
Nat. Hazards Earth Syst. Sci., 20, 181–195, 2020
https://doi.org/10.5194/nhess-20-181-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Multi-coverage optimal location model for emergency
medical service (EMS) facilities under various
disaster scenarios: a case study of urban fluvial
floods in the Minhang district of Shanghai, China
Yuhan Yang1,3, Jie Yin1,2,3,4, Mingwu Ye1,3, Dunxian She2, and Jia Yu5

1Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
2Hubei Provincial Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, China
3School of Geographic Sciences, East China Normal University, Shanghai, China
4Institute of Eco-Chongming, East China Normal University, Shanghai, China
5School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, China

Correspondence: Jie Yin (jyin@geo.ecnu.edu.cn)

Received: 3 July 2019 – Discussion started: 18 July 2019
Revised: 15 November 2019 – Accepted: 6 December 2019 – Published: 17 January 2020

Abstract. Emergency medical service (EMS) response is
extremely critical for pre-hospital lifesaving when disaster
events occur. However, disasters increase the difficulty of
rescue and may significantly increase the total travel time
between dispatch and arrival, thereby increasing the pres-
sure on emergency facilities. Hence, facility location deci-
sions play a crucial role in improving the efficiency of res-
cue and service capacity. In order to avoid the failure of
EMS facilities during disasters and meet the multiple require-
ments of demand points, we propose a multi-coverage opti-
mal location model for EMS facilities based on the results
of disaster impact simulation and prediction. To verify this
model, we explicitly simulated the impacts of fluvial flooding
events using the 1-D–2-D coupled flood inundation model
FloodMap. The simulation results suggested that even low-
magnitude fluvial flood events resulted in a decrease in the
EMS response area. The integration of the model results with
a geographical-information-system (GIS) analysis indicated
that the optimization of the EMS locations reduced the delay
in emergency responses caused by disasters and significantly
increased the number of rescued people and the coverage of
demand points.

1 Introduction

Urban disasters represent a serious and growing challenge.
Against the backdrop of urbanization, demographic growth,
and climate change, the causes of disasters are changing
and their impacts are increasing. Both natural hazards such
as flash flooding and human-caused accidents such as fires
threaten and induce panic in people and cause casualties and
property loss (Kates et al., 2001). In order to deal with emer-
gencies effectively, a large number of emergency service fa-
cilities may be called upon simultaneously. The demands
being placed upon emergency services often exceed the re-
sources made available by governments (Liu et al., 2017).
Furthermore, disasters always require a longer response time
than regular incidents due to high traffic flows. A crash on the
rescue route may block one or several lanes, resulting in con-
gestion, significant delays of the emergency vehicles, and po-
tential additional casualties (Dulebenets et al., 2019). There-
fore, the maintenance of the efficiency and quality of emer-
gency services during disasters is the key to emergency man-
agement. A scientific and pragmatic approach to the choice
of locations and allocations of emergency service facilities
reduces traffic congestion and the risk of secondary incidents
during an emergency, which, in turn, reduces transport costs
and greatly improves the efficiency of rescue services.
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Over the last few decades, research into traditional loca-
tion theory has resulted in a number of models to determine
the optimal location of emergency services; the most com-
monly used models are the P-center model (Hakimi, 1964),
the P-median model (Hakimi, 1965), and the covering model
(Brandeau and Chiu, 1989). Among these models, the cover-
ing model is the most widely investigated and applied model;
the objective of the model is to improve the coverage of fa-
cilities within a limited time or distance to meet the service
requirements (Ge et al., 2011). The most common covering
models are the location set covering model (LSCM; Tore-
gas and ReVelle, 1972) and the maximum covering location
problem (MCLP) model (Church and ReVelle, 1974). The
focus of the LSCM is to minimize the number of facilities
needed to cover all demand points, but it has been shown
to lead to an unequal allocation of facilities or a large in-
crease in costs. Due to these limitations, the MCLP model
was developed to ensure that existing emergency facilities
were used to obtain the maximum coverage of the demand
points. Drawing upon the LSCM and MCLP model, a num-
ber of researchers have optimized the associated algorithms
in terms of facility workload limits (Pirkul and Schilling,
1991), cost (Su et al., 2015), and the level of coverage (Gen-
dreau et al., 1997) to solve various practical problems or
achieve rescue objectives. Other types of models are suit-
able for location decision problems that do not include time
or distance restrictions, such as the P-center model and the
P-median model, where P refers to the number of facilities
that need to be built. The P-center model mainly considers
equitable service; it selects P facilities by minimizing the
maximum distance between the demand points and the fa-
cilities. The P-median model not only takes into account the
efficiency of the emergency facilities but also minimizes the
sum of the weighted distance between the demand points and
the P facilities (Chen and You, 2006).

All of the above models are static in the sense that they do
not consider uncertainties in the emergency service process.
For example, large-scale emergencies are likely to require
high levels of healthcare to the extent that emergency ser-
vice facilities would need to provide transportation to other
facilities that are beyond the immediate area. Furthermore,
the limited ambulance resources at any one emergency sta-
tion would restrict the capacity of the emergency medical
service (EMS) when multiple demand points make simulta-
neous requests. Any further demands placed upon the emer-
gency services would cause them to fail, resulting in poten-
tial loss of life. To minimize these fluctuations in an EMS
system, approaches have been proposed that involve multi-
coverage models (Moeini at al., 2015). In 1981, Daskin and
Stern (1981) put forward their hierarchical objective set cov-
ering model (HOSC), in which they introduced the concept
of “multiple coverage of zones”; the objective was to min-
imize the number of necessary facilities such that the de-
mand was still met and to maximize the coverage of the
demand points. However, HOSC had one major shortcom-

ing: it potentially led to the congestion of emergency ve-
hicles. To solve these problems, Hogan and Revelle (1986)
proposed an alternative approach to coverage in their maxi-
mal backup coverage models BACOP1 and BACOP2. These
models cover each demand point at least once, but the mul-
tiple coverage of different demand points with the same cov-
erage level resulted in a waste of vehicles resources (Ge et
al., 2011). Considering that there is usually a limited finan-
cial budget for the provision of emergency services, it is not
feasible to cover all demand points multiple times.

The aforementioned traditional location models ignored
the impacts of specific disasters, but we suggest that these
impacts must be part of any decision regarding the location of
emergency services. Apart from causing casualties, a disas-
ter may also damage emergency facilities; furthermore, dam-
age to buildings and roads will lead to traffic congestion and
render emergency rescue more difficult than usual. To avoid
these problems, research has been conducted on choosing
the location of emergency service facilities in response to
large-scale emergencies. Jia et al. (2007) defined the main
characteristics of ideal locations of emergency service facil-
ities as “timeliness”, “fairness”, and “resistance to failure”.
Chen and You (2006) established a multi-objective decision
model for the location of emergency rescue facilities by inte-
grating the MCLP model, the P-median model, and the P-
center model. In this integrated model (which focused on
large-scale disasters), emergency facilities were allocated us-
ing different strategies. Jia et al. (2007) investigated models
for EMS facility location in response to disasters and com-
pared three heuristic algorithms (genetic algorithm, location-
allocation algorithm, and Lagrange relaxation algorithm) ap-
plicable to emergency scenarios and location models.

After taking the results of previous studies into account,
here we describe a novel approach for the optimization of
EMS efficiency under various disaster scenarios. We pro-
pose a multi-coverage optimal location model, whose out-
put depends on the impact of a disaster and the levels
of demand made on the EMSs. We use a scenario-based
method and geographical-information-system-based (GIS-
based) network analysis to quantify the impacts of a disaster
on the urban EMS response. The coverage level of the de-
mand points is determined by the population, the EMS calls
for help, and other factors that reflect the demand level of
the demand points; these factors determine how often the
demand point needs to be covered by emergency facilities
within a predefined time. The higher the demand coverage
level, the more often a demand point needs to be covered by
the service area of the emergency facilities in a given time pe-
riod. The main purpose of our location model is to reduce the
probability of delays in the emergency response caused by in-
sufficient emergency facilities and resources. The proposed
model represents a point of reference for the planning and
location of urban emergency facilities. In the following sec-
tions, we provide descriptions of the problems and the design
of the optimal location model. We also conduct a case study
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Figure 1. Qualitative description of model problems.

of urban fluvial floods in the Minhang district of Shanghai,
China, to validate this model.

2 Multi-coverage optimal location model design

2.1 Problem description

Limited EMS resources face increasing demands as the risk
of wide-scale and complex urban disasters increases. Previ-
ous models have not considered the probability of failure of
EMS facilities, in particular those housing ambulances, nor
have they taken into account possible limited access by EMS
to vulnerable demand points. Hence, two problems need to
be addressed: (1) the need for quick response times sug-
gests that EMSs should be located close to potential disaster
points so that a high-risk area can be served simultaneously
by many EMSs, and (2) the closer to the potential disaster
points, the higher the possibility of EMSs being affected by
the disaster, and the lower the service capacity, the greater
the distance should be (Fig. 1). Based on these problems,
in this study, we propose and formulate a disaster-scenario-
based planning and optimal location model that considers
the multi-coverage of zones. The coverage is dependent on
the demand level of the demand points (high demand with
high coverage requires more ambulances at the same time).
In our work, we specifically consider flooding; the location
plan should result in improvements in the efficiency of the
response and reduce the risk to EMS of flash-flood disasters.

We present the objective of the proposed model and de-
scribe the problems encountered during the development of
the model. The objective of the model is to serve the largest
number of people in a region with EMSs. Let J be the set
of potential emergency facilities, let I be the set of the de-
mand points in the study area, and let F (0< F < J ) be the
number of optimal facilities. We consider the risk of a disas-
ter at the potential emergency points and the demand points
separately and arrange the station locations according to the
coverage level and disaster risk level of each demand point i.
In simple terms, the model solves the following problems.

– Q1. How do we calculate the coverage level Qi at each
demand point i?

– Q2. How do we evaluate the risk of disasters for each
potential point j and demand point i?

– Q3. What are the objectives and constraints for develop-
ing an optimized location model based on Q1 and Q2?

– Q4. How do we evaluate the applicability of the model?

2.2 Assumptions

To solve the above problems and simplify the model, we use
the following assumptions.

– A1. All potential points have the same probability of
accepting EMS calls, and their ability to serve all the
demand points throughout the study area is not time-
limited.

– A2. During a disaster, each emergency facility has the
same service capacity and the same number of ambu-
lances.

– A3. During a disaster, the closer the EMS is to the source
of the disaster, the higher the probability is that the fa-
cility will be unable to respond.

– A4. During a disaster, the closer the EMS is to the source
of the disaster, the greater the requirements placed upon
it from any demand point.

2.3 Mathematical model

In accordance with the aforementioned description and as-
sumptions, a multi-coverage optimal location model is de-
veloped. In the disaster scenario used for the model, it is as-
sumed that each emergency facility has the same number of
ambulances and quality of service, and we must maximize
the number of people it can serve within the specified time.
In order to simplify the model and optimize the algorithm,
we use the 0–1 integer programming method.

The model index sets are as follows:

– I is set of demand points indexed by i ∈ I =

{1, . . . , i, . . . ,m}.

– J is the set of potential emergency medical facilities in-
dexed by j ∈ J = {1, . . . , i, . . . , n}.

– tij is the time needed for an ambulance to travel from
emergency medical facilities j to demand point i.

– X is the number of demand points that can be covered
by the service area of the emergency facilities within a
specified time.

– T is the limit of the emergency response time.
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– F is number of EMS facilities that need to be built.

– Qi is the coverage level of demand point i, meaning
that point i should be covered by emergency facilities at
least Qi times within a specified time.

– wi is the number of people represented by demand
point i.

– mi is the disaster risk level of demand point i.

– pj is the resistance level to the disaster of potential
point j .

– xi is binary value, which is equal to 1 if demand point i
is covered; otherwise, it is 0.

– yj is binary value, which is equal to 1 if an emergency
medical facility is available; otherwise, it is 0.

– zij is binary value, which equal to 1 if demand point i
is covered by an eligible facility j ; otherwise, it is 0.

The overall objective of the model is to rescue the maxi-
mum number of people in a specified time (Question Q3), as
shown by the following equation:

max(z)=
m∑
i=1

n∑
j=1

(
miwizijpj

)
. (1)

To keep construction costs under control, the number of
emergency facilities should be limited. Emergency facilities
cannot be built in areas at risk of inundation, and the coverage
rate should be ensured within a specified time. Therefore, the
following constraints are added to the multi-objective func-
tion:

n∑
j=1

yj = F(∀j ∈ J ;0< F < J). (2)

Equation (2) indicates that F emergency facilities should be
selected from the potential facilities for emergency services:

n∑
i=1

zij
(
1/pj

)
≥ xiQi

(
pj 6= 0;∀i ∈ I ;∀j ∈ J

)
. (3)

Equation (3) ensures that the multiple coverage requirements
of the demand points must be met under different disaster
scenarios and the resistance level pj to a disaster of potential
point j cannot be 0:

tij ≤ T (∀i ∈ I ;∀j ∈ J ). (4)

Equation (4) ensures that the emergency response time of
each ambulance cannot exceed T minutes:

xi ≥X(∀i ∈ I ). (5)

Equation (5) guarantees that X demand points will be cov-
ered within at least T minutes:

zij ≤ yj (∀i ∈ I ;∀j ∈ J ). (6)

Equation (6) means that the service point can be serviced
only when this facility is selected:

zij ∈ {0,1},

xi ∈ {0,1}, (7)
yj ∈ {0,1}.

Equation (7) defines the domains of the decision variables.

2.4 Coverage level analysis

The model design indicates that the proposed model is based
on a goal programming algorithm to optimize the location of
the EMS facilities based on the existing data and actual sit-
uation, the coverage level Qi of each demand point and the
disaster risk level of the demand points (mi) and potential fa-
cilities (pj ). In this section, we propose a new method to es-
timate the coverage level that depends on the demand level of
the demand point i. Under normal conditions, the demand for
EMS in one region is mainly related to population attributes
such as age distribution and population densities, and areas
of high population densities have a high probability of med-
ical emergencies. The surrounding conditions also affect de-
mand, for example, traffic conditions and the presence of reg-
ular medical services (such as hospitals). Therefore, in this
study, we analyze the demand level based on these related
factors (labeled as evaluation indicators (A)) and evaluate the
probability of the demand point calling for help within a pre-
defined time. We then calculate the demand level of every
point that is affected by these factors considering the results
in terms of the coverage level, i.e., how many times point i
should be covered by the service area of the emergency fa-
cilities. Let A(A= {A1, A2, . . . ,An) be the set of indicators
that may affect the coverage level. In order to eliminate the
influence of dimension and magnitude and improve the ac-
curacy of the model, the range normalization method is used
to convert the original data into the range [0, 1]:

Ani =
Ani −min(An)

max(An)−min(An)
, (8)

where Ani represents the normalized index of the indicator
set A.

These indicators determine the coverage level of demand,
and they have a certain weight:

Qi = INT
(
αA1i +βA2i + ·· ·+ εAni + 1

)
, (9)

where αβ· · ·ε represent the weights of thee different indica-
tors, i.e., their relative contributions to the estimated demand.
The coverage level Qi is then determined by increasing the
integers; the results represent the number of times this point
needs to be covered by the emergency facilities.
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2.5 Disaster risk level analysis

Events such as floods, earthquakes, and mudslides can ad-
versely affect surrounding buildings and traffic and have seri-
ous impacts on EMS. Not only is there is a high probability of
casualties in the disaster source area, which creates high de-
mand for EMS, but the disasters may cause road damage and
traffic congestion, making rescue more difficult than usual
and delaying the emergency response. In order to achieve the
model goal, we analyze the disaster risk level of the demand
points and potential emergency points and classify the disas-
ter level according to the distance of the emergency services
from the source of the disaster. For a disaster risk level mi
of demand point i, the closer the point is to the location of
the disaster, the higher the risk level and the probability of
emergency calls for rescue are. For the disaster risk level of
the potential facility j , the closer the facility is to the dis-
aster source, the more serious the impact on the facility is,
making its location unsuitable for an emergency facility. We
express this indicator of the alternative point as the disaster
resistance capacity level pj ; therefore, the disaster resistance
of the potential facilities increases with their distance from
the disaster source.

3 Case study

For the case study, we choose Minhang district, Shanghai,
China, as the study area and apply the proposed location
model to the optimization of the EMS station distribution
during the fluvial flooding hazards of Huangpu River based
on the data of the Shanghai Emergency Center. The logi-
gram related of the methodology is shown in Fig. 2.

3.1 Study area

Minhang district is located in Shanghai in China, covers an
area of approximately 372.56 km2, and is located near the
Huangpu River. There are nine towns and 514 communi-
ties with about 253.4 million residents in the district. The
Huangpu River runs through the entire area, and its river net-
work consists of more than 200 rivers, making the study area
a high-risk area for fluvial flooding. In recent years, due to
sea level rise and urban land subsidence, the risk of storm
surges and floods in the area surrounding to Huangpu River
has increased (Yin et al., 2013a). Part of the Minhang dis-
trict is in the center of Shanghai and has a complex road net-
work and dense population; long-term human activities have
caused the natural river flow to decrease and the impervious
surface areas in the urban areas to increase, making the lo-
cation highly vulnerable to pluvial floods and fluvial floods.
In addition to causing casualties and damaging emergency
facilities, flood inundation causes damage to buildings and
roads, results in traffic congestion, and complicates emer-
gency rescue by delaying the emergency response. Flooding
causes additional disruption to emergency responders in the

city because the water may spread quickly and cover large
areas (Green et al., 2017). There are currently 12 emergency
stations in different blocks of this district, and most stations
are located downtown in the densely populated areas (Fig. 3).
Statistical data of the 2017 Shanghai Emergency Center indi-
cate that the number of EMS calls in 2017 exceeded 40 000
and the average emergency response time was about 15 min.
When large-scale flooding occurs, the emergency response
efficiency is greatly affected due to the inundation of the road
network. Therefore, we considered a fluvial flood to be a dis-
aster scenario for applying the EMS location model.

3.2 Flood impact analysis

In order to assess the inundation area and depth following
fluvial flooding disasters in the study area, we used a 1-D–2-
D coupled flood inundation model named FloodMap (Yu and
Lane, 2006a, b) to simulate the inundation scenarios of flu-
vial flooding in various return periods; this model combines
the 1-D solution of the Saint-Venant equations of river flow
with a 2-D flood inundation model based on raster data to
solve the inertial form of the 2-D shallow water equations.
The model is tightly coupled by considering the mass and
momentum exchange between the river flow and floodplain
inundation, and it is used to simulate the flood process and
extract flood potential maps. FloodMap has been applied in
several different environments and is the mainstream numer-
ical simulation model used for flood scenarios (Yin et al.,
2013b, 2015). We used the FloodMap model to simulate the
inundation area and depth following fluvial flooding for var-
ious return periods (100-year and 1000-year periods) in the
Huangpu River basin in the 2010s, 2030s, and 2050s (Fig. 4).
The research data sources include the Shanghai 2013 Trans-
portation (Gaode) navigation GIS dataset, Shanghai public
service facility data, a Shanghai 50 m resolution digital ele-
vation model (DEM), and basic GIS data.

After obtaining the flood scenario simulation results, we
used various (GIS) tools (e.g., the Spatial Analysis function
in combination with the Network Analysis function) to as-
sess the impacts of flooding on the EMS response of the ex-
isting emergency stations. We used the Shanghai Gaode GIS
road network data and the 2017 EMS calls for help data in
the Minhang district obtained from the Shanghai Emergency
Center. We used five levels for the road speed limit based on
the People’s Republic of China Technical Standard of High-
way Engineering (JTG B01-2003) (China Construction Stan-
dard Highway Committee, 2004). Our assessment includes a
network-based spatial analysis method using the road net-
work data to derive areas that can be reached from an EMS
station within a certain timeframe. This method is widely
used in route planning (e.g., via Google Maps navigation)
and considers speed limits, road hierarchy, one-way traffic,
and other restrictions in the road networks; this method is
used by network analysis function in the ArcGIS 10.2 soft-
ware (New Service Area). Given that the response time is
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Figure 2. Logi-gram of the multi-coverage optimal location model.

Figure 3. Location of the study area.

the usual standard by which the efficiency of emergency res-
cue is assessed, we divided the service area by using the
ambulance travel time. In terms of the response time limit
for ambulances, 8 min is usually regarded as the standard for
a medical emergency (Pons and Markovchick, 2002). How-
ever, the EMS calls and rescue data from the Minhang district
in Shanghai in 2017 indicated that the average medical emer-
gency response time was about 15 min, although the goal is

to reduce this to 12 min by 2020. We have therefore used re-
sponse times of 8, 12, and 15 min to divide the EMS service
area (Yin et al., 2019). In terms of emergency management,
when fluvial flood disasters occur, roads near rivers become
inundated, leading to traffic congestion and road closures,
which affect ambulance response times. The failure part of
the transport infrastructure would have the most significant
effects on access to specific locations and the EMS system
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Figure 4. Emergency station service areas in the Minhang district under different flood scenario simulations.

performance (Albano et al., 2014). Studies have shown that
when road inundation reaches a depth of 30 cm, the roads
become impassable to vehicles (Yin et al., 2016; Green et
al., 2017). We have, therefore, used an inundation depth of
30 cm as the road closure restriction for vehicles; we used
the same depth to define the area that cannot be accessed by
vehicles (the “barrier area”) in our GIS service area analy-
sis. We used FloodMap to simulate flood scenarios in 2010,
2030, and 2050 for two return periods (100-year and 1000-
year periods). We then used the ArcGIS 10.2 network anal-
ysis toolbar to simulate the emergency facility service areas
for the different scenarios (Fig. 4).

Figure 4 shows that during a 100-year flood, one emer-
gency station (Wujing Station) will lose capacity due to in-
undation, whereas a 1000-year flood will affect two stations
(Wujing Station and Jiangchuan Station), both of which are
located near the middle and lower drainage basin of the
Huangpu River and serve a large population. If these two sta-
tions are incapacitated, it will greatly affect the efficiency of
medical emergency rescue in the surrounding areas. Figure 5

shows the impact on the area serviced by each station for the
different flood scenarios. The y axis is the ratio of the ser-
vice area before and after the disaster: the lower the ratio, the
greater the decrease in the service area due to fluvial flood-
ing. About half of the stations are affected by the disaster, and
their service areas have decreased by more than 10 %. The
starting point for our simulations is the distribution of the ex-
isting Minhang district emergency stations. We find that the
existing EMS distribution is inadequate for any of the flood
scenarios used in our model. We, therefore, seek to optimize
the location of the emergency stations in conjunction with the
flood scenarios to ensure that the emergency service facilities
can handle the disasters.

3.3 Model parameter calculation

We calculated the two major model parameters (coverage
level and disaster risk level) as proposed in Sect. 2 based
on the flooding scenario results described in Sect. 3.2 and
used actual data for population, EMS calls for help, etc. We
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Figure 5. Ratio of the service area of emergency stations before and after the disaster under different flood scenarios.

first determined the demand points and number of potential
emergency stations by dividing the study area into units of
representative blocks or grids. We used data on the location
of the communities in the Minhang district to determine the
smallest block unit suitable for modeling demand (each com-
munity represents a demand unit). We used the ArcGIS 10.2
software Calculate Geometry function to calculate the geo-
metric center of each community demand unit as a model
demand point. To determine the location of potential EMS
stations, we covered the entire study area. We divided the
area into grids of a certain length and assumed that every
grid center point was a potential emergency station. Consid-
ering the actual conditions in the research area, we divided
the area into a grid with a cell size of 2 km× 2 km using the
ArcGIS 10.2 fishnet analysis tool (create fishnet). In addition,
we added the original 12 emergency stations in the Minhang
district to these potential stations for comparison. There were
514 demand points and 106 potential stations in the study
area (Fig. 6).

3.3.1 Coverage level calculation

The coverage level Qi of the demand points (Question Q1)
depends on the properties of each point. For example, the
larger the population, the more EMS stations are required,
and these should be located nearby. By considering the ex-
isting data and the general conditions in the study area, we
regarded the population density and the historical EMS calls

for help at each demand point as the influencing factors A1
and A2, respectively, of the demand coverage level (using
Eq. 9) and used the same weights for the two factors as for
a special case (α = β = 0.5× 10). The resulting Qi is the
coverage level, i.e., the number of times that each demand
point i should be covered by the emergency stations in the
service area within a specified time. The optimization objec-
tives are to prevent delays in the emergency response caused
by busy emergency stations during a disaster, and we con-
strained these objectives usingQi . The results of the demand
level calculation are shown in Table 1.

3.3.2 Disaster risk level

The results of the disaster-scenario analysis indicate that
some existing emergency stations are themselves highly vul-
nerable to fluvial flooding, which would delay or even pre-
vent their EMS response. At this stage, we must assess the
disaster risk at all points before optimizing the locations
of the emergency stations. We considered both the disaster
risk level of the demand points and potential stations (Ques-
tion Q2); a high risk level not only means that this location is
unsuitable for the location of EMS but also indicates a high
need for EMS.

We used the disaster risk analysis method proposed in
Sect. 2.5. For the demand point risk level mi , the disaster
risk level assessment of the potential stations and the de-
mand points are classified by inundation depth. Point i in
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Figure 6. Demand points and locations of potential stations.

the inundation area (depth of more than 30 cm) is regarded
as completely inundated at the highest flooding risk level;
therefore, we use the area with the inundation depth greater
than 30 cm as the center and create three 1 km wide buffer
zones (mi ∈ {1, 2, 3}). The closer a point is to the inundation
center, the higher the risk level of the demand points (Fig. 7).
In contrast, the risk level of the potential stations pj can be
regarded as the resistance capacity to a disaster; it increases
with the distance to the inundated area. Therefore, we use
the center of the inundation area with a depth of greater than
30 cm and divide the disaster resistance level into four 1 km
wide buffer zones (pj ∈ {0, 1, 2, 3}). Hence pj = 0 means
that the potential station j is completely inundated and can-
not be used as an emergency station.

3.4 Results

Here we present the results of the proposed multi-coverage
optimal location model for the assignment of the Minhang
district emergency stations during fluvial flooding and dis-
cuss the performance of the optimization of the EMS ser-
vices and coverage level. In order to test our model, we run
this model based on the worst-case scenario (1000-year flood
in the 2050s). We have assumed that vehicles cannot travel
through areas with inundation depths greater than 30 cm. We
utilized the origin–destination (OD) matrix in the Network

Figure 7. Risk level for demand points and potential stations.

Analysis function of ArcGIS to calculate the ambulance driv-
ing time tij from each potential station j to each demand
point i during the disaster scenario. The model also included
the parameters for the construction of 12 stations (F = 12)
to ensure that their service area could cover at least 95 % of
the demand points within 8 min (X ≥ 514× 0.95, tij ≤ 8).
In simple terms, the objective of this model was to determine
the locations of emergency stations to rescue the largest num-
ber of people in 8 min. We used the demand coverage level
parameters and disaster risk level parameters obtained from
the above-mentioned analysis as inputs for the model and
used Lingo10.0 software to solve the model. The computa-
tional results are given in Fig. 8. The central urban area of the
Minhang district is less affected by flooding than other areas;
therefore, the location of the EMS stations did not change
significantly. However, in the region near the Huangpu River,
the optimized emergency stations are located farther away
from the inundation area than the current stations, indicating
that the station at the optimized location will be less liable
to flooding and more likely to remain operational than the
current stations.

3.4.1 Service capacity comparison

In terms of emergency management, a service area is an in-
tuitive measure for determining the service quality of emer-
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Table 1. Demand point coverage level (sub-sample of the demand point data).

Point Area Population EMS Population EMS calls Coverage
ID (km2) calls density (A1) density (A2) level

(Qi )

1 0.1624119 5225 74 32 171.28 455.6315 4
2 0.06345485 3217 44 50 697.46 693.4064 6
3 0.09560105 3137 59 32 813.45 617.148 4
4 0.2068276 5955 89 28 792.10 430.3101 4
5 0.2035748 6451 150 31 688.60 736.8299 5
6 0.1510978 4728 173 31 290.99 1144.95 6
7 1.463531 11 332 273 7742.92 186.5352 2
8 0.6317168 3317 76 5250.77 120.3071 1
9 3.198358 8736 27 2731.40 8.441831 1
10 0.1303969 3970 61 30 445.52 467.8027 4
11 0.1299455 5082 57 39 108.70 438.6454 4
12 0.3076447 4113 123 13 369.32 399.8118 2
13 0.254323 3115 71 12 248.21 279.1726 2
14 0.08798262 4396 51 49 964.41 579.6599 5
15 0.1688578 4294 37 25 429.68 219.1193 3
16 0.1297367 3815 69 29 405.72 531.8465 4
17 2.101426 2801 113 1332.90 53.773 1
18 3.886865 6481 90 1667.41 23.15491 1
19 0.2178247 4066 58 18 666.38 266.2691 2
20 0.3022524 5911 114 19 556.50 377.1681686 3

Max 10 978 496.3425 25 419 608 76 608.25 1870.493324 8
Min 20 271.96894 86 0 25.7722 0 1

Figure 8. Computational results of the optimal location model.

gency service facilities and usually reflects accessibility, i.e.,
the larger the service area, the larger the number of people
who can be served by this station. In general, service areas
and population are directly related to the transport infras-
tructure conditions around the emergency facilities, includ-
ing road speed restrictions and road network density. During
flooding, the transport infrastructure near the flooded area
will be affected, which will change the travel time of the
emergency vehicles, thus reducing the area of emergency ser-
vice and accessibility of rescue. Therefore, in this context,
we used the service area and population as parameters to
evaluate the optimization performance of the model (Ques-
tion Q4). Using the ArcGIS 10.2 Service Area Analysis tool,
we divided the simulated emergency station service area into
three response zones (8, 12, and 15 min journeys) under dif-
ferent scenarios; we then used the Spatial Join function to
calculate the number of people in the service area. The to-
tal service area of the emergency stations for the different
response times was calculated, and the comparisons of the
service capacity for the current stations and optimal stations
are shown in Figs. 9 and 10 using the worst-case flooding
scenario (1000-year fluvial flood of the Huangpu River in
the 2050s) and the no-flooding scenario.

The percent coverage is expressed as a percentage of the
total area and the total population; the results suggest that
the optimized locations of the emergency stations obtained
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Figure 9. Performance comparison of service areas in different scenarios.

Figure 10. Service capacity comparison.
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Figure 11. Comparisons of the average coverage value.

Figure 12. Comparisons of the coverage level.

by the model provided improvements in the service capacity
over that of the original stations in both the no-flooding and
extreme flooding scenario based on the 8 min emergency re-
sponse time. In the no-flooding scenario, the coverage of the
service area increased by about 5.5 %, and for the worst-case
flooding scenario, the increase was 8.4 %. (Fig. 10); the num-
ber of people with access to emergency services increased by
almost 250 000 (10 % increase). These results indicate that
the optimization model increased the service capacity for al-
most all response times and that the performance is best for
the 8 min response time.

3.4.2 Coverage level performance

A combination of limited vehicle resources, vulnerable trans-
port infrastructure, and high requirements of the demand
points during a disaster inevitably place emergency services
under great pressure. If one demand point is covered by
only one emergency station, the limited number of ambu-
lances would soon affect the provision of services for a large
number of demand points, thereby causing delays in rescue.
Therefore, a region with high demand should be covered by
multiple emergency service areas that can operate simulta-
neously, especially for high-need demand points. The pro-
posed model focuses on multiple coverage levels of demand
points, and we used the real average coverage value for each
demand point in a specific time as an important indicator to

validate our model results (Question Q4). We combined the
service areas of all emergency stations and used the Spatial
Join tool in ArcGIS 10.2 to calculate how many times every
demand point would be covered in 8, 12, and 15 min during
the no-flooding and the worst-case flooding scenarios. We
then compared the average values (Fig. 11).

Figure 11 shows that the average coverage value improved
after optimization in both scenarios. Specifically, the average
coverage value for the no-flooding scenario is slightly higher
(about 10 %). The improvement in the average coverage
value for the no-flooding scenario was greatest for the 12 min
response time, i.e., an increase of 6.8 %. For the worst-case
flooding scenario (1000-year fluvial flood of the Huangpu
River in the 2050s), the improvements were more significant:
the coverage of the 15 min response time increased by more
than 1 (18.4 %), indicating that, on the average, each demand
point can be served by one additional EMS stations within
15 min. These results indicate that using model optimiza-
tion for locating emergency stations greatly improved the
response time of emergency services at the demand points,
even in an extreme flood disaster scenario, thereby provid-
ing strong disaster resistance. We also compared the percent-
age of coverage in 8, 12, and 15 min during the no-flooding
and the worst-case flooding scenarios (Fig. 12). The percent
coverage is expressed as a percentage of the demand points
in different coverage levels. Figure 12 shows that the cover-
age level of interval 5–8 is significantly greater for the 8 min
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response time and 12 min response time, while that of in-
terval 0–3 was significantly decreased; these results indicate
that the model can improve the demand points which have
a low coverage level for a short response time. In addition,
we also found that the optimized coverage level is almost the
same for the 8 min response during the no-flooding or the
worst-case flooding scenarios, indicating that extreme fluvial
flooding has little impact on EMS emergency response.

From these results, we can see that stations whose loca-
tions are determined using the proposed method will have
a greater capacity to meet the requirements of the demand
points. This reduces the occurrence of “failures” and “in-
sufficiency” of emergency stations during disasters, thereby
shortening emergency response times and reducing the loss
of life and property.

4 Conclusions

This study focused on the optimization of the EMS station lo-
cations to ensure efficient emergency medical response in flu-
vial flood disaster scenarios and the prevention of accidents
due to emergency response delays and failure of stations. Af-
ter analyzing the existing location models, we discussed the
reasons for using multi-coverage plans to improve disaster
emergency resistance instead of traditional location models.
In addition, since there are various disaster scenarios, we also
considered the different damage levels in various areas us-
ing disaster-scenario simulations. The proposed model is an
objective programming model with the goal of serving the
largest number of people in a specified time during a disas-
ter. For the case study, we investigated the Minhang district in
Shanghai, China, and conducted computational experiments
based on real-world data from the Shanghai Emergency Cen-
ter. We used the service area and the average coverage level
as parameters to evaluate the model performance. The model
results showed that the optimized EMS locations had a wider
service range for 8 min response time and a larger number of
people were served; the coverage level was also improved.
The coverage level of some of the existing stations changed
greatly after the disaster, whereas the optimized location re-
sults showed that the service level before and after the disas-
ter was almost the same. Both parameters indicated that the
proposed multi-coverage location optimization model is well
suited to model the emergency response to flood disasters
and to conduct site selection of urban emergency facilities.

Some aspects of the model could be improved to obtain
a more robust solution. First, in the case study, we did not
conduct a quantitative assessment of the effect of the disaster
risk level on the emergency response, but we evaluated the
disaster risk level by using the buffer distance to the source
of the disaster, which is a subjective approach. Second, since
this was a theoretical analysis, our model did not consider
whether the terrain or other basic conditions were suitable for
the EMS facilities. In future studies, we will consider disaster

risk factors such as the vulnerability of buildings to evaluate
the level of disaster risk quantitatively, and we will take into
account the terrain and construction cost of the potential lo-
cations.

Lastly, the location of urban emergency service facilities
has always been an important focus in urban planning. Lo-
cation selection should consider a variety of factors, and the
ability to respond to disasters should also be considered. In
this study, we divided the area into grids with a cell size of
2 km× 2 km and assumed that every grid center point was a
potential emergency station; the grid division will affect the
efficiency of the model and the accuracy of the results. The
finer the scale, the higher the accuracy but the greater the
computational complexity. Therefore, in future research, we
will consider a multi-scale division that takes into account
the population density.

In this study, we used a fluvial flooding disaster as an ex-
ample to analyze the impact of disasters and to evaluate the
model. However, the risks faced by cities are not only fluvial
floods but also other major events such as earthquakes, mud-
slides, and pluvial floods. In addition, the evacuation plan of
the population exposed to these hazards should be considered
(Alaeddine et al., 2015). Future research should comprehen-
sively consider a variety of these hazards, conduct risk as-
sessments of the study area quantitatively, and select the lo-
cation of urban emergency facilities according to different
geographical conditions to improve the efficiency of emer-
gency response.
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