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Abstract. Probabilistic seismic risk analysis is widely used
in the insurance industry to model the likelihood and sever-
ity of losses to insured portfolios by earthquake events. The
available ground motion data — especially for strong and in-
frequent earthquakes — are often limited to a few decades, re-
sulting in incomplete earthquake catalogues and related un-
certainties and assumptions. The situation is further aggra-
vated by the sometimes poor data quality with regard to in-
sured portfolios. For example, due to geocoding issues of ad-
dress information, risk items are often only known to be lo-
cated within an administrative geographical zone, but precise
coordinates remain unknown to the modeler.

We analyze spatial seismic hazard and loss rate variation
inside administrative geographical zones in western Indone-
sia. We find that the variation in hazard can vary strongly
between different zones. The spatial variation in loss rate dis-
plays a similar pattern as the variation in hazard, without de-
pending on the return period.

In a recent work, we introduced a framework for stochas-
tic treatment of portfolio location uncertainty. This results in
the necessity to simulate ground motion on a high number
of sampled geographical coordinates, which typically dom-
inates the computational effort in probabilistic seismic risk
analysis. We therefore propose a novel sampling scheme to
improve the efficiency of stochastic portfolio location uncer-
tainty treatment. Depending on risk item properties and mea-
sures of spatial loss rate variation, the scheme dynamically
adapts the location sample size individually for insured risk
items. We analyze the convergence and variance reduction
of the scheme empirically. The results show that the scheme
can improve the efficiency of the estimation of loss frequency
curves and may thereby help to spread the treatment and

communication of uncertainty in probabilistic seismic risk
analysis.

1 Introduction

Seismic risk analysis is widely used in academia and indus-
try to model the possible consequences of future earthquake
events, but it is often limited by the availability of reliable
earthquake event ground motion data over a longer period
of time, resulting in the necessity for many assumptions and
a wide range of deep uncertainties (Goda and Ren, 2010).
The treatment and communication of uncertainties is highly
important for informed decision making and a holistic view
of risk (Tesfamariam et al., 2010; Cox, 2012; Bier and Lin,
2013). In the insurance industry, probabilistic seismic risk
analysis (PSRA) is the means of choice to model the likeli-
hood and severity of losses to insured portfolios due to earth-
quakes. In this context precise exposure locations are often
unknown, which can have a significant impact on scenario
loss, as well as on loss frequency curves (Bal et al., 2010;
Scheingraber and Kiser, 2019).

For PSRA in the insurance industry, uncertainty is usually
taken into account by means of Monte Carlo (MC) simula-
tion (e.g., Pagani et al., 2014; Tyagunov et al., 2014; Foulser-
Piggott et al., 2020). This is a computationally intensive pro-
cess, because the error convergence of MC is relatively slow
and a high-dimensional loss integral needs to be evaluated
with a sufficient sample size. In PSRA, the hazard compo-
nent typically dominates the overall model run time. As a
result, stochastic treatment of portfolio location uncertainty
can be particularly challenging — ground motion needs to be
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simulated on a large number of sampled risk locations. On
the other hand, a fast model run time is a key requirement
for underwriting purposes in the insurance industry. Meth-
ods or sampling schemes to improve the error convergence of
MC simulation are known as variance reduction techniques.
MC simulation is ubiquitous in many areas of science and
engineering, and a wide variety of sampling schemes ex-
ist. Some well-known ideas are common random numbers
and control variates (Yang and Nelson, 1991); importance,
stratified, and hypercube sampling; quasi-Monte Carlo sim-
ulation (QMC) using low-discrepancy sequences; and adap-
tive sampling. The error convergence of different sampling
schemes has been investigated for many different types of
integrals and application areas (Hess et al., 2006; dos San-
tos and Beck, 2015). Some work has already been performed
on variance reduction for probabilistic seismic hazard analy-
sis (PSHA) and PSRA in the form of importance sampling,
e.g., preferentially sampling the tails of the magnitude and
site ground motion probability distributions (Jayaram and
Baker, 2010; Eads et al., 2013). However, to our knowledge
so far no study has specifically investigated variance reduc-
tion for location uncertainty in PSRA in a modern risk as-
sessment framework. Building on a framework proposed in
a recent study, in the present paper we describe a novel vari-
ance reduction scheme specifically designed to increase the
computational efficiency of stochastic treatment of portfolio
location uncertainty in PSRA.

The remainder of this paper is structured as follows. We
outline the most important theoretical background in Sect. 2.
Using a seismic risk model of western Indonesia, in Sect. 3
we explore spatial hazard and loss rate variation inside ad-
ministrative zones. Based on this, in Sect. 4 we propose an
adaptive location uncertainty sampling scheme and investi-
gate its performance using several test cases in Sect. 5. In
Sect. 6, we give some recommendations on how to apply
the results in practice and conclude with possible future im-
provements.

2 Background
2.1 Seismic hazard and risk analysis

Seismic hazard is modeled in both academia and industry
using a variety of different methods. Deterministic seismic
hazard assessment traditionally aims at identifying the “max-
imum creditable earthquake” that represents the largest seis-
mic hazard to a particular site. This approach is often used
to estimate the so-called “design earthquake ground motion”
for earthquake engineering purposes (e.g., Mualchin, 2011;
Tsapanos et al., 2011). Another approach is to employ ex-
treme value statistics to assess the probability of rare events,
e.g., earthquakes that are more severe than those historically
observed (e.g., Papadopoulou-Vrynioti et al., 2013; Pavlou
et al., 2013). In this study we use PSRA. Below, we briefly
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outline the underlying theory and give reasons why this ap-
proach is well-suited for the purposes of the insurance indus-
try.

PSRA is based on the method of probabilistic seismic haz-
ard analysis (PSHA; Cornell, 1968; Senior Seismic Hazard
Committee, 1997), which relies on a number of assumptions
outlined in the following. In PSHA, the exceedance rate A of
ground motion level yg at a site r( is expressed by the hazard
integral

Mmax

A(yo,ro)[yzyo]zf / Ply = yolm,r,ro]-v(m,r)dmdr, (1)

V Mmpin

with v(m, r)dmdr the seismic rate density which describes
the spatiotemporal distribution of seismic activity, P[y >
yolm, r, ro] the conditional probability of exceeding ground
motion Yy at site r( given a rupture of magnitude m at source
location r, and V the spatial integration volume containing
all sources which can cause relevant ground motion at 7. As-
suming that the occurrence of earthquake events is a temporal
Poisson process, the probability of at least one exceedance
of yp within time interval 7y is given by

P (yo. 70, %) [y = yo] = 1 —e ™0, )

where A is the mean annual recurrence rate. Classical PSHA
relies on quadrature integration; i.e., a deterministic algo-
rithm is used to solve Eq. (1). A historically important soft-
ware implementation that is still popular and useful for ed-
ucational purposes is SEISRISK III (Bender and Perkins,
1987). Classical PSHA has its limits however, since the treat-
ment of advanced topics, such as complex source geometries
or spatial ground motion correlation, is often intricate and
sometimes impossible. The approach is not well-suited to be
extended to assess the risk of building damage and monetary
loss to spatially distributed insurance portfolios.

For PSRA in the insurance industry, event-based MC sim-
ulation is commonly used today, since this approach is well-
suited to numerically solve high-dimensional integrals as re-
quired for large-scale risk analyses of insured portfolios with
many uncertainties. In this approach, stochastic simulation is
performed to obtain a set of stochastic ground motion fields
Y and to then compute the probability that a loss level ¢ is
exceeded as

P(Y,0)[t > 1] = i/ﬁ (:%:0)de. 3)
i=1L0

where fL(L|SA(l~, ®) is the loss probability density function for
a portfolio ® given the ith ground motion field Y;. Sum-
ming up the contribution of all ne events yields the total loss
exceedance probability. A probable maximum loss (PML)
curve, showing loss against mean return period 7 (with
T =1/1), can be obtained from the loss exceedance prob-
ability curve (Eq. 3) using a first-order Taylor approximation
of Eq. (2):
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fo
T = .
P (30,10, M) [y = yo]

“

Here, #p is the period of interest (time interval), which is
1 year for most reinsurance contracts.

For more details on PSHA and PSRA, we refer to the com-
prehensive textbook of McGuire (2004).

2.2 Portfolio location uncertainty

Perhaps surprisingly, in the insurance industry, portfolios fre-
quently lack precise coordinate-based location information.
Obtaining this information is often not possible, e.g., be-
cause geocoding engines are not used systematically or can
not reliably obtain coordinates from the policy address of
the insured risk. Especially for large treaty portfolios with
thousands or millions of risks, it apparently is simply too
much effort for the primary insurer or the insurance broker
to obtain and provide this information. Unfortunately, this
is also not uncommon for smaller portfolios consisting only
of a few hundred high-value risks. However, administrative
zones, such as postal codes, can easily be obtained from the
insurance policy.

Exposure uncertainty has previously been identified as an
important area of research (Crowley, 2014), and we already
introduced a framework for stochastic treatment of location
uncertainty in a recent paper (Scheingraber and Kiser, 2019).
In our framework, locations of risk items without precise co-
ordinate location information are sampled with replacement
from a weighted irregular grid inside their corresponding ad-
ministrative zone. The grid weights are used to preferentially
sample locations in areas of assumed high insurance density,
e.g., based on population density or on commercial and in-
dustrial inventory data depending on the type of risk (Dobson
et al., 2000). An example of such a weighted grid is shown
in Fig. 1.

In MC simulation, the choice of a pseudo-random num-
ber generator is of particular importance. In this study we
use MRG32K3a, a combined multiple recursive generator
which efficiently generates random number sequences with
low memory requirements and excellent statistical proper-
ties (L’Ecuyer, 1999). MRG32K3a supports up to 1.8 x 10'°
statistically independent substreams. Each substream has a
period" of 7.6 x 10?2, These properties make MRG32K3a
well-suited for a large-scale parallel MC simulation of seis-
mic risk.

IThe period of a pseudo-random number generator refers to the
minimum length of a generated sequence before the same random
numbers are repeated cyclically.
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Figure 1. An example of a weighted grid used as an insurance
density proxy for the location uncertainty framework. The map
shows northern Sumatra. Color indicates population density (resi-
dents per square kilometer) as a proxy for insured exposure density.
Black markers depict grid points of the weighted grid. The popu-
lation data in this plot are based on a free dataset (Gaughan et al.,
2015).

2.3 Evaluation of the proposed sampling scheme
2.3.1 Standard error

Given that MC simulation is a stochastic method, there are
no strict error bounds for statistics of interest obtained from
a sample of finite size n. The error is therefore usually es-
timated using the standard deviation of the sampling distri-
bution of the respective statistic, which is referred to as its
standard error (Esg). If the sampling distribution is known
(e.g., normal), standard errors can often be obtained using
a simple closed-form expression (Harding et al., 2014). For
the statistics estimated in this study, e.g., PML at a specific
return period, we can however not make a valid distribution
assumption when taking location uncertainty into account.
We therefore use repeated simulation to evaluate the perfor-
mance of the proposed sampling scheme. The standard error
can then be estimated as

Esg (&»R) = [Var (&:R), (5)

where CiDR denotes a set of estimations of a statistic obtained
from R repeated simulations and Var(-) the variance operator.
The corresponding relative standard error ERrgsg can be ob-
tained by dividing Esg by the estimated statistic. To estimate
confidence intervals of standard errors, we use bootstrapping
with the bias-corrected accelerated percentile method (Efron,
1979; Efron and Tibshirani, 1986).
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2.3.2 Bias and convergence plots

The bias of an estimator @ is defined as
bias (9) —E (9) —0, ©)

where é,, = f(x1, x2,...,%y) is the estimator depending on
n members of the sample and Ey its expected value. Tak-
ing into account that deriving the bias analytically is infea-
sible for a complex numerical simulation such as the one
performed by our framework, we use simple MC? with a
large sample size as empirical reference and approximation
for 6. In addition, we use convergence plots, which are a sim-
ple yet powerful method to monitor and verify the results
(Robert and Casella, 2004). The values estimated using sim-
ple MC and the adaptive variance reduction scheme are plot-
ted against increasing sample size n.

2.3.3 Variance reduction, convergence order, and
speedup

To quantify the performance of the proposed scheme at a par-
ticular sample size n, we use the following well-known defi-
nition of variance reduction (VR):

VR = M€ %
OLss

where o2)c is the variance using simple MC and GI%SS the

variance using the proposed location sampling scheme

(MacKay, 2005; Juneja and Kalra, 2009).

To describe the asymptotic error behavior for growing n,
we use the big O notation (O; Landau, 1909; Knuth, 1976).
For example, the error convergence order of simple MC is
always O(n~07), independent of the dimensionality of the
integrand (Papageorgiou, 2003).

To compare the real run time required by simple MC and
the proposed scheme to reach a specific relative standard er-
ror level ersg, we use the speedup S defined as
§ = MC @®)

LSS
where #yic is the run time required by simple MC and # s the
run time required by the proposed location sampling scheme.

2.4 Generation of synthetic portfolios

In this work, we use synthetic portfolios in western Indone-
sia modeled after real-world counterparts in terms of spatial
distribution of risk items, as well as value distribution among
risk items.

2For simple MC, the strong law of large numbers guarantees an
almost certain convergence for n — oo.
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2.4.1 Value distribution
The total sum insured (TSI) is kept constant for all portfolios:
TSI = const. = 1 - 10°. 9)

However, the TSI is distributed among a varying number of
risk items (portfolio size). For this study, we use portfolio
sizes n; of 1, 10, 20, 50, 100, 1000, and 10000 risk items.

The value distribution observed in many real residential
portfolios can be approximated well by a randomly perturbed
flat value distribution:

TSI
VI = . - Xi, (10)
T
TSI i
Vg, = o 'VIﬂat,i- (11
2V13at,i
1=

Vlgar,; (“value insured”) is the value assigned to the ith risk
item, and n; denotes the number of risk items. X; is a uni-
form random number in the interval [1 — p, 1+ p], where
p is a perturbation factor controlling the variation in insured
values among individual risk items in the portfolio. For this
study, we set p to 0.2. This value corresponds to the charac-
teristics we observe in many real residential portfolios and is
in accordance with the assumption of a relatively flat value
distribution, which is commonly made when modeling the
value distribution of residential building stock (e.g., Kleist
et al., 2006; Okada et al., 2011).

Equation (11) normalizes the n,; randomly perturbed in-
ny

sured values to ensure Y Vg, ; = TSL
i=1

2.4.2 Geographical distribution

For each portfolio size, we created a set of six portfolios with
an increasing fraction of unknown coordinates: 0 %, 20 %,
40 %, 60 %, 80 %, and 100 % of the risk items have unknown
coordinates and are only known on the basis of their admin-
istrative zone (Indonesian provinces, or regencies and cities;
see Sect. 3).

The geographical distribution of the exposure locations
follows the weighted irregular grid described in Sect. 2.2.
For each portfolio size, a portfolio with 0 % unknown coordi-
nates is initially created by choosing exposure locations from
the irregular grid according to the grid point weights. For the
other portfolios with the same number of risk items but a
higher fraction of unknown coordinates, coordinate-based lo-
cation information is then removed stepwise from the initial
portfolio. In each step, 20 % of the risk items are randomly
selected for the removal of coordinates until all risk items
have unknown coordinates.

https://doi.org/10.5194/nhess-20-1903-2020
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Table 1. Ground motion models and corresponding weights used by
the hazard model for different tectonic region types.

Tectonic region type Ground motion model Weight
Active shallow crust Boore and Atkinson (2008) 1/3
Campbell and Bozorgnia (2008) 1/3
Chiou and Youngs (2008) 1/3
Stable continental crust ~ Toro et al. (1997) 1
Subduction interface Zhao et al. (2006) 2/3
Youngs et al. (1997) 1/3
Subduction intraslab Atkinson and Boore (2003) 1

3 Case study: spatial seismic hazard variation in
western Indonesia

3.1 Hazard model

For this study, we use a custom seismic risk model. Our
model is based on the Southeast Asia hazard model by Pe-
tersen et al. (2007) of the United States Geological Sur-
vey (USGS), which was the most recent, reliable, and pub-
licly available model when we created our risk model. Site
conditions or soil classes are based on topographic slope
(Wald and Allen, 2007) but have been refined locally to con-
sider areas of soft soil, such as river beds. The geometry of
the Sumatra subduction zone has been improved over the
original USGS model. It is a complex representation of the
fault geometry based on the Slab 1.0 model (Hayes et al.,
2012), which provides three-dimensional data of the sub-
duction. To generate finite geometry patches for individual
events on the complex fault, we use a rupture floating mech-
anism similar to the implementation of OpenQuake (Pagani
et al., 2014), a free and open-source seismic hazard and risk
software developed as part of the Global Earthquake Model
initiative (Crowley et al., 2013).

In order to reduce the computational effort of the hazard
model, we have simplified the logic tree of the ground motion
model for all tectonic region types. This allowed us to thor-
oughly analyze the performance of the proposed sampling
scheme for a larger set of insurance portfolios and sampling
scheme parameters, while retaining overall accordance with
the hazard of the original model. Table 1 gives an overview
of the selected ground motion models and their weights.

Figure 2 shows the resulting seismic hazard map for an ex-
ceedance probability of 10 % in 50 years. Assuming a tempo-
ral Poisson distribution, this probability equals an average re-
turn period of 475 years, which is used for most seismic haz-
ard maps and by the engineering community for the design of
building codes. The depicted area is comprised of the islands
of Sumatra, Java, and Kalimantan (the Indonesian sector on
the island of Borneo). The hazard results of our model are
in general agreement with results obtained using the origi-
nal USGS Southeast Asia model (Petersen et al., 2007) or

https://doi.org/10.5194/nhess-20-1903-2020

third-party implementations, such as by the Global Earth-
quake Model (GEM) initiative evaluated using the Open-
Quake engine’. Slight differences are caused by the inclu-
sion of site conditions, a simplified ground motion model
logic tree, different source parameterization, improved sub-
duction geometry representation, and slightly modified seis-
micity rates based on the latest ISC-GEM Global Instrumen-
tal Earthquake Catalogue (Storchak et al., 2013) and Global
Historical Earthquake Catalogue®.

On the island of Sumatra, the effect of the Sumatra fault
zone is clearly visible and seismic hazard is high. The seis-
mic hazard of Java is highest in the western area of the is-
land, around the city of Jakarta. The hazard levels decrease
towards the east. On Kalimantan, there are no known or mod-
eled seismic crustal faults. Therefore, only a low level of spa-
tially homogenous distributed gridded seismicity is used in
this area, resulting in low hazard.

The hazard model and results are described in more detail
in a recent paper (Scheingraber and Kiser, 2019).

3.2 Spatial seismic hazard variation

For this analysis, we compute seismic hazard on a regular
grid using a resolution of 0.3°. We investigate the coefficient
of variation (CV) of hazard inside administrative geographi-
cal zones for different levels of resolution, corresponding to
provinces and regencies or cities in Indonesia. The CV is de-
fined as

o
CV=—, 12)
"

where o is the standard deviation and p the mean.

3.2.1 Dependence on resolution level of geographical
zones

Figure 3 shows the CV of peak ground acceleration with an
exceedance probability of 10 % in 50 years per province in
Indonesia. There is a noticeable decrease in the CV from
west to east. The subduction modeled by the complex fault
and the Sumatra fault zone (SFZ) results in the highest CV
on Sumatra (most values of about 0.2-0.3). The CV is also
relatively high on Java (around 0.15). The CV is the lowest
in Kalimantan (< 0.1) due to the absence of any known or
modeled crustal faults. As only gridded seismicity is used
in this area, the hazard variation is very small. Furthermore,
zones with a large extent perpendicular to the SFZ show a
larger CV than zones with a smaller extent along the direc-
tion of the steepest hazard gradient. An example of this is the
provinces of Jambi and Bengkulu in Fig. 3. Arguably, loca-
tion uncertainty is more important in Jambi than in Bengkulu.

Figure 4 shows the CV per regency or city for the same
exceedance probability.

3See https://hazardwiki.openquake.org/sea2007_intro (last ac-
cess: 1 July 2020) for results obtained using OpenQuake.
4See http://www.emidius.eu/GEH/ (last access: 1 July 2020).
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Figure 2. Seismic hazard in western Indonesia, as obtained using our hazard model. Color shows the level of peak ground acceleration (PGA,
m s_z) that is predicted to be exceeded at an average return period of 475 years.
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Figure 3. Coefficient of variation (CV) of peak ground acceleration (PGA) with an exceedance probability of 10 % in 50 years inside
provinces in western Indonesia. Color denotes the CV. Note how the CV is higher in provinces that have a large extent perpendicular to the
Sumatra fault zone, such as Jambi (outlined in pink color), than in provinces with a small extent in that direction, such as Bengkulu (outlined

in blue).

Due to the smaller spatial extent of the administrative
zones, the CV is in general lower at this more granular res-
olution of administrative geographical zones. Another obser-
vation is that the influence of individual seismotectonic fea-
tures emerges; the CV is higher in the vicinity of modeled
faults. While the Sumatra subduction only has a weak influ-
ence, the SFZ has a pronounced effect. Near the SFZ, the

Nat. Hazards Earth Syst. Sci., 20, 1903-1918, 2020

CV has values of about 0.1-0.2. Perpendicular to the SFZ,
the CV quickly drops below 0.1.

In general, the CV is highest in zones close to modeled
faults of shallow depths, as they result in a higher spatial haz-
ard gradient compared to areas where hazard is dominated by
rather regularly distributed gridded seismicity. A reasonable

https://doi.org/10.5194/nhess-20-1903-2020
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Figure 4. Coefficient of variation (CV) of peak ground acceleration (PGA) with an exceedance probability of 10 % in 50 years inside
regencies and cities in western Indonesia. Color denotes the CV. At this geographical resolution the CV is lower than for provinces (see
Fig. 3), and the influence of individual seismotectonic features, such as the Sumatra fault zone, becomes apparent.

assumption is that location uncertainty can be particularly
high in such zones.

3.2.2 Dependence on return period

Analysis of the CV across different return periods for in-
dividual zones revealed a similar pattern for most adminis-
trative zones. The CV is small for short return periods and
reaches a relatively stable level above a certain return pe-
riod. An example of this behavior is shown in Fig. 5 for the
province of Jambi. However, the CV does not show this pat-
tern in all administrative zones. For some zones, especially
at the level of regencies and cities, we could not determine a
range of return periods for which the CV is roughly constant,
as for example in the province of Kalimantan Timur shown
in Fig. 6.

3.3 Loss rate variation

The variability of the CV over return periods for certain
zones makes it difficult to choose a general return period
suitable for assessing the spatial variation in hazard inside
a zone. To avoid the subjectivity introduced by a manual de-
cision process for a suitable return period, we use the CV of
the loss rate per zone, as it considers all return periods. Fig-
ure 7 shows the CV of the loss rate for Indonesian provinces.
The overall pattern agrees with the pattern of the spatial haz-
ard variation in Fig. 3, but the range of values is much higher,
from about 0.1 to 0.9.

https://doi.org/10.5194/nhess-20-1903-2020
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Figure 5. Coefficient of variation (CV) of ground motion predicted
to be exceeded at various return periods for the Jambi province (see
Fig. 3). The CV remains quite stable over a large range of return
periods.

4 A framework for adaptive sampling of portfolio
location uncertainty

To increase efficiency, in our framework ground motion is
jointly simulated on all unique locations of all sampled lo-
cation sets. Since the computation of hazard dominates the
overall run time of PSRA, it is worthwhile to explore possi-
bilities to distribute the number of locations at which hazard
is computed in a smart way among risk items. To this end,
we introduce three sampling criteria to determine the loca-
tion sample size individually per risk item. A large location
sample size is used for risk items for which all three criteri-

Nat. Hazards Earth Syst. Sci., 20, 1903-1918, 2020
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Figure 6. Coefficient of variation (CV) of ground motion predicted
to be exceeded at various return periods for the Kalimantan Timur
province (see Fig. 3). In this case, it is not possible to determine a
range of return periods for which the CV remains in a stable range.

ons indicate that location uncertainty has a strong influence.
If any of the three criteria predict that the location uncertainty
has a lesser effect, a smaller sample size is used. In this way,
more computational effort is invested where it is important,
and a better estimation of the PML curve associated with a
lower variance is obtained for a given number of used hazard
locations. To not add noticeable overhead to the calculation,
a key requirement is that all criteria can be evaluated very
efficiently. To keep the computational overhead small, an-
other design goal is that the framework is adaptive in a sense
that it depends directly on properties of the portfolio and a
precalculated hazard variability (see Sect. 3) but does not re-
quire on-the-fly integral presampling, such as the one used by
certain general purpose adaptive variance reduction schemes
(Press and Farrar, 1990; Jadach, 2003).

4.1 Risk location index mapping table

We store an array containing all unique geographical loca-
tions at which ground motion is simulated and another array
with the sampled location indices per risk item. Table 2 illus-
trates the concept. Each column of the table corresponds to
a location set representing a valid realization of location un-
certainty for the entire portfolio. To combine unequal sample
sizes for risk items without introducing bias due to overem-
phasis of a subset of a sample, we restrict the sample size
to powers of 2. The full sample can then be repeated in the
mapping table.

4.2 Criterion I: coefficient of variation of loss rate

The first criterion is based on the CV of loss rate within a
zone (see Sect. 3), hereafter denoted by CV,. The values
of CV, can be precomputed for all administrative geograph-
ical zones, and therefore the evaluation of this criterion can
be implemented in a very efficient manner.

Nat. Hazards Earth Syst. Sci., 20, 1903-1918, 2020

Table 2. Risk location index mapping table. Rows correspond to in-
dividual risk items, showing sampled grid point indices. Each col-
umn represents a possible spatial distribution of the portfolio. Risk
item 1 has the maximum location sample size of nmax = 4, but risk
items 2 and 3 only have a sample size of 2 and 1, respectively.

Risk  Sample Samplel Sample2 Sample3 Sample 4
item size

index

1 4 43 13 31 51

2 2 23 18 23 18

3 1 51 51 51 51

The number of samples n1, due to criterion I is defined
piecewise.

1, ifCV, <n,
nf: %CVZ“‘Iv lfc\,Z € (tlatu)v (13)
Nmax, it CVz > 1y

Here, 1 and ¢#, are the lower and upper threshold values.
Nmax Tepresents the maximum used sample size. We round n{
up to the next higher power of 2 to obtain the final ny.. The
criterion is shown in Fig. 8 for the example fj = 0.1, #, = 0.4,
and nmax = 16. In our final implementation, # and #, are cho-
sen adaptively as empirical quantiles of the CV distribution
(CVo.4 for 11 and CV¢ for t, i.e., the 40 % and 60 % per-
centiles) of the loss rate of all administrative zones of a model
(see Sect. 3), which was found to be a reasonable choice for
our test cases with the aid of an extensive parameter study
(see Sect. 5.1).

4.3 Criterion II: number of risk items

The second criterion involves two steps. The first step defines
a maximum sample size for the entire portfolio depending
on the total number of risk items n, in the portfolio and a
threshold 7, as

ifn, <tp,

Nmax — 1
t _{ —m'log(nr—l)‘i‘”max, (14)

n =
R 1, ifn, > ¢,

which is then used to obtain a maximum sample size per
zone, depending on the number of risk items in a zone n,
and a threshold #,:
n;—l + .
n}*{: _,LT]'(”z—l)‘FnR, ?fnz<st_ (15)
1, ifn,>1,

We round ny up to the next higher power of 2 to obtain
the final nr. Figures 9 and 10 illustrate this criterion for
tp, = 10000, t, = 100, and nyax = 16. In this study, £, is cho-
sen to be 10000, and ¢, is set adaptively to equal the number
of grid points of the weighted location uncertainty sampling
grid (see Sect. 2.2) inside each administrative zone. The de-
sign of this criterion is based on the results of a previous
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Figure 7. Coefficient of variation (CV) of the loss rate inside provinces in western Indonesia. Color denotes the CV.

—— Discrete criterion: only powers of 2 (n1.)
+ =+ = Original sampling criterion (n])
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Coefficient of variation (CV,)

Figure 8. Criterion I: number of samples per zone depending on co-
efficient of variation. The discrete realization of the criterion (lim-
ited to powers of 2) is shown in blue, while the red line represents
the theoretical linear behavior.

study, in which we systematically investigated the effect of
location uncertainty and loss aggregation due to spatial clus-
tering of risk items for a large range of different portfolios.
It was found that location uncertainty typically has a ne-
glectable effect for very large portfolios and a roughly flat
value distribution (Scheingraber and Kiser, 2019).

4.4 Criterion III: value distribution

The third criterion depends on the relative insured values of
risk items (“sum insured”, SI). Risk items are sorted with re-
spect to their SI, and the index of their sorted order I; is used
along with a threshold index # to determine the maximum
sample size per risk item:

https://doi.org/10.5194/nhess-20-1903-2020

—— Maximum location sample size (n})

Maximum location sample size (nj;)
o

1 2 345 10 20 50 100 1000 10000

Number of risk items in portfolio (r2,)

Figure 9. Criterion Il.a: number of samples per zone depending on
the number of risk items in the portfolio. Note that we do not round
up to the next higher power of 2, since this plot illustrates Eq. (14),
which is an intermediate step.

nt,:{ _n[;lia+171'(1r_l)+nmax» if Iy < g, (16)

1, if >4

We round 73, up to the next higher power of 2 to obtain the
final ny. Figure 11 illustrates this criterion for # = 6 and
nmax = 16. In this study, for # we adaptively set the index
of the first risk item which has a SI higher than the mean of
all risk items.

Nat. Hazards Earth Syst. Sci., 20, 1903-1918, 2020
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—— Discrete criterion: only powers of 2 (ng)
+ =+ = Original sampling criterion (ng)

Location sample size

0 20 40 60 80 100 120
Number of risk items in zone (n,)

Figure 10. Criterion II.b: maximum number of samples per zone
depending on the number of risk items in an administrative zone.
The discrete realization of the criterion (limited to powers of 2) is
shown in blue, while the red line represents the theoretical linear
behavior.

—— Discrete criterion: only powers of 2 (nv)
+ =+ = Original sampling criterion (ny)

Location sample size

1 "*T .......... T ..........

1 2 3 4 5 6 7 8

Individual risk items (I, sorted by decreasing insured value)

Figure 11. Criterion III: number of samples per zone depending on
the insured values of the risk items. The discrete realization of the
criterion (limited to powers of 2) is shown in blue, while the red line
represents the theoretical linear behavior.

4.5 Combination of criteria

The final sample size for a specific risk item is then given by
the minimum of the three criteria:

n = min{ng, ng,nv}. (17)

The rationale behind this decision is that any of the criteria
can separately predict that a particular risk item has a low
impact on loss uncertainty. For example, if a risk item with
an unknown coordinate has a low insured value, it has a rela-
tively low impact on loss uncertainty, even if the variation in
hazard or loss rate within the corresponding administrative
zone is high, and thus a small location uncertainty sample
size can be used. Vice versa, the impact of location uncer-
tainty is limited if a risk item with an unknown coordinate

Nat. Hazards Earth Syst. Sci., 20, 1903-1918, 2020

has a high insured value but the hazard within the corre-
sponding administrative zone is relatively flat. Furthermore,
loss uncertainty is also limited if a portfolio contains a very
high number of total risk items or the number of risk items
belonging to an administrative zone is high compared to the
number of grid points within this zone.

5 Results

In this section, the variance reduction and speedup obtained
with the proposed adaptive location uncertainty sampling
scheme are analyzed using the western Indonesia hazard
model described in Sect. 3.1 in conjunction with a vulnera-
bility model for regional building stock composition. To this
end, loss frequency curves are computed for the synthetic
portfolios described in Sect. 2.4 with simple MC as well as
the adaptive scheme. The convergence and relative standard
errors are evaluated against the number of unique hazard lo-
cations used for the loss calculation by either approach, and
the associated required run time is compared.

5.1 Spatial variation parameter study

We first analyze the performance of the adaptive sampling
scheme for different values of the lower (#) and upper (#,)
threshold parameters for the spatial variation in loss rate in
an administrative zone in comparison to simple sampling. In
simple MC, all risk items get the same location uncertainty
sample size nmax and there is no restriction to powers of 2.
For this parameter, we use values of nmax = 32, 64, 96, 128,
160, 192, 224, and 256 in order to obtain a smooth curve with
a high number of support points.

For the adaptive variance reduction scheme, the sample
size is restricted to powers of 2 and is determined for each
risk item individually — potentially smaller than the max-
imum allowed location uncertainty sample size nm,x (see
Sect. 4 and Table 2). Since the sample size varies between
risk items, for a meaningful comparison with simple MC it
is necessary to use a measure of the total effort spent for the
treatment of location uncertainty of all risk items. We use the
total number of unique hazard locations (#pazard) and the run
time spent for the computation of hazard (thaz4rq). While for
simple MC all risk items get the maximum sample size 7 pax,
the adaptive location sampling scheme reduces the sample
size for risk items for which location uncertainty likely has
a smaller influence. This means that the adaptive location
sampling scheme results in a smaller np,,4rq than simple MC
for the same portfolio and np.x. Therefore, in order to ob-
tain comparable values for np,4rd, @ larger maximum sample
size nmax has to be employed for the adaptive scheme than
for simple MC. Here, we use nmax = 2! withi =5,6,...,8.

For each sample size, the spatial variation threshold pa-
rameters are varied over the distribution of CV values, pick-
ing quantiles in constant steps of 0.2. The lower threshold #
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Figure 12. Results of a systematic parameter study with the goal of finding good values for the lower threshold (#) and upper threshold (#,)
parameters of criterion I of the adaptive location uncertainty sampling scheme (see Sect. 4), based on the distribution of the coefficient of
variation (CV) of loss rate in administrative zones. This shows a logarithmic plot of relative standard error (Ersg) of probable maximum
loss (PML) at a return period of 100 years against the number of used hazard locations (np,,4:q) for a portfolio of 20 risk items with 100 %
unknown coordinates. Color indicates different combinations for the threshold parameters # and #,. Quantiles of the CV distribution around

1 € [CVy.2; CV( 4] in combination with #y € [CV( ¢; CV( g] work best.

is varied from CVpo to CVy g, and the upper threshold #,
is varied from CVg; to CV . For each combination of #
and #,, R = 20 repeated simulations were performed for each
sample size to estimate the respective relative standard er-
ror ERsE.

In general, for our test cases the scheme works well around
t1 € [CVp.2; CVg.4] in combination with ¢, € [CV(¢; CVosl.
For example, for a portfolio of 20 risk items and 100 %
unknown coordinates, Fig. 12 shows a logarithmic plot of
the relative standard error Ersg of PML at a return period
of 100 years against the number of used hazard locations
Nhazard fOor some combinations of # and #,. The error curves
for all combinations of # and #, have the same slope as the
curve for simple MC and thus the same convergence order
of O(n~9). For certain combinations, the error curve is be-
low the curve for simple MC, meaning that in these cases the
scheme successfully reduces the variance of the estimation
and therefore the associated standard error.

For the final implementation, we used #; = CVp 4 and ¢, =
CVy.¢, which performed best in this parametric study.

5.2 Performance of the final implementation

We now evaluate the performance of the final implementa-
tion of the adaptive scheme, checking if it results in any un-
wanted systematic bias and investigating variance reduction
and speedup for the calculation of PML for different portfo-
lios.

https://doi.org/10.5194/nhess-20-1903-2020

5.2.1 Convergence and bias

Figures 13 and 14 show convergence plots of PML at a 100-
year return period against the number of used hazard loca-
tions Apazarg for portfolios with ny = 10 and n, = 100 risk
items, respectively. Panels (a) depict the results for portfo-
lios with 60 % unknown coordinates, and panels (b) show the
results for portfolios with 100 % unknown coordinates. Sim-
ple sampling is shown in blue, and the adaptive scheme is
shown in red. For all portfolios, the sample size n was varied
asn =2 withi =3,4,...,9. For each sample size and both
sampling schemes, R = 20 repeated simulations are shown
as semitransparent circles, with solid lines highlighting one
individual repetition.

The results show that empirically the adaptive scheme con-
verges to the same result as simple MC for our test cases,
meaning that the scheme does not result in any systematic
bias. It is also apparent that for a given number of used haz-
ard locations nhazard, the relative PML values obtained with
the adaptive scheme scatter less than those estimated with
simple MC.

5.2.2 Variance reduction and speedup
For the same portfolios, as analyzed in the previous sec-
tion, Fig. 15 shows logarithmic plots of the relative stan-

dard error ERsg obtained from R = 20 repeated simulations
against the number of used hazard locations npgzqrq. Verti-

Nat. Hazards Earth Syst. Sci., 20, 1903-1918, 2020
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Figure 13. Convergence plots showing relative probable maximum loss (PML) at a return period of 100 years against the number of used
hazard locations nygz4rq for portfolios of ny = 10 risk items with 60 % (a) and 100 % (b) unknown coordinates using simple MC (shown in
blue) as well as the adaptive scheme (shown in red). Semitransparent circles depict R = 20 repeated simulations for each sample size, and
solid lines highlight one repetition. The transparently shaded background shows the entire range for each sampling scheme. The plots show
that the adaptive scheme scatters less and converges faster to the same result than simple sampling.
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Figure 14. Convergence plots showing relative probable maximum loss (PML) at a return period of 100 years against the number of used
hazard locations npy,4:q for portfolios of ny = 100 risk items with 60 % (a) and 100 % (b) unknown coordinates using simple MC (shown in
blue) as well as the adaptive scheme (shown in red). Semitransparent circles depict R = 20 repeated simulations for each sample size, and
solid lines highlight one repetition. The transparently shaded background shows the entire range for each sampling scheme. The plots show
that the adaptive scheme scatters less and converges faster to the same result than simple sampling.

cal bars depict upper 95 % confidence intervals estimated us-
ing bootstrapping with 1000 resamples. Simple MC is again
shown in blue, and the variance reduction sampling scheme
is shown in red. While the observed error convergence order
of the adaptive scheme remains the same as for simple MC
(.e., O(n_o's); compare Sect. 5.1), the error curves are be-
low those for simple MC for all portfolios.

The variance reduction quotient (VR, the ratio of the vari-
ances in the estimations obtained using simple MC to those

Nat. Hazards Earth Syst. Sci., 20, 1903-1918, 2020

of the adaptive scheme; see Eq. 7) varies between port-
folios with different numbers of risk items and fractions
of unknown coordinates but generally increases with grow-
ing Mhazard- For example, for the portfolio with 10 risk items
and 60 % unknown coordinates, VR is about 6.2 at npazard =
10? and increases to 13.2 at Nhazard = 103. For the portfolio
with 10 risk items and 100% unknown coordinates, VR ~
1.8 at npazard = 10% and 2.2 at Nhazard = 103. For the port-
folios with 100 risk items, the situation is similar. For 60 %
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Figure 15. Logarithmic plot of relative standard errors ERgp of probable maximum loss (PML) at a return period of 100 years against the
total number of used hazard locations npazarq for different portfolios with ny = 10 (a, ¢) and n; = 100 (b, d) risk items and 60 % (a, b)
and 100% (¢, d) unknown coordinates. Simple MC is shown in blue, and the adaptive variance reduction scheme is shown in red. All
ERsg values have been obtained from R = 20 repeated simulations; vertical error bars depict upper 95 % confidence intervals estimated
using bootstrapping with 1000 resamples.

Table 3. Mean run time speedup and standard errors (S + Egg) of the hazard computation achieved by the adaptive location uncertainty
sampling scheme in comparison to simple sampling to obtain relative standard error levels of ersg = 10~ and ERSE = 1073, estimated
from R = 20 repeated simulations. Depending on the portfolio and ergg, the mean speedup ranges from 6 % to 37 %.

Speedup (S)
Portfolio ERSE = 104 ERSE = 1073
10 risk items, 60 % unknown coordinates 1.24 £0.09 1.14£0.04
10 risk items, 100 % unknown coordinates 1.354+0.06 1.374+0.09
100 risk items, 60 % unknown coordinates 1.08 +0.04 1.06 +0.03
100 risk items, 100 % unknown coordinates 1.09£0.03 1.08 £0.02

unknown coordinates, VR ~ 2.4 at npazard = 10? and 3.7 at
Nhazard = 10*. For 100 % unknown coordinates, VR ~ 1.7 at
Nhazard = 10° and 3.0 at nhazara = 10%.

The obtained variance reduction partially leads to a
speedup of the computational run time to reach a specific rel-
ative standard error level ersg. Table 3 shows the speedup S
of the scheme to reach relative standard error levels of
ERSE = 10~* and ERSE = 107 for the same portfolios. De-
pending on the portfolio, the scheme achieves a speedup be-
tween 8 % and 35 % to reach ersg = 10~* and between 6 %
and 37 % to reach ersg = 1073, Note that we obtained these
speedup values using a highly optimized seismic hazard and
risk analysis framework. We suspect that the scheme can re-
sult in a significantly higher speedup for less optimized code,

especially if the hazard simulation is not vectorized but con-
tains a loop over locations.

6 Conclusions

Seismic risk assessment is associated with a large range of
deep uncertainties. For example, the exact location of risks
is often unknown due to geocoding issues of address infor-
mation. In order to provide a holistic view of risk and to be
able to communicate the effect of uncertainty effectively to
decision makers, all model uncertainties need to be treated.
Therefore, in this paper we propose a novel adaptive sam-
pling strategy to efficiently treat this location uncertainty us-
ing a seismic hazard and risk model for western Indonesia.
The adaptive scheme considers three criteria to decide how
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often an unknown risk coordinate has to be sampled within a
known administrative zone: (1) the loss rate variation within
the zone, (2) the number of risks within the zone, and (3) the
individual value of the risk. As the variation in hazard can
vary quite strongly not only between different administrative
geographical zones but also between different return periods,
we use the spatial variation in loss rate which displays a sim-
ilar pattern as the variation in hazard but is independent of
the return period. Furthermore, the total number of risks in
the corresponding administrative zone and the value (impor-
tance) of the risk with respect to the entire portfolio are con-
sidered by the adaptive scheme.

We investigated the performance of the scheme for a large
range of sample sizes using different synthetic portfolios of
different levels of unknown risk locations. We have found
that the scheme successfully reduces the expected error;
i.e., it reaches the same error levels as simple Monte Carlo
with fewer samples of potential risk locations. This results
in lower memory requirements and a moderate but apprecia-
ble run time speedup to reach a desired level of reliability
when computing loss frequency curves — a critical measure
of risk in the insurance industry. The scheme helps to ob-
tain a holistic view of risk including the associated uncertain-
ties and could also be applied to other natural hazards, such
as probabilistic wind and flood models. This should help to
avoid blind trust in probabilistic risk assessment.

While the proposed scheme already successfully reduces
the variance of loss frequency curve estimations, future im-
provements in the treatment of uncertainty in PSRA are con-
ceivable and necessary. The effect of modeling assumptions
and the often poor data quality need to be investigated fur-
ther. The computation might become yet more efficient by
the application of variance reduction techniques to other un-
certainties, for example in the ground motion and vulnerabil-
ity models. Moreover, it would be essential to investigate the
relative importance of location uncertainty in comparison to
these other uncertainty types.
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