Supplement of

Extreme wave analysis based on atmospheric pattern classification: an application along the Italian coast

Francesco De Leo et al.

Correspondence to: Francesco De Leo (francesco.deleo@edu.unige.it)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
S1. Average MSLP for the H_s peaks of WP#2. Panel A): La Spezia (B1), Δt equals 12 hours; panel B) Alghero (B2), Δt equals 12 hours; panel C): La Spezia, Δt equals 0 hours; panel D): Alghero, Δt equals 0 hours.
S2. Average MSLP for the H_s peaks in Ponza (B3). Panel A): WP#1, Δt equals 12 hours; panel B) WP#2, Δt equals 12 hours; panel C): WP#1, Δt equals 0 hours; panel D): WP#2, Δt equals 0 hours.
S3. Average MSLP for the H_s peaks in Catania (B5). Panel A): WP#1, Δt equals 12 hours; panel B) WP#2, Δt equals 12 hours; panel C): WP#1, Δt equals 0 hours; panel D): WP#2, Δt equals 0 hours.
S4. Average MSLP for the H_s peaks in Crotone (B6). Panel A): WP#1, Δt equals 12 hours; panel B) WP#2, Δt equals 12 hours; panel C): WP#1, Δt equals 0 hours; panel D): WP#2, Δt equals 0 hours.
S5. Average MSLP for the H_s peaks in Ortona (B8). Panel A): WP#1, Δt equals 12 hours; panel B) WP#2, Δt equals 12 hours; panel C): WP#1, Δt equals 0 hours; panel D): WP#2, Δt equals 0 hours.
S6. Monthly number of events for different WP. The panels show in the upper left corner the code of the location they refer to.
S7. Scatter plot of H_s and θ_m due to different WP. The panels show in the upper left corner the code of the location they refer to.
S8. Omni-WP extreme value distributions of H_s obtained from the whole set of peaks (black) and from combining single-WP distributions (red), along with 90% confidence intervals (grey shadow and red dashed lines, respectively). The panels show in the upper left corner the code of the location they refer to.