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Abstract. This paper provides a methodology for classifying
samples of significant wave-height peaks in homogeneous
subsets in terms of the atmospheric circulation patterns be-
hind the observed extreme wave conditions. Then, a method-
ology is given for the computation of the overall extreme
value distribution by starting from the distributions fitted to
each single subset. To this end, the k-means clustering tech-
nique is used to classify the shape of the wind fields that oc-
curred simultaneously to and prior to the occurrences of the
extreme wave events. This results in a small number of char-
acteristic circulation patterns related to as many subsets of
extreme wave values. After fitting an extreme value distribu-
tion to each subset, bootstrapping is used to reconstruct the
omni-circulation pattern’s extreme value distribution.

The methodology is applied to several locations along the
Italian buoy network, and it is concluded from the obtained
results that it yields a two-fold advantage: first, it is capable
of identifying clearly differentiated subsets driven by homo-
geneous circulation patterns; second, it allows one to esti-
mate high-return-period quantiles consistent with those re-
sulting from the usual extreme value analysis. In particular,
the circulation patterns highlighted are analyzed in the con-
text of the Mediterranean Sea’s atmospheric climatology and
are shown to be due to well-known cyclonic systems typi-
cally crossing the Mediterranean basin.

1 Introduction

The extreme value theory is widely used for the analysis
of extreme data in most of the geophysical applications. It
allows us to estimate extreme (unobserved) values, starting

from available records or modeled data, which are assumed
to be independent and identically distributed (Coles, 2001).
It is therefore crucial to identify homogeneous data sets com-
plying with the abovementioned requirements before per-
forming the extreme value analysis (EVA) of a given physical
quantity.

When dealing with directional variables, it is common
to group the data according to different directional sectors
(Cook and Miller, 1999; Forristall, 2004), with such an ap-
proach being recommended in many regulations as well
(API, 2002; ISO, 2005; DNV, 2010, among others). How-
ever, the use of directional sectors involves certain draw-
backs. First, it cannot be employed for variables not being
characterized by incoming directions (such as storm surge or
rainfall). Second, data showing the same direction may be
due to different forcing; in the context of wave climate, an
example is of waves propagating in shallow waters being af-
fected by refraction and/or diffraction. Finally, the borders of
the directional sectors are often subjectively defined, with-
out verifying if the data belonging to each subset are homo-
geneous and independent with respect to those of the other
sectors (see Folgueras et al., 2019, in which they tackled this
issue and proposed a methodology to overcome it).

An alternative approach to classifying the extreme events
implies resorting to the atmospheric circulation conditions
they are driven by and associating each extreme event with
a particular weather pattern (referred to as WP). Such an ap-
proach has already been deep-seated in atmospheric sciences
for the analysis of precipitations, snowfalls, temperature, air
quality, and winds (Yarnal et al., 2001; Huth et al., 2008,
among others). Nevertheless, there are few studies linking
weather circulation patterns with the most likely induced sea
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states (e.g., wave climate and storm surge). Holt (1999) clas-
sified WPs leading to extreme storm surges in the Irish Sea
and the North Sea. Guanche et al. (2013) simulated a mul-
tivariate, hourly sea-state time series in a location on the
northwestern Spanish coast, starting with the simulation of a
weather pattern time series. Dangendorf et al. (2013) linked
the atmospheric pressure fields with the sea level in the Ger-
man Bight (southeastern North Sea). Pringle et al. (2014,
2015) investigated how extreme wave events may be tied
to synoptic-scale circulation patterns on the eastern coast
of South Africa. Camus et al. (2014) proposed a statistical
downscaling of sea states based on weather types, which is
then applied to a couple of locations on the Atlantic coast
of Europe to hindcast the wave climate during the twentieth
century; it was also modeled under different climate-change
scenarios. The latter methodology was improved by Camus
et al. (2016), and further used by Rueda et al. (2016), for an-
alyzing significant wave-height maxima. Solari and Alonso
(2017) used a WP classification to perform an EVA of signif-
icant wave heights in the southeast coast of South America.

Except for Rueda et al. (2016) and Solari and Alonso
(2017), none of the previous works focused on exploiting WP
classification methodologies for defining the homogeneous
data sets to be further employed for EVA. However, the two
methodologies differ in several aspects. Rueda et al. (2016)
dealt with the daily maxima of significant wave heights along
with surface pressure fields and pressure gradients, averaged
over different time periods, and applied a regression-guided
classification to define 100 WPs. They subsequently fitted a
generalized extreme value (GEV) distribution that estimated
an extremal index from the daily maxima significant wave
height of each WP, and from which they rebuilt the overall
distribution of annual maxima (referred to as AM Hs). De-
spite the proposed methodology being able to reproduce the
AMHs distribution, it may be difficult to detect the most rel-
evant physical processes behind the occurrence of extreme
wave conditions with such a large number of WPs. Further-
more, as shown in Rueda et al. (2016), even though a large
number of WPs was considered, only a few happened to sig-
nificantly affect the EVA as most of the WPs that resulted
were associated with mild wave conditions. Finally, retain-
ing the daily maxima does not ensure that the data is inde-
pendent, thus implying the need to use the extremal index.
Instead, Solari and Alonso (2017) introduced a “bottom-up”
scheme as follows: they first selected a series of independent
extreme sea states; then, they identified a reduced number of
WPs that allows us to group the selected data into homoge-
neous populations. A small number of WPs makes it easier
to link the different subsets of extremes with known climate
forcing. Above all, working with independent peaks allows
us to rely on the classic and well-known extreme value the-
ory, with no need to refer to additional indexes and/or more
complex models that may be unfamiliar to many analysts.

In this paper, the methodology of Solari and Alonso (2017)
is revisited and applied to several wave data sets along the

Figure 1. Study area and investigated locations with their respective
codes.

Italian coastline. The objective of this research is twofold:
(i) to explore how the definition of homogeneous subsets,
based on WPs, affects the estimation of Hs extreme values;
and (ii) to characterize the identified WPs in the framework
of the Mediterranean region (MR) cyclone climatology.

The paper is structured as follows: in Sect. 2 we introduce
the data and describe the methodology developed; the results
are presented and discussed in Sect. 3; finally, in Sect. 4 con-
clusions are summarized and further developments are intro-
duced.

2 Data and methods

2.1 Wave and atmospheric data

This paper takes advantage of eight hindcast points located in
the Italian seas, as shown in Fig. 1. This choice allowed us to
test the reliability of the proposed methodology under differ-
ent local wave climates. In fact, the selected points are differ-
ently located along the Italian coastline, and, being exposed
to different fetches, they are characterized by peculiar wave
conditions. The same locations were taken into account by
Sartini et al. (2015) when they performed an overall assess-
ment of the different frequency of occurrence of the extreme
waves affecting the Italian coasts. Table 1 reports the names,
depths, and coordinates of the selected locations.

The points correspond to as many buoys belonging to the
Italian Data Buoy Network (Rete Ondametrica Nazionale
or RON; Bencivenga et al., 2012) that collected directional
wave parameters over different periods between 1989 and
2012. Unfortunately, most of the buoys are characterized by
a significant lack of data due to the malfunctions and main-
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Table 1. Long/lat coordinates and depths of the hindcast locations
employed in the study (reference system: WGS84).

Code Long Lat Depth Name
(m)

B1 9.8278 43.9292 83.8 La Spezia
B2 8.1069 40.5486 99.7 Alghero
B3 12.9500 40.8667 242.0 Ponza
B4 12.5333 37.5181 90.8 Mazara del Vallo
B5 15.1467 37.4400 65.4 Catania
B6 17.2200 39.0236 611.7 Crotone
B7 17.3778 40.9750 80.0 Monopoli
B8 14.5367 42.4067 55.8 Ortona

tenance of the devices. We therefore referred to hindcast
data, since such a widespread lack of data would imply a
loss of reliability for the following analysis. We relied on
the hindcast of the Department of Civil, Chemical and En-
vironmental Engineering of the University of Genoa (http:
//www3.dicca.unige.it/meteocean/hindcast.html, last access:
8 May 2020; Mentaschi et al., 2013, 2015). It now provides
wave parameters on an hourly basis from 1979 to 2018 over
the whole Mediterranean Sea, with a spatial resolution of
0.1◦ in both longitude and latitude (however, at the time that
the study was developed the series was defined up to 2016).
Data were validated against the records of the buoys (when
available); more details can be found in Mentaschi et al.
(2013, 2015). The wind data used to drive the wave gen-
eration model were derived from the National Centers for
Environmental Prediction (NCEP) Climate Forecast System
Reanalysis (CFSR) for the period from January 1979 to De-
cember 2010 and the Coupled Forecast System model ver-
sion 2 (CFSv2) for the period from January 2011 to De-
cember 2018, downscaled over the MR at the same resolu-
tion of the hindcast, along with the pressure fields, through
the model Weather Research and Forecast (WRF-ARW ver-
sion 3.3.1; see Skamarock, 2009; Cassola et al., 2015, 2016).
These wind velocities data were used here to feed the cluster
analysis of the wave peaks. It should be pointed out that, in
the case of sea waves, other variables may concur to affect
their propagation (and therefore the bulk parameters), i.e.,
the local bathymetry and the currents. However, the bottom
depth is reasonably expected to not be relevant since all the
locations investigated lie in deep water (see Table 1), and the
currents were not fed into the wave model, but the hindcast
data were widely validated and proved to be reliable.

2.2 Extreme event selection

For each location, wave-height peaks were selected through
a peak-over-threshold (POT) approach, and in particular by
using a time-moving window. This approach works as fol-
lows. First, the whole series ofHs is spanned through a time-
moving window of given width; second, when the maximum

of the data within the window happens to fall in the middle of
the window itself, it is retained as a peak; finally, in order to
get rid of the peaks which are not related to severe sea states,
a first Hs threshold is chosen and only peaks exceeding this
threshold are retained for further analysis.

In this study, the width of the moving window was set
equal to 1 d, meaning that the inter-arrival time between two
successive storms is at least equal to 1 d for each location.
The threshold was fixed as the 95th percentile of the resultant
peaks. This ensured that a uniform approach for all the lo-
cations was maintained by efficiently capturing the different
features of the local wave climates. Besides the significant
wave heights, we also retained the waves’ mean incoming
directions corresponding to the peaks (θm), which were used
for analyzing the outcomes of the clustering algorithm. Fi-
nally, we extracted the mean sea level pressure field (MSLP)
and surface wind fields for several time lags (0, 6, 12, 24,
36, and 48 h earlier with respect to the peak’s date) for each
peak over the whole MR. Wind fields were used to classify
the selected peaks due to their parent WP, as described in
the following section; MSLP fields were used instead for the
postprocessing and climatological analysis of the results.

2.3 Extreme event classification: definition of weather
patterns

The classification of extreme events is based on surface wind
fields (uw) observed in the whole MR during the hours before
and concomitant to the time of the peaks. In order to define
the spatial and temporal domains to be taken into account, we
looked at the correlation maps between the wind velocities
and the Hs peaks for different time lags. Correlations were
evaluated over a subgrid of the atmospheric hindcast, with
nodes spaced of 0.5◦ in both longitude and latitude. Com-
puting the correlation between the Hs and uw series is not
straightforward, as the former variable is scalar and the latter
is directional. To tackle this issue, we followed the procedure
suggested by Solari and Alonso (2017). Given a time lag1t ,
the wind is defined by its zonal and meridional components
(ux,uy)(i,j,1t) at every node (i,j); thus, the correlation be-
tweenHs peak series and the time-lagged surface wind speed
at any given node is estimated as the maximum of the linear
correlations obtained by projecting the wind speed series in
all the possible directions. This is calculated as follows:

ρ(i,j,1t) = max
0≤θ<2π

{
ρ

(
Hs;u(i,j,1t,θ)

)}
, (1)

where ρi,j,1t is the resulting correlation for node (i,j) at
time lag 1t , ρ refers to linear correlation function, and
u(i,j,1t,θ) is the surface wind speed projected along direction
θ according to Eq. (2):

u(i,j,1t,θ) = ux(i,j,1t) cos(θ)+ uy(i,j,1t) sin(θ). (2)

In this way, not only is a maximal correlation obtained for ev-
ery node but also the direction corresponding to the maximal
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correlation, which is estimated as follows:

θ̂ρ(i,j,1t) = argmax
0≤θ<2π

{
ρ

(
Hs;u(i,j,1t,θ)

)}
. (3)

The correlation maps computed with Eq. (1) allowed us
to evaluate the spatial domain and the time lags for which
uw is significantly correlated (i.e., directly affecting) to the
resulting wave peaks at a given location.

Once the spatial and time domain of the wind fields pro-
ducing the peak wave conditions were defined, the wind
fields were used for clustering and classifying the extreme
events. To this end, the k-means algorithm was used and fed
with the normalized wind fields. The k-means algorithm is
aimed at partitioning an N -dimensional population into k
sets (clusters) on the basis of a sample, in order to minimize
the intracluster variance (MacQueen, 1967). The normaliza-
tion of the wind fields sought to reduce the influence of the
intensity of the wind speed on the classification, so that only
the spatial form of the field and its time evolution were taken
into account. Note that the values of Hs did not play any role
in the classification of the peaks but rather the identification
of the point in time of the wind fields.

2.4 Analysis of the WP climatology

Once the wind fields, and therefore peak Hs series, were
grouped into k clusters, the MSLP corresponding to the
events within each cluster were averaged, and the position
of the lowest pressure was recorded for all the 1t taken into
account. This allowed us to track the paths of the averaged
low-pressure systems corresponding to each cluster and in
turn define the respective WP.

At a second time, the dynamics of the systems were com-
pared with those of the cyclones typically detected in the
Mediterranean Sea (Trigo et al., 1999; Lionello et al., 2016),
while the frequency of occurrence of the events of different
clusters was compared with the outcomes of Sartini et al.
(2015). The number of clusters needed to group the series
was defined for every location by looking at the outcome of
the cluster analysis: when an increase from k to k+1 clusters
did not further lead to a new, clearly differentiated WP, the
research was stopped and k was used for the cluster analysis
of that particular location.

2.5 Extreme value analysis

The EVA was performed independently over the subsets of
Hs peaks resulting from the cluster classification. We fol-
lowed the methodology proposed by Solari et al. (2017),
where the threshold for the POT analysis is estimated as
the one maximizing the pvalue of the upper tail Anderson–
Darling test. Then, once the threshold is identified (i.e., a
subset of the peaks within a given WP is defined), the three
parameters of the generalized Pareto distribution (GPD) are
estimated through the L-moments method, and the return-
period (Tr) quantiles of the variable under investigation are

computed. In this paper, in order to estimate the overall Tr–
Hs curve and its confidence intervals from the GPDs fitted
to each WP, a bootstrapping approach was implemented (Ta-
ble 2). The algorithm in Table 2 shows a pseudocode sum-
marizing the bootstrapping procedure. First, Nboot series of
Hs, each Nyears long, are generated for every WP. Second,
the series generated for the different WPs (NWP per loca-
tion) are combined in order to obtain one single Nyears long
series for each of the Nboot simulations. Third, an empirical
relationship between Tr andHs (i.e., an empirical cumulative
distribution function or ECDF) is estimated from each one of
theNboot series. Lastly, the expected value and confidence in-
tervals ofHs are estimated from the Nboot ECDFs for several
return periods.

The method assumes a Poisson–GPD model for each WP
and that the realizations of different WP are independent
of each other. This independence hypothesis was evaluated
by estimating the correlation between the annual number of
peaks associated with each WP.

For a given location, the overall workflow can be summa-
rized as follows:

– selection of a series of Hs peaks through a POT ap-
proach;

– selection of the wind field data to be employed in the
clustering algorithm (i.e., 1t and spatial domain);

– classification of the Hs peaks due to the k-means algo-
rithm;

– definition of a suitable number (k) of WPs;

– averaging of the MSLP corresponding to the peaks of
each WP, for each 1t taken into account;

– performing EVA over the single subsets; and

– computation of the overall long-term distribution
through a bootstrapping technique.

This methodology was applied to all the hindcast locations
shown in Fig. 1. In this paper, for the sake of clarity, just
the results of the locations B4 (Mazara del Vallo) and B7
(Monopoli) are shown and discussed. Indeed, just one WP
was necessary for classifying the peaks in La Spezia and Al-
ghero (B1 and B2); thus, no further analysis was performed.
Among the locations left, we simply selected the locations
furthest from each other in the east–west direction. However,
the results relating to the other locations can be found in the
Supplement.

3 Results and discussion

Once the series of Hs peaks is selected, the first step of the
proposed methodology requires us to define the domains of
uw in time and space due to the outcomes of the correlation

Nat. Hazards Earth Syst. Sci., 20, 1233–1246, 2020 www.nat-hazards-earth-syst-sci.net/20/1233/2020/



F. De Leo et al.: Extreme wave analysis based on weather pattern classification 1237

Table 2. Computational scheme of empirical extreme values curves and its confidence intervals.

Algorithm:
forj from 1 to Nbootdo

fori from 1 to NWPdo
Randomly simulate {Hs}i,0 (a vector of Ni values of Hs) from distribution GPD(θ̂(i,0))
Estimate GPD parameters θ̂i from {Hs}i,0
Randomly simulate {Nsimu}i (number of events in a Nyears length simulation) from a Poisson distribution with parameter λi
Randomly simulate {Hs}i (a vector of {Nsimu}i values of Hs) from distribution GPD(θ̂i)

end for
Combine all vectors {Hs}i (i = 1, . . .,NWP) into a single vector {Hs}j
Estimate empirical Hs-Tr curve from {Hs}j

end for
Estimate confidence intervals from the Nboot empirical Hs-Tr curves

Parameters:
Nboot is the number of bootstrapping repetitions
NWP is the number of WPs
θ̂(i,0) are the parameters of the GPD estimated from the original sample
Ni is the length of the original sample of Hs peaks within the WP
λ̂i is the yearly number of events of the ith WP
Nyears is the number of years simulated; it must be larger that the maximum return period to be analyzed
Nsimu is the number of events in Nyears obtained for the ith WP

analysis between the two parameters. Indeed, as mentioned
in Sect. 2.1, the wind is reasonably expected to play a ma-
jor role in the observed wave parameters at the investigated
locations. Figure 2 shows the correlation maps for B7 for
different time lags, along with the directions leading to the
maximum values of correlation in each node. It is interest-
ing to see how θ̂ for 1t = 0 h are distributed along the nodes
characterized by similar values of ρ. Actually, even though
the values of θ̂ come from a purely statistical analysis (i.e.,
they were computed with Eq. 3), their spatial distribution
follows that of a typical cyclone. The velocities happen to
be uniformly oriented along the nodes characterized by the
higher values of ρ, which is close to tangential to a circle
centered on the nodes showing lower values of ρ instead.
This allows us to get insight into the predominant process
most likely affecting the wave climates of the investigated
locations, and it will be discussed later on in this paper. On
the contrary, the analysis of the correlations between Hs and
uw reveals that the areas characterized by similar values of
ρ are not uniformly distributed in the neighborhood of the
points considered. It is therefore difficult to uniquely contour
the nodes to be taken into account for the successive analy-
sis. As regards the time step, correlations rapidly decrease for
1t longer than 12 h, after which no evidence of significant ρ
can be observed. The same outcomes apply for all the other
locations taken into account. Results suggest that the events
shall be linked to broader circulation patterns. In view of the
above, it was decided to refer to the whole MR and time lags
of 0 and 12 h for the purposes of peak classification.

Once the spatial and temporal limits of the wind fields to
be used in the k means were defined, we performed a sen-

sitivity analysis on the resultant average MSLP belonging to
each cluster among the total number of tested clusters (k).
Two clusters were needed to detect different systems at all
the sites, except for Alghero and La Spezia where the local
extreme waves could be related to a single pattern. For the
other locations, increasing k did not lead to the systems sig-
nificantly diverging from those already defined. The reason
for such a small number of resulting WPs has to be found
in the nature of the Hs employed in the analysis. Indeed,
these are associated with extreme sea states, which are most
likely driven by atmospheric phenomena developing along
well-defined and fixed tracks.

Figures 3 and 4 show the averaged pressure fields cor-
responding to both the clusters and 1t in the B4 and B7
hindcast points. Here, two main systems can be clearly dis-
tinguished, namely (i) a low-moving SW–NE towards the
Balkan area (say WP#1) and (ii) a low-moving NW–SE
(henceforth referred to as WP#2).

Let us first focus on WP#2. The low pressure moves SE
from central Europe, crossing the Adriatic Sea, and decreas-
ing its intensity once it gets to the south Balkan area where
it stops until it finally dissolves. Regarding WP#1, the cyclo-
genesis most likely takes place in the eastern area of North
Africa, with cyclones first approaching the western coastline
of Italy while moving NE. The paths of WP#1 and WP#2
show interesting similarities with well-known cyclones typi-
cally forming and departing from two of the most active cy-
clogenetic regions in the MR, respectively, in the lee of the
Atlas Mountains and the lee of the Alps (Trigo et al., 1999).
The MSLP composites related to WP#1 and WP#2 are con-
sistent with those highlighted in previous research, for in-
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Figure 2. Correlations between Hs and uw in location B4 for different time lags. (a) 1t equals 48 h; (b) 1t equals 24 h; (c) 1t equals 12 h;
and (d) 1t equals 0 h.

stance Lionello et al. (2006), showing the synoptic patterns
associated with extreme significant wave heights in different
regions of the Mediterranean Sea (see in particular the MSLP
fields reported in Fig. 122a and d of Lionello et al., 2006 for
WP#2 and WP#1, respectively). In particular, WP#2 seems
to follow the Genoa system path that usually moves down to
the Albanian and Greek coasts, while that of WP#1 shows
characteristics analogous to the Sharav depression by mov-
ing northeastward toward the Greek region (Flocas and Giles,
1991; Trigo et al., 1999, 2002).

At a second time, the MSLP related to the three highest
events for both the locations and the WPs were individu-
ally analyzed in order to evaluate their homogeneity with re-
spect to the overall MSLP averages. The results are shown in
Figs. 5 and 6.

From the MSLP charts of Figs. 5 and 6, it can be seen
how low pressures are in good agreement in terms of their
locations and, in turn, with the average MSLP fields reported
in Figs. 3 and 4. Actually, this especially applies in the case
of the WP#2 events: the location of the low pressure of the
cyclone is similar for the analyzed storms, though there are
differences in terms of the absolute value of the pressure and
slight differences in the shape of the cyclone too (the values
of the color scale were modified to better appreciate the lo-
cations of the lows). This is something to be expected, as it

partially explains the different intensities of Hs (of course,
local effects have to be taken into account as well). However,
there is an important degree of variability within each family
of events, particularly regarding WP#1.

The paths highlighted for WP#1 and WP#2 characterize
the lows of the WPs detected in all the investigated sites (see
the Supplement). A summary of the low position at the two
different 1t can be appreciated in Fig. 7, which reports the
tracks of both the WP#2 and WP#1 systems in all the sites
but B1 and B2; indeed, in the latter cases the analysis of the
MSLP fields did not allow us to identify two separated sys-
tems.

It is interesting to see how the WP#2 low moves across
the investigated sites in a precise, chronological order, first
crossing the northernmost locations and then those next to
the south Balkan area where the cyclone actually ends its run.
As such, we took four buoys affected by WP#2 at different
times as a reference by evaluating the time lag between the
respective peaks generated by such a system. For each storm,
we considered the extreme series of B4, computing the time
lag between the peak at the buoy and peaks occurring in B2
and B1 (occurring earlier) and B6 (occurring later); the dis-
tributions of the time lags are shown in Fig. 8.

Looking at Fig. 8, it is evident how the majority of the
events’ delays between B4 and the other investigated points

Nat. Hazards Earth Syst. Sci., 20, 1233–1246, 2020 www.nat-hazards-earth-syst-sci.net/20/1233/2020/



F. De Leo et al.: Extreme wave analysis based on weather pattern classification 1239

Figure 3. Average MSLP for the Hs peaks in Mazara del Vallo (B4). (a) WP#1, 1t equals 12 h; (b) WP#2, 1t equals 12 h; (c) WP#1, 1t
equals 0 h; and (d) WP#2, 1t equals 0 h.

Figure 4. Average MSLP for the Hs peaks in Monopoli (B7). (a) WP#1, 1t equals 12 h; (b) WP#2, 1t equals 12 h; (c) WP#1, 1t equals
0 h; (d) WP#2, and 1t equals 0 h.
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Figure 5. MSLP associated with the three highest POT events in Mazara del Vallo (B4). (a–c) WP#1 events; (d–f) WP#2 events. The storms
are sorted from left to right in descending order.

Figure 6. MSLP associated with the three highest POT events in Monopoli (B7). (a–c) WP#1 events; (d–f) WP#2 events. The storms are
sorted from left to right in descending order.
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Figure 7. Time evolution of the center of the low pressure for the
different WP identified for each buoy. In blue – WPs with lows trav-
eling northeastward (WP#1); in red – WPs with lows traveling east-
ward or southeastward (WP#2).

Figure 8. Relative frequency of the events’ delay for B2, B1, and
B6. Referring series is that of B4.

fall within about 40 h. We therefore evaluated the average
MSLP fields for time lags up to 48 h before and after the
storms occurred at the reference location, tracking the low-
pressure-center evolution. Results show how the cyclone
runs out in a couple of days as the center of the low trav-
els at approximately 1600 km, with a resulting speed of ∼
33 km h−1 (see Fig. 9). Both the lifetime of the identified cy-
clone and the speed at which it moves are compatible with the
features of the cyclones most frequently encountered in the
MR (Lionello et al., 2016). Unfortunately, regarding WP#1,
an equally clear path cannot be detected since the average
lows apparently arise simultaneously in most of the points
taken into account. As previously pointed out, the MSLPs
related to this pattern show a higher variability with respect

to those characterizing the events of WP#2; thus, they would
require further deepening and more detailed investigations.
Therefore, we did not characterize the mean evolution of the
MSLP fields related to the events of WP#1.

The characterization of the two systems is reflected in the
frequency of the occurrence of the storms, with the peaks
belonging to different subsets also showing distinctive sea-
sonality. From the results shown in Fig. 10, it can be seen
how WP#2 peaks mainly occur in winter, whereas the events
of WP#1 are characterized by two milder intra-annual peaks
of occurrence that are spread among the spring and autumn
months. The intra-annual cycle of the WP#1 events further
suggests a direct link with the Sharav cyclones, which show
similar seasonal fluctuations; regarding the WP#2 peaks,
even though the storms of the Genoa low are more uniformly
distributed throughout the year, the most intense events occur
precisely during winter as it happens in the abovementioned
locations (details can be found in Lionello et al., 2016).

Figure 11 summarizes the results of the monthly frequency
of occurrence of the extremes in all the investigated loca-
tions, which are grouped according to the WP. For each lo-
cation, frequencies were normalized in the 0–1 space with
respect to the total number of peaks, in order to be able to
compare the outcomes defined over different ranges.

It can be seen how the relative weight of WP#1 events on
the overall peaks distributions increases when moving south.
Points in the northernmost locations (B1 and B2) are ap-
parently not influenced by the WP#1 system, and their ex-
treme waves are actually linkable to just WP#2. Moving to
the southernmost locations (B5 and B6), no significant dif-
ferences in the seasonality of the two patterns’ events can
be appreciated; in these two buoys, none of the two systems
shows a prevailing frequency of occurrence for the induced
storms.

The aforementioned behavior may be justified by looking
at the location of the investigated points (see Fig. 1) as fol-
lows: lows moving northeastward directly run over B5 and
B6, marginally affect B7, B8, B4, and B3, whereas they do
not interest B1 and B2. However, position of the buoys with
respect to the cyclones’ paths is not the only relevant vari-
able. Indeed, local bathymetry and prevailing fetch character-
istics may result in storms having, on average, unique char-
acteristics; e.g., it may happen that peaks related to the same
WP show distinct frequencies of occurrence, for instance the
events related to WP#1 in B6 and B7. In this latter case, the
predominant parameter seems to be the fetch length, which
is very limited for B7 with regards to the NE incoming waves
(precisely related to the first weather-circulation pattern).

The WPs that are defined in the present study show com-
mon characteristics with those qualitatively identified by Sar-
tini et al. (2015) in a seasonal variability analysis of extreme
sea waves. In particular, the same WP was identified in B1
and B2, linking the extremes with the Gulf of Genoa cyclo-
genesis WP type. As Sartini et al. (2015) noted, even if cy-
clones in the Gulf of Genoa are a constant feature over the
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Figure 9. WP#2: average MSLP evolution with respect to the reference dates of the events in B4 (underlined with the red triangle).

Figure 10. Monthly number of events for different WPs. (a) B4; (b) B7.

whole year, those connected at the extreme events are the
ones characterized by the lowest value in MSLP. These find-
ings (i.e., higher values during the winter rather than in spring
and summer time) were observed in the southern Tyrrhenian
Sea as well (for instance in B4) and in the central Tyrrhe-
nian Sea (B3). In the latter case, we found a more marked
seasonal variation of the extremes, as the two resultant WPs
are well separated between winter and autumn. Intra-annual

variability was observed also for B7, while the analysis car-
ried out by Sartini et al. (2015) did not reveal this kind of
behavior; analogously, B5 and B8 buoys revealed the pres-
ence of two distinct WPs, while the previous analysis identi-
fied just one cyclogenesis system. These differences may be
justified in the first place by the different peak selection (a
moving window for this study, while Sartini et al., 2015, use
a partial duration series approach). Moreover, evaluation of
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Figure 11. Normalized monthly frequency of occurrence of the extremes. (a) Events belonging to WP#1; (b) events belonging to WP#2.

the seasonality follows completely different algorithms: the
present study directly applies a clustering technique over the
selected peaks, while the former analysis used the peaks to
model a time-dependent distribution, further characterizing
their seasonality on the basis of the values of the distribution
coefficient generated by the fitting procedure.

Another interesting outcome regards the characteristics of
the extremes differentiated due to the parent clusters follow-
ing the k-means algorithm. Figure 12 shows the covariates
Hs and θm of the selected peaks belonging to each WP.

Looking at the scatter plots, it can be appreciated how the
events belonging to different clusters are remarkably homo-
geneous in terms of wave–bulk parameters, even though the
latter were not used for clustering the peaks. In the case of
B4, where it is clearly a bimodal distribution with respect
to the waves’ incident direction (i.e., two peaks correspond-
ing to SE and NW), the proposed methodology allows us
to differentiate the sea storms according to the directional
frames of the local wave climate. On the other hand, when
the waves’ direction is more uniformly scattered over a given
sector, it is not unusual that different climates force results
in the same wave direction; this can be seen in B7, where
θm-Hs scatters belonging to different patterns are partially
overlapped. Thus, a directional classification is not straight-
forward and would most probably not be able to differentiate
the storms due the cyclones generating them. Nevertheless,
in such a case the distributions of Hs are also homogeneous
within each WP, with the more severeHs related to the WP#2
system in both the locations.

Finally, Fig. 13 shows the Tr-Hs curves, by comparing the
results obtained directly from the whole set of peaks with
those obtained from the single-WP distributions, and com-
bines them by means of the algorithm given in Table 2 (i.e.,
omni-WP curves).

The omni-WP curves show a remarkable agreement with
those carried out through the analysis of the whole data set
without WP classification. In both the B4 and B7 locations,
it can be even appreciated that there is a narrowing of the
confidence intervals, which means a reduction in the total
variance for the long-term estimates. Actually, the curve re-
lated to B4 shows a slight deviation between the two ap-
proaches (' 30 cm over the 200-year wave); however, such
small magnitudes imply relative errors of' 4 % with respect
to the omni-WP curves and can be therefore considered as an
uncertainty inherent in this kind of computations (see, e.g.,
Borgman and Resio, 1977, 1982, stating that reliable long-
term estimates can be carried out just up to three times of the
yearly length of the original data set).

These results seem to reinforce the validity of developing
the omni-WP curve under the hypothesis of independence
between the events of different WPs. In this case, the in-
dependence hypothesis was to some extent corroborated by
the low correlations values attained by the intraclusters an-
nual frequency of occurrence for all the locations as follows:
−0.17, 0.23, −0.13, −0.11, −0.34, and 0.13 for B5, B6, B4,
B7, B8, and B3, respectively. In conclusion, it is good to re-
call that thresholds for the EVA were selected in order for the
peaks to come from a generalized Pareto family (Solari and
Alonso, 2017), thus guaranteeing the intracluster homogene-
ity of the data.

4 Conclusions

In this paper, the extreme sea storms at eight hindcast points
that are differently located along the Italian coasts were an-
alyzed. The investigated locations are characterized by dif-
ferent conditions, both in terms of their local orography and
exposure, and consequently this is reflecting on the respec-
tive wave climate showing, on average, peculiar characteris-
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Figure 12. Scatterplot of Hs and θm due to different WP. (a) B4; (b) B7.

Figure 13. Omni-WP extreme value distributions of Hs obtained from the whole set of peaks (black) and from combining single-WP
distributions (red), along with 90 % confidence intervals (gray shading and red dashed lines, respectively). (a) B4; (b) B7.

tics. However, despite the differences arising due to the local
effects, the analysis introduced here reveals how the most se-
vere storms among all the locations can be related to partic-
ular atmospheric circulation patterns and be defined on the
synoptic scale. These patterns result in homogeneous fea-
tures of the wave peaks at the investigated locations, both
in terms of frequency of occurrence and significant wave
heights. Such features suggest that the extreme distributions
of Hs can be singularly evaluated for each WP, and the start-
ing data sets are homogeneous and independent with respect
to each other.

The methodology introduced here allows for the classifi-
cation of extreme wave events (or other oceanic variables)
into homogeneous subgroups according to the circulation
patterns most likely generating them. Starting from local ex-

treme waves, the analysis is extended to a basin scale, result-
ing in a reduced number of circulation or weather patterns.

Such an approach might facilitate the physical interpreta-
tion of sea storms, as well as their link with the climatology
of the basin. In particular, for the analyzed locations, the pro-
posed methodology led to the identification of two different
cyclonic systems, characteristic of the atmospheric circula-
tion on the Mediterranean Sea, as the possible origin of the
extreme wave events affecting the Italian shores. Two well-
known circulation patterns were highlighted: one character-
ized by a low departing from midwestern Europe and moving
southeast (referred to as WP#2); the other forming in the lee
of the Atlas Mountains and crossing the Mediterranean Sea
northeasterly (referred to as WP#1).

When extreme events are classified according to their me-
teorological origin, there is great confidence in working with
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homogeneous samples, thus being in compliance with the
main hypothesis underlying the EVA (Mathiesen et al., 1994;
Coles, 2001). As such, return levels can be computed inde-
pendently for the events belonging to each pattern identified,
and the overall long-term distribution of Hs can be com-
puted starting from the single distributions fitted to each sub-
set with no loss of information. The method proposed relies
on a Monte Carlo simulation, and it is shown how, in our
study case, the divergences arising between the outcomes of
the usual EVA scheme and those following the initial clas-
sification of the peaks are negligible. Indeed, in general the
distributions we obtained by following the two different ap-
proaches were very similar, and in some cases a narrowing
in the confidence intervals due to the initial clustering of the
data was even achieved. However, it is not straightforward to
generalize this conclusion for every possible location, as the
difference between analyzing the different WPs populations
separately and analyzing all the data pooled together would
depend on the characteristics of the different populations at
the site.

The method, as presented here, does not contemplate the
inclusion of trends and inter-annual or intra-annual cycles.
However, the extension of the methodology in this direction
is straightforward, as the methods previously developed for
nonstationary analysis (see, e.g., Sartini et al., 2015) could
be applied without major complexities to each of the subsets
that are obtained from the classification. On the contrary, it is
not obvious how to proceed in the selection of the number of
patterns to be considered. Here this number was chosen fol-
lowing a qualitative analysis of the results, which was viable
for the case study analyzed, though this approach is not al-
ways feasible. Indeed, sometimes it might be necessary to (at
least) resort to a sensitivity analysis of the results, as long as
a quantitative methodology is not available for the definition
of the number of clusters.

Finally, it is worth mentioning that the classification of the
peaks could facilitate other aspects of the analysis not in-
cluded in this paper, as for instance the multivariate analysis
of extreme events. In such a framework, classifying the wave
fields according to the wind velocities leads to clusters of Tp
consistent with those of Hs, as the latter parameter is closely
tied to the former one (especially in the case of extreme sea
states).
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