 20, 2365-2378, 2020

were difficult to control. Although fire activities had been
recorded since July 2016, they became particularly intense
in January 2017. In June, between day 17 and 18, another
devastating fire hit Portugal. It claimed more than 60 lives,
mostly recorded in the Pedr6gdo Grande area, 50 km south-
east of Coimbra. A persistent heatwave had been building in
the region, with temperatures above 40 °C, which are highly
unusual for the season. Moreover, relative humidity levels
below 30 % had a role in the intensification of the deflagra-
tion and the spread of the wildfire, which raged out of control
for several days (Boer et al., 2017). Finally in October, exten-
sive wildfires raced just north of the San Francisco Bay area
in California, causing historic levels of death and destruction.
These so-called “Wine Country” wildfires were the most de-
structive in Californian history, with 44 deaths, the loss of

https://doi.org/10.5194/nhess-20-2365-2020
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ingested into the GFAS system.

9000 buildings, damage to approximately 21 000 structures,
USD 10 billion of insured losses and substantially greater
total economic loss (Nauslar et al., 2018; Mass and Ovens,
2019).

Figure 8 shows the information that could have been pro-
vided for the study areas by the 10 d high-resolution (HRES)
fire danger forecasts had these been already available. Each
plot shows on the x axis the dates on which FRP was ob-
served and, on the y axis, the dates forecasts were issued. The
cell in the bottom-left corner shows the percentage of pixels
in the study area that are expected to be above the 90th per-

https://doi.org/10.5194/nhess-20-2365-2020

centile of the FWI climatology for that pixel and day of the
year. The forecasts for day 2 to day 10 are in the same row.
The forecasts issued on the following day are one row above
and so forth. The dashed lines show the observed FRP (see
also secondary y axis).

The reader is reminded that active fires are triggered by
highly unpredictable events (ignition) which are not ac-
counted for in the FWI system. The FWI is not supposed
to provide the exact localization of the event but an indica-
tion of potential fire activity. Large areas can be affected by
anomalous conditions in the proximity of where the event re-
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ally occurred. However it is encouraging that there is some
capability for the forecast to detect the increase in fire danger
associated with the three events even if with different inten-
sities and sharpness. For the Chile case, for example, from
mid-January around 70 % of the area often exceeded the high
danger threshold. The FRP spike occurred on 26 January, and
while the forecast was not able to capture this increase in fire
activity, looking at the whole monthly sequence there is an
indication of increased danger conditions even at 10d lead
time. However it is recognized that the signal extends for a
long time and does not mark the peak of the fire activities.
A much better timing of the event was instead forecast dur-
ing the Portugal and California fires, which were very well
predicted 10 d ahead.

4 Conclusions

In the last years, the ECMWF has been involved in the
EFFIS development by providing weather forcing and fire
danger calculations using its medium-range weather fore-
casts. Global fields of the FWI are calculated daily using
the high-resolution (9km) forecast up to 10d ahead. The
18 km resolution ensemble prediction system provides 51 ad-
ditional realizations based on slightly different initial condi-
tions and/or using different model configurations (Molteni
et al., 1996). These datasets are freely available in line
with the data and information policy of the Copernicus pro-
gramme, which intends to provide users with free, full and
open access to environmental data. Using 1 year of preop-
erational service in 2017, we have showcased the potential

Nat. Hazards Earth Syst. Sci., 20, 2365-2378, 2020

of the use of weather forecasts to support the monitoring
of fire danger conditions and planning in case of a poten-
tial emergency. Weather forecasting provides skilful infor-
mation to derive FWI values up to 10d ahead. Looking at
the continuous ranked probability score for the forecast in
comparison to climatological simulations, it was shown that
predictive skills could also extend beyond the provided fore-
cast range for most of the GFED macro-regions. Similarly
to other sectoral applications (Wetterhall and Di Giuseppe,
2018), there is scope to extend the prediction to the sub-
seasonal and seasonal (S2S) time frame. On the other hand a
good skill in forecasting FWI values did not translate into a
satisfactory probability of detection for real fire events. When
all observed fires in 2017 were matched to high FWI values
(> 90th percentile), only the Boreal regions for which the
FWTI has been calibrated had a POD above 50 %. Mid- and
high-latitude forested areas, where fuel is abundant, have the
highest predictability, while in savanna/shrubland regions the
relationship between the FWI and fire occurrence weakens.
Still, global statistics are likely to be contaminated by many
agricultural and prescribed fires that are considered “events”
and which could dilute some of the skill in regions where
annual cropland is high or that are heavily managed.
Looking at large fire events that occurred in 2017 in Chile,
Portugal and California, we have shown that there are re-
gional differences, and in Portugal and California the forecast
was accurate up to 10d ahead. Another interesting aspect at-
tached to the use of weather forecasts is the use of probabilis-
tic information. The quantification of forecast uncertainties
through the use of ensemble predictions is something still
pretty new in fire forecasting. However it opens great op-
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portunities in terms of adding a confidence level to the fire
prediction. These aspects will be investigated in follow-up
work.
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