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Abstract. Extreme fires have substantial adverse effects on
society and natural ecosystems. Such events can be associ-
ated with the intense coupling of fire behaviour with the at-
mosphere, resulting in extreme fire characteristics such as py-
rocumulonimbus cloud (pyroCb) development. Concern that
anthropogenic climate change is increasing the occurrence of
pyroCbs globally is driving more focused research into these
meteorological phenomena. Using 6 min scans from a nearby
weather radar, we describe the development of a pyroCb
during the afternoon of 4 January 2013 above the Forcett–
Dunalley fire in south-eastern Tasmania. We relate storm de-
velopment to (1) near-surface weather using the McArthur
forest fire danger index (FFDI) and the C-Haines index, the
latter of which is a measure of the vertical atmospheric sta-
bility and dryness, both derived from gridded weather reanal-
ysis for Tasmania (BARRA-TA); and (2) a chronosequence
of fire severity derived from remote sensing. We show that
the pyroCb rapidly developed over a 24 min period on the
afternoon of 4 January, with the cloud top reaching a height
of 15 km. The pyroCb was associated with a highly unsta-
ble lower atmosphere (C-Haines value of 10–11) and severe–
marginally extreme (FFDI 60–75) near-surface fire weather,
and it formed over an area of forest that was severely burned
(total crown defoliation). We use spatial patterns of elevated
fire weather in Tasmania and fire weather during major runs
of large wildfires in Tasmania for the period from 2007 to
2016 to geographically and historically contextualise this py-
roCb event. Although the Forcett–Dunalley fire is the only
known record of a pyroCb in Tasmania, our results show that
eastern and south-eastern Tasmania are prone to the conjunc-
tion of high FFDI and C-Haines values that have been asso-

ciated with pyroCb development. Our findings have implica-
tions for fire weather forecasting and wildfire management,
and they highlight the vulnerability of south-east Tasmania
to extreme fire events.

1 Introduction

Anthropogenic climate change is increasing the occurrence
of dangerous fire weather conditions globally (Jolly et al.,
2015; Abatzoglou et al., 2019), leading to high-intensity
wildland fires. For instance, climate projections suggest a
pronounced increase in the risk of extreme fire events in Aus-
tralia, with a 15 %–70 % increase in the number of days con-
ducive to extreme wildfire by 2050 in most locations (Hen-
nessy et al., 2005), although the models show inconsisten-
cies in the trajectory and variability of future fire weather,
especially in eastern and south-eastern Australia (Clarke et
al., 2011; Clarke and Evans, 2019). While fire weather is
most often understood as a surface phenomenon (for ex-
ample, through surface temperature, wind speed, and rel-
ative humidity), atmospheric processes such as instability,
wind shear, and mesoscale conditions can also drive ex-
treme fire development. Definitions of extreme wildfires vary
(e.g. Sharples et al., 2016), but the associated behaviour
includes rapid spread ( > 50 m min−1), high fireline inten-
sity (> 10000 kW m−1), long distance spotting, erratic be-
haviour, and impossibility of control, often with the asso-
ciated development of violent pyroconvection (Tedim et al.,
2018). In some cases, violent pyroconvection can manifest as
pyrocumulonimbus clouds (pyroCb), the tops of which can
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reach the upper troposphere and lower stratosphere, and can
inject aerosols into altitudes where they can be transported
for thousands of kilometres and, hence, affect global climate
(Trentmann et al., 2006; Fromm et al., 2010; Peterson et al.,
2018). Violent convection is defined here as strong, highly
turbulent and deep convection.

PyroCbs lead to highly erratic fire behaviour due to strong
updraughts and downdraughts, the possibility of associated
whirlwinds and tornadoes, and rapid fire growth due to
heightened ember generation, long-range spotting, and cloud
to ground lightning strikes (Cunningham and Reeder, 2009;
Fromm et al., 2010; Tory and Thurston, 2015; Lareau and
Clements, 2016; Dowdy and Pepler, 2018). Specifically,
downdraughts can cause erratic fire spread, driven by sudden
wind gusts impacting the surface in multiple directions, en-
dangering firefighters near the pyroCb (Johnson et al., 2014;
Potter and Hernandez, 2017) and frustrating the accurate pre-
diction of fire behaviour. Local surface processes can amplify
fire behaviour; for instance, eddies in steep lee-facing slopes
can cause lateral fire spread and mass spotting in down-
wind areas, which is a process known as fire channelling or
vorticity-driven lateral spread (VLS; Sharples et al., 2012).

PyroCbs are comparatively poorly understood meteoro-
logical phenomena, as they have rarely been observed or
studied world-wide until recently (Fromm et al., 2010). In
Australia, pyroCbs have been confirmed during at least 85
fire events (Rick McRae, personal communication, 2020),
with more than one event occurring over a single fire in some
instances. The most significant events have produced plumes
that have reached the upper troposphere–lower stratosphere
(UTLS) region. Insights into pyroCb development have re-
lied on weather radar (McRae, 2010; Fromm et al., 2012;
Johnson et al., 2014; Peace et al., 2017; McCarthy et al.,
2019; Terrasson et al., 2019) that provides high temporal
resolution imagery of the pyroconvection, although, impor-
tantly, it does not accurately detect the exact extent of en-
trained gaseous and fine particulate emissions because it is
sensitive to larger particles such as rain and ice crystals;
therefore, weather radar can fortuitously detect pyrometeors
such as ash, scorched debris, and embers (McCarthy et al.,
2019).

An important correlate of pyroCb formation is atmo-
spheric instability and moisture (Luderer et al., 2006; Rosen-
feld et al., 2007; Fromm et al., 2010; Lareau and Clements,
2016; Di Virgilio et al., 2019). A fire weather index com-
monly used in Australia to monitor meteorological condi-
tions in the lower atmosphere is the continuous Haines in-
dex (C-Haines; Mills and McCaw, 2010). This index is a
modification of the Haines index (Haines, 1988), which is
routinely used in the US, but has been adapted to suit the
frequent hot and dry summer conditions in Australia. The
C-Haines index provides a measure of the potential for er-
ratic fire behaviour, based on the air temperature lapse and
moisture content between two lower tropospheric levels, and
typically ranges from 0 to 13, although values above 13 are

possible (Yeo et al., 2015; Di Virgilio et al., 2019). High
C-Haines values imply drier and more unstable atmospheric
conditions, which favour the lifting of the heated air higher
into the atmosphere. In particular, a large air temperature
lapse in the atmosphere favours the maintenance of strong
convection and increases the likelihood of pyroCb develop-
ment. The role of tropospheric temperature and moisture in
pyroCb dynamics is exemplified in the inverted-V thermody-
namic profile (Peterson et al., 2017). The profile shows a dry
and warm near-surface environment in which the tempera-
ture decreases adiabatically with altitude to the top of the
mixed layer (∼ 3 km), where relative humidity is higher. Al-
titudes immediately above the mixed layer are usually drier,
and this dry air can mix to the surface in strong convective
downdraughts, increasing surface fire behaviour (McRae et
al., 2015). Further, higher mid-troposphere moisture can in-
teract with weaker wind shear and a high temperature lapse
rate to produce strong convective updraughts (Peterson et al.,
2017).

Here, we describe the evolution of a pyroCb event in
south-eastern Tasmania that developed on 4 January 2013
during the Forcett–Dunalley fire (Ndalila et al., 2018). We
use the Mt Koonya Doppler weather radar to document
the temporal evolution of the pyroCb as well as to relate
storm development to near-surface fire behaviour using the
McArthur forest fire danger index (FFDI) and to vertical at-
mospheric stability and dryness using the C-Haines index,
both of which are derived from gridded weather reanaly-
sis for Tasmania (BARRA-TA). To understand how fire be-
haviour may have influenced the storm, we also associated
the development of the pyroCb to a map of the temporal
progression of fire severity derived from remote sensing and
field observations (Ndalila et al., 2018) and terrain analysis
based on a digital terrain model. Finally, we contextualise
the pyroCb event by determining (i) the FFDI and C-Haines
values associated with large wildfires in Tasmania within the
period covered by the available BARRA meteorological re-
analysis (2007–2016) and (ii) the geographic patterns of days
with concurrent elevated C-Haines and FFDI values in Tas-
mania.

2 Methods

2.1 Study area

The Forcett–Dunalley fire occurred on the Forestier and Tas-
man peninsulas in the south-east of Tasmania (Fig. 1a), a
temperate island state to the south of Australia (Fig. 1a). This
region has a cool moist climate and an elevation reaching
600 m a.s.l. (above sea level; Fig. 1d). The fire was reported
at 14:00 LT (local time) on 3 January 2013, and it ignited
from a smouldering stump from an unextinguished campfire.
On 4 January, south-east Tasmania recorded dangerous fire
weather conditions, resulting in a large uncontrollable fire
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Figure 1. Location of the Forcett–Dunalley fireground in south-
eastern Tasmania: (a) annual rainfall (in millimetres) and elevation
(in metres) across Tasmania, and the location of major fires in the
2013 fire season, including Forcett–Dunalley (1); (b) photographs
of a pyrocumulonimbus cloud above Dunalley township, taken on
the afternoon (at around 15:55 LT) of 4 January 2013. (c) Domi-
nant vegetation on the Forestier and Tasman peninsulas based on
TASVEG 3.0, an integrated vegetation map of Tasmania. Eucalyp-
tus (Euc.) is the major vegetation type in the region. (d) Elevation
and mean annual rainfall (dotted lines) across the two peninsulas,
derived from WorldClim dataset (Hijmans et al., 2005). The loca-
tions of the Dunalley township and Mt Koonya weather radar are
indicated on the map.

that led to the development of a pyrocumulonimbus (Fig. 1b)
from around 15:24 LT and caused the near-complete destruc-
tion of Dunalley township (Fig. 1d). By the time of contain-
ment on 18 January, the fire had burnt 20 200 ha, mostly com-
prising native vegetation and rural lands (Fig. 1c). A detailed
description of the fire and the associated broader meteorolog-
ical and environmental conditions have been provided in pre-
vious reports/studies (Bureau of Meteorology, 2013; Fawcett
et al., 2014; Marsden-Smedley, 2014; Ndalila et al., 2018).

2.2 Meteorology of the fire

2.2.1 PyroCb development

We used Doppler weather radar to track the evolution of
the pyroCb during the period of erratic fire behaviour. As
most weather radars do not detect all components of a smoke
plume, especially particles smaller than 100 µm (Jones and
Christopher, 2010), we will refer to the signatures present in
the radar data as “the plume”, which will also encompass the
pyroCb cloud. Pyroconvective plumes typically contain some
precipitation (and in extreme cases, glaciation from pyroCb)
at high altitudes, as well as larger smoke particles (some of
which can be water-coated). In this study, we assume that
the highest radar returns (plume injection) during the period
of violent convection represent the top of the pyroCb. This
is justified, as McRae et al. (2015) also show that stronger
radar returns at the highest altitudes during deep pyroconvec-
tion events are mostly from hydrological features (ice crystal
and rain) rather than non-hydrological components (ash and
debris).

We examined radar data for the period from 3 to 18 Jan-
uary 2013 from the Mt Koonya C-band (5 cm wavelength)
weather radar (Fig. 1d) operated by the Australian Bureau of
Meteorology (Soderholm et al., 2019). The radar’s proximity
and uninterrupted view of the Forcett–Dunalley fireground
made it ideal for tracking the pyroCb. The radar is located
at a height of 515 m, 46 km east-south-east of Hobart on the
Tasman Peninsula, and its scan strategy contains 14 elevation
angles, scanning through 360◦ within each angle. The radar
is 24 km from Dunalley, where the lowest (0.5◦) elevation
scan height is about 750 m, whereas the highest scan (32◦)
is around an elevation of 25 km at a distance of 40 km from
the radar. The radar has a 1◦ beam width, a 250 m radial res-
olution, an effective range of 150 km, and primarily provides
6 min reflectivity and velocity scans of the plume/pyroCb. In
this study, a minimum reflectivity of 11 dBZ was used to de-
tect the plume boundary. The time zone used is Australian
eastern daylight time, which is referred to as local time (LT)
in this paper.

The 3-D radar scans from 12:30 to 23:00 LT on 4 January
were used to describe the pyroCb as they represent the pe-
riod of peak fire behaviour. In the later periods, smoke had
considerably reduced and was not visible on the radar. Radar
files were first processed by converting the raw polar coordi-
nates to Cartesian coordinates. We used the Integrated Data
Viewer (IDV; Unidata, 2018) and ArcGIS 10.3 (ESRI, 2015)
to detect and analyse radar returns in 2-D and 3-D displays,
where the 2-D plan view of the radar indicates the horizon-
tal extent of the dense plume, including embers, ash, and the
pyroCb. Within IDV, a vertical cross-section through the 3-D
plumes was used to estimate the maximum injection height
(cloud top) at each 6 min timestamp of the radar data. ArcGIS
software was used to measure the horizontal length and the
size (area and perimeter) of the 2-D view of the plume, based

https://doi.org/10.5194/nhess-20-1497-2020 Nat. Hazards Earth Syst. Sci., 20, 1497–1511, 2020



1500 M. N. Ndalila et al.: Evolution of a pyrocumulonimbus event associated with an extreme wildfire

on the lowest elevation angle of the radar. We compared
the temporal variation of plume/cloud development with the
time series of mapped fire severity and the progression of
fire weather (FFDI and C-Haines) to determine any congru-
ence between pyroCb dynamics and fire weather, area burnt,
and fire severity patterns during the period of erratic fire
behaviour. The chronosequence of fire severity was derived
from a previous study (Ndalila et al., 2018) from the inter-
section of a fire severity map with fire progression isochrones
within the fireground. Fire severity was based on the differ-
ential normalised burn ratio (dNBR; Key and Benson, 2006)
analysis of pre- and post-fire 30 m resolution Landsat 7 satel-
lite images. A detailed description of fire severity assess-
ments is provided by Ndalila et al. (2018).

2.2.2 C-Haines analysis

We obtained gridded weather reanalysis data from the Bu-
reau of Meteorology Atmospheric high-resolution Regional
Reanalysis for Australia (BARRA), downscaled for the Tas-
manian sub-domain (BARRA-TA) to a 1.5 km spatial resolu-
tion (Su et al., 2019). BARRA combines numerical weather
forecasts with observational data to produce realistic depic-
tions of surface meteorology and atmospheric conditions.
We extracted hourly air temperature and dewpoint temper-
ature at different air pressure levels (1000 hPa at the sur-
face to 150 hPa in the lower stratosphere) as well as the pre-
calculated hourly McArthur FFDI for the period of the fire
and the period of BARRA data available at the time of the
study (January 2007–October 2016). Extraction, conversion,
and general BARRA analysis was performed using R soft-
ware (version 3.4.0; R Core Team, 2017).

At each grid cell in Tasmania, the C-Haines index was
calculated from the hourly estimates of air temperature and
dewpoint temperature at relevant atmospheric levels (850 and
700 hPa) based on Eqs. (1)–(3). We preferred the BARRA
product over radiosonde data when calculating the C-Haines
index because of (1) a possible geographic drift of the
weather balloon as it rises through the atmosphere, result-
ing in inconsistencies in locations where data were recorded;
(2) availability of balloon data only twice a day at a sin-
gle location, which is unrepresentative of many regions; and
(3) the BARRA product combines other data sources such
as satellite observations to model air temperature and mois-
ture. Nevertheless, we validated our C-Haines values using
the radiosonde data for Hobart Airport, thereby establishing
a correlation of 0.74 between the two datasets. Our calculated
hourly C-Haines values as well as the extracted hourly FFDI
for Tasmania were then aggregated to maximum daily values.
Temporal maps of the daily C-Haines distribution were then
produced for the first 3 d of the fire, between 3 and 5 January.

CA= (T850− T700)/2− 2, and (1)

CB= (T850−DT850)/3− 1;

if (T850−DT850) > 30, then (T850−DT850)= 30;
if CB > 5, then CB= 5+ (CB− 5)/2; (2)
CH= CA+CB (3)

Here, CA is a temperature lapse term, T850 is the air temper-
ature at an atmospheric height of 850 hPa (or 1.3 km), T700
is the air temperature at a height of 700 hPa (around 3 km),
DT850 is the dewpoint temperature at a height of 850 hPa,
CB is a dewpoint depression term, and CH is the continuous
Haines index (or C-Haines).

2.2.3 Vorticity-driven lateral fire spread

We also determined whether the period of rapid cloud/plume
development coincided with local surface dynamics, which
likely enhanced fire behaviour. Specifically, the effect of
vorticity-driven lateral spread (VLS) on fire behaviour was
tested. VLS is an atypical fire spread arising from the inter-
action between strong winds and terrain which creates lee-
slope eddies that interact with the fire to cause lateral fire
propagation, an increase in fire intensity, and mass spotting
downwind of the lateral spread zone (Sharples et al., 2012).
VLS-prone areas were defined according to the criteria from
Sharples et al. (2012): lee-facing slopes steeper than 15◦

where the slopes are facing to approximately 40◦ of the direc-
tion that the wind is blowing towards. A wind direction layer
(mostly north-westerly) at 16:00 LT on 4 January (the period
around peak plume height) was extracted from the BARRA
dataset and resampled to correspond to the spatial resolution
of the digital elevation model (33 m) that was provided by
the Tasmanian Department of Primary Industries, Parks, Wa-
ter and Environment. Both layers were combined using the
aforementioned criteria, resulting in a binary map where ar-
eas fulfilling the VLS criteria were assigned a value of one
and all other areas were assigned zero.

2.3 Spatiotemporal context of fire weather in Tasmania

2.3.1 Weather conditions during large Tasmanian fires

We compared FFDI and C-Haines values during the Forcett–
Dunalley fire and values associated with other large Tas-
manian fires between 2007 and 2016 (the period of avail-
able BARRA data). A total of 77 fires, of varying ignition
sources, were identified in the Tasmania Fire Service fire
history database as being over 500 ha in size, and having a
known ignition date. Of the 77 fires, 18 did not have recorded
end dates, and these were operationally specified as being
4 weeks later, which was an arbitrary cut-off to capture the
most likely major growth (or “run”) of the fire that typically
occurs at or near the start of fires (e.g. the 2009 Victorian
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fires; Cruz et al., 2012). The assumption is that these runs
result in peak fire intensities that most likely drive strong
convections. We subsequently produced a scatterplot of the
highest daily FFDI for the duration of each of the fires and
the associated C-Haines value. These data were overlaid on
a density map of C-Haines and FFDI values for all cells (and
days) in Tasmania during the entire BARRA period to pro-
vide background weather conditions for Tasmania.

2.3.2 Elevated fire weather in Tasmania

To provide a geographic context for the Forcett–Dunalley
fire, the spatial patterns of days conducive to extreme fire
behaviour in Tasmania were mapped by determining counts
of days that exceeded combined C-Haines and FFDI thresh-
olds of 9 and 25 respectively, and then aggregating them
to fire season (October–March) and non-fire season (April–
September). These thresholds were defined to correspond
to an elevated fire weather day (95th percentile) based on
weather conditions at Hobart Airport, which represents the
broader air mass in south-eastern Tasmania. For example,
the FFDI threshold is close to the 95th percentile (FFDI 31)
observed during the 1998–2005 fire seasons (Marsden-
Smedley, 2014). We chose to use FFDI to describe near-
surface fire weather across the state, but we acknowledge that
for some fuel types (e.g. moorlands) that occur in Tasmania
(Marsden-Smedley and Catchpole, 1995), other indices such
as the grassland/moorland fire danger index may be more
suitable. It is worth noting that the maximum daily FFDI cal-
culated at the Hobart Airport station was always higher than
the daily gridded FFDI extracted from the BARRA product
(compare the maximum FFDI of 92 recorded at the station
with the FFDI of 68.7 from the BARRA model on 4 Jan-
uary).

3 Results

3.1 Fire weather during the fire

3.1.1 Surface fire weather

Dangerous fire weather conditions in south-east Tasmania
were observed from 3 to 4 January 2013. At 14:00 LT
on 3 January when the fire was reported, Hobart Airport
recorded 33 ◦C (the maximum temperature for 3 January),
a minimum relative humidity (RH) of 15 %, and strong
north-westerly winds that reached 37 km h−1 and gusted to
55 km h−1 (Fig. 2). The smoke plume was detectable by
weather radar between 15:18 and 19:00 LT. The weather con-
ditions deteriorated on 4 January, with extreme maximum
temperatures (reaching 40 ◦C), strong winds (35–46 km h−1,
gusts of 60–70 km h−1), and low RH (11 %) in the after-
noon. At 12:00 LT, the Forcett–Dunalley plume was again
detectable by weather radar (Figs. 2, 3a), when values of the
weather variables peaked and were maintained during the pe-

riod of violent pyroconvection between 15:24 and 16:30 LT
(Fig. 2). Winds were mostly north-westerly, with no notice-
able change in the wind direction during the pyroCb pe-
riod. However, a southerly change was observed at around
00:00 LT on 5 January, well after the Forcett–Dunalley py-
roCb had already dissipated.

3.1.2 Synoptic weather

On 3 January, a combination of (1) a high-pressure sys-
tem to the north-east of Tasmania and (2) a cold front
and pre-frontal trough approaching from the west directed
a freshening dry and hot northerly airstream over the is-
land – favourable conditions for elevated fire danger (Bu-
reau of Meteorology, 2013). By 08:00 LT on 4 January, the
high-pressure system had moved slowly eastward, while the
trough had progressed closer to western Tasmania (Fig. S1
in the Supplement). This period coincided with moderate
north-westerly winds in most locations in the state, except
for the south-east (general area surrounding Dunalley) which
recorded stronger winds and an elevated fire danger. The fire
danger steadily increased towards midday (the start of the
first fire progression isochrone in Fig. 3c); by 15:00 LT, the
leading edge of the trough was much closer to the west of
Tasmania. An increase in the pressure gradient brought about
gusty conditions and a catastrophic fire danger in some loca-
tions in south-east Tasmania, causing erratic fire behaviour
of the Forcett–Dunalley fire. During that time, the trough
crossed western Tasmania. By 17:00 LT, when the pyroCb
had likely dissipated (Fig. 3a), the pre-frontal trough was
crossing Tasmania and the fire danger subsequently reduced
due to decreasing temperatures and winds. The trough con-
tinued to move eastwards, and it crossed south-east Tasmania
after 23:00 LT, leading to a westerly to south-westerly wind
change by 00:00 LT on 5 January. The front passed over the
state in the early morning of 5 January and caused lightning
and limited showers across Tasmania. A detailed analysis of
the synoptic weather patterns driving this event are provided
in Bureau of Meteorology (2013).

3.1.3 PyroCb development in the atmosphere

On 4 January, the plume height from radar scans gradu-
ally increased from around 1 km a.s.l. at 13:00 LT to 8 km at
around 15:00 LT and then rapidly rose to the maximum in-
jection height of 15 km (lower stratosphere) between 15:24
and 15:48 LT (Figs. 3a, 4), representing the peak of pyrocon-
vection. During the period of violent pyroconvection, thun-
derstorms developed and moved in a south-easterly direc-
tion towards the Tasman Sea, causing two lightning strikes,
which were detected around 16:10 LT (Bureau of Meteorol-
ogy, 2013). Radar returns during the peak period (Fig. 4)
were likely due to glaciation within the pyroCb and precipi-
tation at high altitudes, which then evaporated before reach-
ing the surface due to intense heat, while the cooled air mass
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Figure 2. Time series of 30 min weather data obtained from 3 to 4 January 2013 at Hobart Airport. (a) Rainfall (mm), relative humidity
(RH; %), and air temperature (◦C). (b) Wind variables, including wind speed (km h−1), wind gust (km h−1), and wind direction (as cardinal
direction). The arrows point in the direction that the wind is blowing to. The vertical lines represent the time of the start of the fire and the
period of the pyroCb event. The periods of the radar detection of the plume for the 2 d are also shown on the graphs.

Figure 3. Plume dimensions, fire weather, and fire severity traces during the evolution of a pyroCb on the afternoon of 4 January. (a) The
6 min variation of plume dimensions during peak fire behaviour. The asterisk (∗) represents the period (16:42–17:06 LT) with missing weather
radar data. (b) The FFDI trace obtained from Hobart Airport weather station, and the C-Haines computed from the BARRA product during
the corresponding period of smoke plume growth. (c) The temporal pattern of fire severity, adapted from Ndalila et al. (2018). Black vertical
lines in the three graphs represent the period of violent pyroconvection.
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from evaporation descended towards the surface as convec-
tive outflows, generating gusty and erratic surface winds. The
cloud top then decreased to around 7 km at 16:42 LT, after
which the pyroCb likely dissipated and the plume subse-
quently stabilised at heights of 3 km (Fig. 3a). Atmospheric
instability and the pyroCb dynamics are confirmed by at-
mospheric soundings from BARRA for 15:00–16:00 LT on
4 January (Fig. S2) and a time series of the 850–500 hPa air
temperature lapse rate on 4 January (Fig. S3). The soundings
show the air temperature at the tropopause (∼ 12 km, below
the pyroCb height) to be −50 ◦C, supporting the observation
of the electrification of the pyroCb. Electrification/lightning
typically occurs at temperatures around or below −20 ◦C
(Williams, 1989). The 850–500 hPa lapse rate gives an in-
dication of the (in)stability of the lower half of the tropo-
sphere (1.3–5.5 km a.s.l.), with lapse rates of > 7.5 ◦C km−1

considered as very unstable lower atmosphere (Peterson et
al., 2014).

For the horizontal plume dimensions (length, area, and
perimeter), there was a lagged response to the effect of in-
tense fire activity that occurred at around 15:24 LT. While a
maximum in cloud height was observed at 15:48 LT, other
plume metrics peaked at around 17:13 LT (Fig. 3a). Plume
length is defined as the horizontal distance between the ori-
gin of the plume and its farthest extent.

The period of drastic increase in the height of the pyroCb
cloud was associated with elevated FFDI values of 60–75 (se-
vere, 50–74, to marginally extreme, 75, fire danger classes),
elevated gridded C-Haines values of 10–11.1 at Hobart Air-
port (Fig. 3b), a large area burnt (approximately 10 000 ha),
and the highest proportion of burning of the two highest fire
severity (total crown defoliation) categories in dry Eucalyp-
tus forests (Fig. 3c). The isochrone leading up to the peak in
fire behaviour accounted for 10 % of total area burnt across
all vegetation types within the entire fire perimeter, the peak
period contributed 46 %, and the last isochrone on 4 January
contributed 9 % of total area burnt (Fig. 3c). Evidence of the
effect of vorticity-driven lateral spread on the fire behaviour
was not strong. The analysis of the precursor terrain condi-
tions only revealed small patches of VLS-prone areas near
Dunalley township (Figs. 4, S4). However, we are not able to
rule out VLS occurrence on parts of the terrain that were not
resolved by the DEM and which may have played a part in
the evolution of the plume. Indeed, the lateral development
of the upwind edge of the plume in Fig. S4 suggests lat-
eral development of the fire, similar to that associated with
VLS in other fires (McRae et al., 2015). The majority of
the plume area (> 70 %) extended over the Tasman Sea in
a south-easterly direction from the location of the fire, under
the influence of above-surface winds (Fig. 4). The period of
the pyroCb in Fig. 4 is defined by very high radar returns,
with reflectivity values of 48–88 dBZ representing the most
intense parts of the pyroCb. This strong reflectivity is indica-
tive of high quantities of ash and larger-sized hydrometeors
such as ice crystals at higher elevations.

3.1.4 Spatiotemporal variation of C-Haines

During the development of the pyroCb, the maximum daily
FFDI and gridded C-Haines on 4 January at Hobart Airport
were consistently high (92 and 11.1 respectively). During
the following days, both of these indices markedly declined
(Fig. S5); indeed, for the entire month of January 2013, there
was a statistically significant moderate correlation (r = 0.5,
p < 0.05) between these fire weather indices, although the
FFDI lagged C-Haines by around a day. At a state-wide scale,
from 3 to 4 January, the whole of Tasmania displayed danger-
ous fire weather, particularly south-eastern Tasmania, which
recorded high C-Haines values (Fig. 5). Especially on the
Tasman Peninsula, C-Haines was mostly within the range of
10–12 for both days (peaking at 12–14), but it moderated
to 4–6 on 5 January after a south-westerly wind change at
around 00:00 LT as a result of a pre-frontal trough crossing
south-eastern Tasmania. A complete description of the over-
all meteorological conditions, including the aerological dia-
grams, can be found in the Supplement.

3.2 Contextualising the Forcett–Dunalley pyroCb

3.2.1 Fire weather in large Tasmanian fires

The Forcett–Dunalley fire had amongst the highest levels of
elevated fire weather (gridded FFDI and C-Haines of 68 and
11.5 respectively) of all of the 77 large (> 500 ha) Tasmanian
fires that occurred between 2007 and 2016 (Fig. 6). These
values represent the 99th percentile of daily FFDI and C-
Haines values for the grid cell in Dunalley that had the high-
est daily FFDI during the fire. Figure 6 also shows the fire
weather associated with all of these fires overlaid on the bi-
variate density distribution of the FFDI and C-Haines for all
days in the available record. The figure shows that despite be-
ing correlated, the probability of the concurrence of elevated
C-Haines and FFDI values across Tasmania is low. Further,
the scatterplot suggests that high FFDI values (> 25) do not
influence large fire occurrence as much as high C-Haines val-
ues (> 9), and that most large fire events (52 fires or 68 %)
occur within lower FFDI and C-Haines thresholds (15 and
7 respectively). Notably, the Forcett–Dunalley fire is an out-
lier and the only known fire to have produced a pyroCb in
Tasmania.

3.2.2 Spatiotemporal variability of elevated fire
weather

During the fire season (October–March), eastern Tasma-
nia and the Bass Strait islands (Flinders and King islands)
are prone to combined elevated C-Haines and FFDI val-
ues (Fig. 7), particularly so for south-east Tasmania. Out-
side the fire season, only south-eastern Tasmania is exposed
to the risk of elevated C-Haines and FFDI values. There is
no trend in elevated fire weather detectable in the existing
BARRA weather record across Tasmania (Fig. S6); however,
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Figure 4. Areas prone to vorticity-driven lateral spread (VLS; in red) overlaid with a 3-D rendering of the vertical cross-section of plumes
from the radar reflectivity for specific times during peak fire behaviour. Higher reflectivity values (dBZ > 48) in all maps represent the
most intense parts of the plume (and the pyroCb which occurred from around 15:24 to 16:30 LT). The asterisk in Fig. 4b represents the
likely initiation period of the pyroCb. Dunalley township is represented by a white star. A malfunction in radar for the 15:30 and 15:36 LT
timestamps resulted in plume information only being available at the lowest elevation angle of the radar scan; therefore, these data are not
shown.

Figure 5. Spatiotemporal distribution of maximum daily C-Haines values for Tasmania for 3–5 January 2013. The blue square indicates the
location of the Tasman Peninsula.
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Figure 6. Scatterplot of the maximum daily FFDI and associated daily C-Haines values (corresponding to the time of the highest FFDI) of
each of the 77 large (> 500 ha) wildfires overlaid on the density of all days in the period of the BARRA data. The density scale has been
log-transformed to allow for better visualisation, while the fires have been stratified into different fire size classes. The vertical and horizontal
lines represent thresholds of elevated FFDI (25) and C-Haines (9) respectively. The Forcett–Dunalley fire (in red) is a clear outlier when
compared to other fires (in green). (“K” in the legend represents thousand, and “M” represents million.)

as longer reanalysis datasets become available, the examina-
tion of longer trends may also become possible.

4 Discussion

We have described the evolution of the only known pyroCb to
have occurred in Tasmania. Our study opportunistically used
weather radar to track violent pyroconvection, which reached
a peak height of 15 km in less than 1 h during the afternoon
on 4 January. We were able to associate this rapid escalation
of the fire with a previously developed fire severity map and
a digital terrain model of the fireground (Ndalila et al., 2018).
Analysis of gridded weather data in Tasmania for the period
from 2007 to 2016 showed that this event is an outlier in
elevated FFDI and C-Haines values. Below, we discuss these
findings with respect to the known drivers of pyroCbs as well
as how it relates to previous pyroCb events in Australia and
globally.

The Forcett–Dunalley firestorm developed in the late af-
ternoon – a pattern similar to all reported Australian py-
roCbs (Fromm et al., 2006; Dowdy et al., 2017; Peace et
al., 2017; Terrasson et al., 2019), except the 2006 Grose Val-
ley pyroCb in New South Wales (Fromm et al., 2012) and a
second Waroona pyroCb event (Peace et al., 2017), which
occurred in the late morning. For instance, the Kinglake

fire, which was among the 2009 Victorian “Black Saturday”
fires – the most destructive of all known Australian fires –
had extensive pyroCb activity in the late afternoon, around
17:00 LT (Dowdy et al., 2017). PyroCbs are typically short-
lived events that mature in less than 1 h, as was the case for
the Forcett–Dunalley fire, although some can last for mul-
tiple hours, such as the 2003 Canberra fires (Fromm et al.,
2006) and the 2017 Pacific Northwest wildfires in the north-
western US and British Columbia (Peterson et al., 2018). The
Forcett–Dunalley pyroCb achieved a height of 15 km, which
is similar to that reported in other Australian events, includ-
ing the 2003 Canberra fires (14 km; Fromm et al., 2006), the
2006 Wollemi fire in New South Wales (14 km; Fromm et al.,
2012), the 2009 Black Saturday fires (∼ 13 km; Cruz et al.,
2012), the 2016 Waroona fire in Western Australia (14 km;
Peace et al., 2017), the 2017 Sir Ivan fire in New South Wales
(12 km; Terrasson et al., 2019), and the recent 2019 Vic-
torian fires (Mike Fromm, unpublished data). Further, two
lightning strikes from the Forcett–Dunalley pyroCb were ob-
served to the south-east of Dunalley, over the Tasman Sea.
A majority of the Australian pyroCbs have been observed
to generate lightning, which in some cases started new fires
well ahead of the fire front (Peace et al., 2017); for example,
the Kinglake fire produced several lightning clusters, which
ignited a new fire 100 km downwind of the fire (Dowdy et
al., 2017). The 2003 Canberra pyroCb did not produce light-
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Figure 7. Spatial distribution of mean days per year with both elevated C-Haines (> 9) and FFDI (> 25) values for (a) the fire season
(October–March) and (b) the non-fire season (April–September), intersected by the operational fire management boundaries for Tasmania.

ning, but it is notable for being the only confirmed case in
Australia that produced a genuine tornado (peak diameter of
400–500 m) which led to extensive vegetation damage along
its path (McRae et al., 2013).

The Forcett–Dunalley fire and other known Australian py-
roCbs share characteristics of events in North America in
terms of height (> 12 km; Diner et al., 2004; Fromm et al.,
2005; Dahlkötter et al., 2014), lightning activity (Rosen-
feld et al., 2007; Johnson et al., 2014), and time of occur-
rence (Rosenfeld et al., 2007; Peterson et al., 2017), although
some events have been reported to have lasted up to 5 h
(Ansmann et al., 2018; Peterson et al., 2018). North Amer-
ican studies have also highlighted the clear role that mid-
tropospheric moisture plays in driving pyroCb development
in the western US and Canada (Trentmann et al., 2006; Pe-
terson et al., 2017), but this role does not appear as clear-
cut in Australian pyroCbs. Indeed, a number of Australian
pyroCb events exhibit a distinct lack of midlevel moisture
in their associated atmospheric profiles, such as the 2003
Canberra fire (Fromm et al., 2006) and the 2013 Wambe-
long fire (Wagga Wagga sounding for 13 January 2013 on
http://weather.uwyo.edu/upperair/sounding.html, last access:
28 February 2020). However, in this study, the mid- to upper-
level moisture was higher during the time preceding pyroCb
formation on 4 January (Fig. S2a), with a total precipitable
water of 23 mm indicating a moist lower atmosphere (Webb
and Fox-Hughes, 2015). Additionally, Terrasson et al. (2019)
report on the effect of a change in moisture between the
low- and upper-levels (brought by a cold front) on the de-
velopment of a pyroCb and enhancement of fire behaviour

in the Sir Ivan fire in eastern Australia. Further research is
required to properly understand the potential influence of
mid-tropospheric moisture in driving pyroCb development in
Australia.

PyroCb development has been shown to be influenced by
critical fire weather events. For instance, nocturnal foehn
winds occurred the night preceding pyroCb development in
both of the Forcett–Dunalley and Grose Valley fire cases.
These warm, dry winds disrupt the fuel moisture recovery
phase that usually occurs overnight, thereby priming the
landscape with drier fuels the following day (McRae et al.,
2015). PyroCb development can also be influenced by the
passage of troughs or wind changes such as cold fronts or
sea breezes (Mills and McCaw, 2010; Peace et al., 2017; Ter-
rasson et al., 2019). Troughs provide a thermodynamic en-
vironment more favourable for moist convection in general,
and the added lift from wind changes is thought to give py-
roCb formation a boost. Recent research (Tory et al., 2018)
also highlights the potential role that a wind change may play
in enhancing pyroCb development by lowering the plume
condensation height, through the entrainment of cooler and
moister air. However, the Forcett–Dunalley pyroCb estab-
lished itself well before the arrival of the wind change, as
was the case with a number of other notable Australian py-
roCbs such as the Grose Valley fire (McRae et al., 2015).

Extreme fire weather in eastern Tasmania reflects the
combination of the (1) dominance of flammable vegeta-
tion, mainly composed of Eucalyptus forest and woodlands;
(2) foehn-like winds (Fox-Hughes et al., 2014; Grose et
al., 2014); and (3) pre-frontal troughs and cold fronts that
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cause elevated fire danger and rapid changes in fire spread
(Sharples et al., 2010; Cruz et al., 2012; Bureau of Meteo-
rology, 2013; Fox-Hughes et al., 2014; Grose et al., 2014).
South-east Tasmania is particularly prone to foehn winds in
pre-frontal environments, making the region vulnerable to
wind direction changes that cause fire flanks to become fire
fronts, thereby rapidly escalating the size of fires. Our anal-
ysis has shown that the Forcett–Dunalley fire was affected
by these meteorological factors, had the highest levels of el-
evated fire weather of all the Tasmanian fires between 2007
and 2016, and was the only event to have produced a py-
roCb. An important framework to understand the Forcett–
Dunalley fire is the analysis of fire weather conditions during
40 pyroCb events in south-eastern Australia conducted by Di
Virgilio et al. (2019); the above-mentioned analysis showed
that the environmental conditions conducive to pyroCb de-
velopment are extreme C-Haines conditions (10–13.7) and
a very high to catastrophic near-surface fire danger (FFDI
25–150) occurring over forested and rugged landscapes. The
Forcett–Dunalley pyroCb event is consistent with these ob-
servations, occurring under elevated C-Haines (10–11) and a
severe–extreme FFDI (60–75) on undulating/rugged terrain
that supported long unburnt, dry Eucalyptus fuels. Di Vir-
gilio et al. (2019) suggest that extreme FFDI and C-Haines
values may not lead to pyroCb development if there is a lack
of deep flaming, due to factors such as elevated fuel mois-
ture, low fuel loads, or fire suppression activities. This sug-
gests that the heavy fuel loads that resulted in a large area
burnt at high severity in the Forcett–Dunalley fire (Ndalila
et al., 2018) may have contributed to the development of the
pyroCb.

Mainland Australia, and especially the south-eastern re-
gion, experiences a greater number of days with elevated
FFDI and C-Haines values than Tasmania (Dowdy and Pe-
pler, 2018). The FFDI/C-Haines distribution in the above-
mentioned region shows pyroCbs occurring over a wide
range of FFDI values but under more limited extreme val-
ues of C-Haines (Di Virgilio et al., 2019). In Tasmania, how-
ever, we found that a fire weather environment conducive to
pyroCb occurrence is likely to have high concurrent values
of C-Haines and FFDI (Fig. 6), a conjunction that occurs
rarely, although this may change with the projected warm-
ing climate in Australia (Dowdy, 2018; Di Virgilio et al.,
2019). It is worth noting that the FFDI/C-Haines distribu-
tion for Tasmania reveals that high FFDI values (> 25) do
not influence large fire occurrence as much as high C-Haines
values (> 9), which is consistent with the findings of Di
Virgilio et al. (2019). Climate modelling in Australia sug-
gests that climate change may lead to an increased risk of
strong pyroconvection, particularly in the spring months in
south-eastern Australia (Dowdy and Pepler, 2018; Di Vir-
gilio et al., 2019). Within Tasmania, climate models point to
increased FFDI values and longer fire seasons (Fox-Hughes
et al., 2014; Grose et al., 2014); hence, it is likely that the risk
of pyroCbs will increase, with eastern and south-eastern Tas-

mania being particularly vulnerable, given the concentration
of high C-Haines values identified in this study.

Turbulence associated with winds and terrain has been
suggested as an important factor contributing to pyroCb for-
mation via the amplification of fire through processes such
as mass spotting, topographic channelling of winds, and
vorticity-driven lateral spread (VLS; Sharples et al., 2012).
Previous studies have linked abrupt increases in plume height
with VLS; these include the 2003 Canberra fires (Sharples
et al., 2012) and the 2006 Grose Valley fire (McRae et al.,
2015). In these studies, VLS was confirmed based on the ob-
servation of rapid lateral expansion of the plume (McRae,
2010). However, this study did not find strong evidence of the
effect of VLS on fire behaviour, as indicated by small patches
of VLS-prone areas near Dunalley township (Fig. S4). There-
fore, it is possible that the pyroCb attained its maximum
height without the influence of VLS. However, this inter-
pretation should be taken with caution as VLS possibly oc-
curred but data constraints (especially the spatial resolution
of the DEM and wind direction) may have precluded its ac-
curate determination. Mapping of the Forcett–Dunalley fire
by Ndalila et al. (2018) showed that areas subjected to the
highest fire intensities were broadly aligned with undulat-
ing terrain and long unburnt dry Eucalyptus forest which un-
der the influence of strong winds produced an ember storm
that impacted the coastal township of Dunalley situated in
the lee of the low hills. During this period (at 15:25 LT on
4 January), the rate of fire spread was reported to be around
50 m min−1 (or 3 km h−1), which then reduced to 1.9 km h−1

between 17:30 and 20:00 LT, and by the time of the next fire
isochrone at 22:00 LT, when fire severity had significantly re-
duced (Fig. 3), the rate of spread was 1 km h−1 (Marsden-
Smedley, 2014). It must be acknowledged that the role of
downdraught and mass spotting underneath the plume dur-
ing the period of extreme fire behaviour is hard to infer
without additional data sources on fire behaviour (such as
infra-red/multispectral linescans) and high-resolution cou-
pled fire–atmosphere modelling (Peace et al., 2015).

This study hinges on the application of weather radars
to track the evolution of a pyroCb. It is worth noting that
weather radars are not perfectly suited for all fires due to
their limited geographic range (relative to satellite observa-
tions) and their inability to detect microscale cloud parti-
cles (< 100 µm). Nonetheless, radars remain a reliable data
source that can provide near-real time monitoring of strong
pyroconvection, as evidenced by previous pyroCb studies in
Australia and globally (Rosenfeld et al., 2007; Fromm et al.,
2012; Lareau and Clements, 2016; Dowdy et al., 2017; Peace
et al., 2017; Lareau et al., 2018; Terrasson et al., 2019). This
study did not analyse radial velocity from the Doppler radar;
therefore, future research on the Forcett–Dunalley fire and
other fires should consider using that information to provide
a more quantitative analysis of the thunderstorm, drawing
upon previous work in Australia (McCarthy et al., 2019; Ter-
rasson et al., 2019). A feature of our study was linking plume
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evolution to fire severity mapping – an approach that has re-
ceived limited attention. Duff et al. (2018) conducted one of
the few studies and used statistical models to link the radar-
detected plume volume to fire growth, and they found that
radar return volume (above a threshold of 10 dBZ) was a ro-
bust predictor of fire-area change. These results appear con-
sistent with the present findings, particularly with the cor-
relation between rapid plume development and the horizon-
tal growth of the fire. Other Australian studies linking fire
behaviour to radar-detected plume development include Mc-
Carthy et al. (2018) and Terrasson et al. (2019).

The present study is the first in Tasmania that has utilised
geographically comprehensive fire weather information both
at the near-surface and the lower atmosphere to determine the
spatiotemporal variation of elevated fire weather in the state.
One opportunity for further research is to examine long-term
trends in elevated fire weather as longer weather reanalysis
datasets for Tasmania (1990–2019) become available. The
influence of climate change on the spatial and seasonal dy-
namics of C-Haines is particularly important for comparison
with projected changes in south-eastern Australia conducted
by Di Virgilio et al. (2019).

Our analysis contributes to improving the prediction of ex-
treme fire behaviour (Tory and Thurston, 2015). Indeed, in
this context, it is interesting to know if the Forcett–Dunalley
pyroCb could have been predicted with existing informa-
tion. We suggest it is conceivable that the Forcett–Dunalley
pyroCb blow-up between 15:24 and 16:30 LT on 4 January
2013 could have potentially been predicted 12–18 h in ad-
vance. Further, on the evening of 3 January, the Phoenix
fire behaviour model predicted that the fire would reach
Dunalley at approximately 15:00 LT on 4 January (Bureau
of Meteorology, 2013); this was around the time that the
fire reached Dunalley (15:24–15:48 LT) following the pre-
dicted path, which was confirmed by plume/pyroCb dynam-
ics (Fig. 4) and witness reports. The conditions surround-
ing the pyroCb event are entirely consistent with those high-
lighted in the Blow-Up Fire Outlook (BUFO) model (McRae
and Sharples, 2013, 2014). In essence, the BUFO model as-
sesses the likelihood of a fire exhibiting deep flaming in an
atmospheric environment conducive to rapid plume growth.
Retrospective application of the BUFO model to the Forcett–
Dunalley case yields the BUFO pathway summarised in
Fig. S7. It is initiated by the presence of an uncontrolled
fire in an elevated near-surface fire weather, combined with a
wind speed of > 25 km h−1 over rugged forested landscapes,
with dead fuel moisture below 5 %, in a potential VLS-prone
land form, and under extreme values of atmospheric instabil-
ity and dryness (C-Haines≥ 10).

5 Conclusion

This study provides an analysis of pyroCb dynamics and
fire weather during an extreme fire event in Tasmania on

4 January 2013. We have shown that the pyroCb was asso-
ciated with elevated fire weather conditions as well as with
strong interactions between weather, terrain, and the fire it-
self, which caused dynamic fire behaviour and the near-
destruction of Dunalley township. We have discussed the
known drivers of pyroCbs and how the Forcett–Dunalley py-
roCb relates to previous pyroCb events in Australia and glob-
ally. An analysis of fire weather in previous large wildfires in
Tasmania between 2007 and 2016 suggests that the Forcett–
Dunalley fire experienced among the highest levels of ele-
vated fire weather of all the large fires in Tasmania, and it
was the only event to have produced a pyroCb to date. A
spatiotemporal analysis of fire weather in Tasmania shows
that eastern (particularly south-eastern) Tasmania is subject
to more days of elevated fire weather than the west, high-
lighting the vulnerability of this region to extreme fire events.
This information is crucial for fire weather forecasting and
fire management and planning.
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