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Abstract. The region of southern Africa (SA) has a fragile
food economy and is vulnerable to frequent droughts. In-
terventions to mitigate food insecurity impacts require early
warning of droughts – preferably as early as possible before
the harvest season (typically starting in April) and lean sea-
son (typically starting in November). Hydrologic monitoring
and forecasting systems provide a unique opportunity to sup-
port early warning efforts, since they can provide regular up-
dates on available root-zone soil moisture (RZSM), a critical
variable for crop yield, and provide forecasts of RZSM by
combining the estimates of antecedent soil moisture condi-
tions with climate forecasts. For SA, this study documents
the predictive capabilities of RZSM products from the re-
cently developed NASA Hydrological Forecasting and Anal-
ysis System (NHyFAS). Results show that the NHyFAS
products would have identified the regional severe drought
event – which peaked during December–February of 2015–
2016 – at least as early as 1 November 2015. Next, it is
shown that during 1982–2016, February RZSM (Feb-RZSM)
forecasts (monitoring product) available in early November

(early March) have a correlation of 0.49 (0.79) with the de-
trended regional crop yield. It is also found that when the
February RZSM forecast (monitoring product) available in
early November (early March) is indicated to be in the low-
est tercile, the detrended regional crop yield is below nor-
mal about two-thirds of the time (always), at least over the
sample years considered. Additionally, it is shown that the
February RZSM forecast (monitoring product) can provide
“out-of-sample” crop yield forecasts with comparable (sub-
stantially better with 40 % reduction in mean error) skill to
December–February ENSO. These results indicate that the
NHyFAS products can effectively support food insecurity
early warning in the SA region. Finally, since a framework
similar to NHyFAS can be used to provide RZSM monitoring
and forecasting products over other regions of the globe, this
case study also demonstrates potential for supporting food
insecurity early warning globally.
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1 Introduction

Southern Africa (SA) is vulnerable to food insecurity.
Droughts driven by climate stressors (e.g., precipitation and
temperature) are among the important drivers of food inse-
curity (Misselhorn, 2005; Conway et al., 2015). Moreover,
anthropogenic climate change is shown to increase the like-
lihood of climate-driven flash droughts (Yuan et al., 2018).
The primary rainy season in SA spans from October to
March, which overlaps the main planting season from Oc-
tober to February (Fig. 1a). This period also covers the lean
season, when food supplies from the prior year’s harvest be-
come limited. April–July is typically the main harvest sea-
son, when the food reserve is expected to begin replenish-
ing. In several SA countries, with the Republic of South
Africa (RSA) being the main exception, typical monthly
variability in food prices closely follows this crop cycle, as
shown in Fig. 1b. The prices typically start to rise after the
harvest season and reach their peak just before or near the
start of the harvest season. This correspondence between the
prices and crop cycles highlights the region’s climate-related
sensitivity to food insecurity. In the case of below-normal
crop yield, the food prices rise even more than normal, re-
ducing access to food for the poorest of the population.

The percentage income shared by the poorest 10 % and
20 % of the population in several SA countries has not im-
proved significantly over time (not shown here). These por-
tions of the population are likely to be more food insecure in
drought years; they already use a relatively higher share of
their income on food, and in the case of price rises related
to low crop yield, their access to food becomes even more
limited.

The 2015–2016 drought event (attributed to a strong
El Niño) in SA further highlighted its vulnerability to
climate-related regional food insecurity (Archer et al., 2017;
Funk et al., 2018; Pomposi et al., 2018). This event led to a
substantial reduction in regional agricultural production – in-
cluding in the RSA, which is the main crop-producing coun-
try in the region – a reduction and rationing of water supplies,
a loss of livestock, and an increase in unemployment in the
region, and it pushed 29 million people into severe food inse-
curity (SADC, 2016). Throughout the Southern African De-
velopment Community (SADC) region in 2015–2016, cereal
production was down by − 10.2 % (varying from +61 % to
−94 % in individual member countries) relative to the previ-
ous 5-year average (SADC, 2016). Figure 1c–f show a com-
parison of national retail maize prices (in USD) in several
of the SA countries during 2015–2016 with the previous 5-
year mean prices in those countries. The prices in 2015–2016
were substantially higher than the previous 5-year mean. Of
particular importance is the price increase in RSA, where,
typically, the food prices do not vary much throughout the
year due to its general self-sufficiency in food production
as well as its international trade. The consumer price in-
dex (CPI) for food for the RSA also experienced a dras-

tic upward shift during the 2015–2016 drought year (not
shown here). In fact, based on the CPI data (available from
the United Nations Food and Agricultural Organization), the
CPI was substantially higher than that of the past 5-year
mean during the beginning of the following growing season
of 2016–2017, including in the RSA, where typically the CPI
remains fairly stable during a year. These price shocks can
dramatically impact poor households, which typically spend
60 % or more of their income on food. According to the re-
cent World Development Indicator (World Bank, 2016), in-
comes for the poorest 10 % and 20 % of households in these
countries have remained generally constant, underscoring the
depth of poverty (Fig. 2). On average, in Malawi, Mozam-
bique, Zimbabwe, and South Africa, these individuals subsist
on USD 70, 126, 288, and 716 a year, respectively.

The comparison prices shown in Fig. 1c–f and the income-
related facts (based on World Bank Development Indica-
tors) presented above highlight the severity of food inse-
curity in a regional drought event like 2015–2016. In the
2015–2016 event, food imports from the RSA – which is
the main producer and exporter of food in the region to the
other SA countries – were not enough, and international as-
sistance became crucial. This is why in June 2016, the SADC
launched a Regional Humanitarian Appeal stating that ap-
proximately 40 million people in the region required human-
itarian assistance, at a cost of approximately USD 2.4 billion
(Magadzire et al., 2017).

Mitigation of the most adverse impacts of food insecurity,
like the event of 2015–2016, requires timely and effective
early warning. An effective early warning system has two
key attributes (Funk et al., 2019): (1) the ability to provide
routine, frequent early warning of drought status and (2) the
ability to incorporate both monitoring and forecasting to best
account for the conditions up to the date of early warning
in combination with the climate outlook for the upcoming
season.

A seasonal-scale hydrologic forecasting system can poten-
tially support an early warning system, as it can provide up-
dated hydrologic forecasts on a monthly basis by account-
ing for the drought conditions as of the forecast release date
and climate outlook over the forecast period (Sheffield et al.,
2014; Shukla et al., 2014; Yuan et al., 2013). However, thus
far, the application of seasonal-scale hydrologic forecasts in
food insecurity early warning has been limited at best, with
the only other main example being the African Flood and
Drought Monitor (Sheffield et al., 2014).

On the other hand, operational, publicly available, state-
of-the-art dynamical climate forecasts have found regular
usage in guiding climate outlooks as well as assessments
of expected food insecurity. For example, the US Agency
for International Development’s Famine Early Warning Sys-
tems Network (FEWS NET; http://fews.net/, last access:
26 April 2020), the G20 Group on Earth Observations Global
Agricultural Monitoring (GEOGLAM) Crop Monitor for
Early Warning, and SADC’s Climate Service Centre (CSC)
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Figure 1. (a) Schematic representation of a typical seasonal calendar for the southern Africa region (taken from: http://fews.net/
southern-africa, last access: 26 April 2020). (b) Monthly climatology of maize prices in SA countries. The monthly mean prices are nor-
malized relative to the maximum mean monthly price for a given country, as the actual values of the mean monthly prices are different
for different countries. Comparison of mean monthly maize prices for (c) Malawi, (d) Mozambique, (e) Zimbabwe, and (f) South Africa
during the 2015–2016 event (red line) with the previous 5-year mean prices (black line). The price data are available from FAOSTAT (FAO,
http://www.fao.org/faostat/en/#home, last access: 26 April 2020).

all utilize the dynamical climate forecasts as one of their
early warning tools. Furthermore, numerous past studies
have investigated the predictability of SA climate (Meque
and Abiodun, 2014) and examined the skill of diverse ap-
proaches in forecasting, particularly of rainfall, as well as
streamflow and agricultural production in different parts of

this region (Archer et al., 2017; Cane et al., 1994; Diro, 2015;
Landman et al., 2001; Landman and Beraki, 2010; Land-
man and Goddard, 2002; Manatsa et al., 2015; Martin et
al., 2000; Sunday et al., 2014; Trambauer et al., 2015; Win-
semius et al., 2014). Historically, the El Niño–Southern Os-
cillation (ENSO) has proven to be among the main predictors
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Figure 2. Percentage of income share held by lowest 10 % and 20 %
income population in the southern Africa countries (data source: the
World Bank’s World Development Indicators).

of this region’s climate, with another important predictor be-
ing the Subtropical Indian Ocean Dipole (Hoell et al., 2016,
2017; Hoell and Cheng, 2017).

In August 2018, the new National Aeronautics and
Space Agency Hydrological Forecasting and Analysis Sys-
tem (NHyFAS), an operational seasonal hydrologic forecast-
ing system (Arsenault et al., 2020), was implemented to
support the early warning efforts of FEWS NET, building
upon existing hydrologic monitoring (McNally et al., 2017).
This study evaluates the ability of NHyFAS to support early
warning of regional food insecurity in the SA region. The
evaluation is conducted by examining the performance of
this system (i) for the 2015–2016 drought event, which led
to regional food insecurity, (ii) in explaining regional crop
yield variability in the region, and (iii) in identifying below-
normal crop yield events, which are characteristically asso-
ciated with overall lower food availability in the region and,
hence, food insecurity. Regional crop yield is used as a target
variable here, as it is among the main contributors to regional
food insecurity. It is hypothesized that if NHyFAS can skill-
fully forecast regional crop yield and identify below-normal
regional crop yields, it can successfully support the early
warning of food insecurity in the region.

As noted above and shown in Fig. 1a, April–July is typi-
cally the main harvest season, when the food reserve is ex-
pected to begin replenishing and last through the lean sea-
son, which starts in November. Below-normal food availabil-
ity during this period can lead to food insecurity. Therefore,
early warning systems aim to provide outlooks for food in-
security as far in advance of the harvest and lean season as
possible. Consequently, this study focuses on using forecast-
ing and monitoring products that are available in November

(4–5 months before the start of the harvest and about a year
before the start of the next lean season) through March (1–
2 months before the start of the harvest and about 8–9 months
before the start of the next lean season) to examine their value
in supporting early warning of food insecurity in the region.

2 Data and methodology

The hydrologic monitoring and forecasting products used in
this study come from the NHyFAS (Fig. 3). Figure 3 shows
an overview of the implementation of the NHyFAS for the
purpose of this study. We provide here a brief description
of the hydrologic models (Sect. 2.1), the model parameters
(Sect. 2.2), the input observed forcings and climate forecasts
(Sect. 2.3), and the root-zone soil moisture (RZSM) monitor-
ing and forecasting products (Sect. 2.4) used in the present
study. The reported crop yield data used in this study are de-
scribed in Sect. 2.5.

2.1 Hydrologic modeling framework

To generate hydrological forecasts, we use NASA’s
Catchment land surface model (CLSM; Ducharne
et al., 2000; Koster et al., 2000) and the Noah-
Multiparameterization (Noah-MP; Niu et al., 2011; Yang
et al., 2011) land surface model (LSM), which compute
changes in soil moisture (e.g., root zone) and groundwater
storage in response to computed surface energy and water
fluxes. These two LSMs are part of the model suite in the
Land Information System (LIS) framework (Kumar et al.,
2006) – the primary software system used to produce this
study’s forecast experiments. Both LSMs were spun up using
two cycles of forcing for the period from 1 January 1981
to 31 December 2015; then, historical open-loop (OL) runs
were generated for January 1981 through 2018. RZSM,
which is the main hydrologic variable used in this analysis,
represents the soil moisture in the top 1 m of the soil profile.
The entire depth of the soil profile is different for the
two models used in this analysis (typically about 2 m for
Noah-MP and about 4 m for CLSM).

2.2 Model parameters

In the version of CLSM used here, hydrologic and catch-
ment parameters (Ducharne et al., 2000) are based on a high-
resolution, global topographic data set (Verdin and Verdin,
1999), and soil texture (Reynolds et al., 2000) and profile
parameters are derived from the Second Global Soil Wet-
ness Project (GSWP-2; Guo and Dirmeyer, 2006) data set
and mapped to the catchment tiles. Land cover classes are
mapped from the University of Maryland Advanced Very
High Resolution Radiometer data set, and vegetation pa-
rameters include, for example, the leaf area index (LAI),
which is also derived from GSWP-2. Albedo scaling factors
are based on Moderate Resolution Imaging Spectroradiome-
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Figure 3. Overview of the NHyFAS implementation to produce RZSM monitoring and forecasting products, as used in this study.

ter (MODIS) direct and diffuse visible or near-infrared radi-
ation inputs (Moody et al., 2008).

Noah-MP vegetation parameters include the modified In-
ternational Geosphere-Biosphere Programme MODIS-based
land cover data set (Friedl et al., 2002), leaf area index, and
monthly greenness fraction (Gutman and Ignatov, 1998). The
soil texture data set is based on Reynolds et al. (2000), and
soil parameters are mapped to the varying textures. Monthly
global (snow-free) albedo (Csiszar and Gutman, 1999) and
a maximum snow albedo parameter field are also employed.
Additional details are found in Niu et al. (2011).

2.3 Input observed forcings and climate forecasts

The spin-up and OL runs used to generate the long-term
“observed” climatology of RZSM are driven with NASA’s
Modern-Era Retrospective analysis for Research and Appli-
cations, version 2 (MERRA-2; Gelaro et al., 2017), atmo-
spheric fields (e.g., 2 m air temperature, humidity). Precipi-
tation forcing comes from the US Geological Survey (USGS)
and University of California, Santa Barbara (UCSB), Climate
Hazards Center InfraRed Precipitation with Station data set,
version 2.0 (CHIRPSv2; Funk et al., 2015).

Hindcasts of RZSM are generated by forcing the hydro-
logic models with NASA’s Goddard Earth Observing Sys-
tem (GEOS) Atmosphere-Ocean General Circulation Model,
version 5 (GEOS; Borovikov et al., 2017), Seasonal-to-
Interannual Forecast System. The 11 ensemble members
of version 1 of this forecast system that were used in the
North American Multi-Model Ensemble (NMME) project
are used in the forecast portion of this study. To make the
GEOS-forecasted meteorology consistent with the meteorol-
ogy underlying the OL initial conditions, we bias-corrected
and spatially downscaled (BCSD; Wood et al., 2002) the
GEOS forecasts using the MERRA-2 and CHIRPS data sets.
The BCSD–GEOS forecast files are then ingested into LIS

to drive the LSMs and generate the dynamical hydrologi-
cal forecasts. The BCSD–GEOS hindcasts are initialized on
1 November (near the start of the planting season) and 1 Jan-
uary (middle of the planting season) of each year in 1982–
1983 to 2017–2018. Each hindcast is run for 6 months.

Hindcasts of RZSM are also generated using the ensemble
streamflow prediction (ESP) method (Day, 1985; Shukla and
Lettenmaier, 2011; Shukla et al., 2013), where the models
are forced with resampled observed forcings (forcings that
are used to drive the OL simulation) taken from the 1982–
2010 period. The hindcasts generated using the ESP method
derive their skills from the initial hydrologic conditions only.

2.4 RZSM monitoring and forecasting products

The performance of the NHyFAS system is evaluated mainly
through its RZSM monitoring (generated from OL) and fore-
casting products. RZSM indicates the soil moisture in the top
1 m of the soil profile. Typically, the length of the roots of
crops such as maize (main crop in the region of SA) is close
to 1 m, hence the choice of RZSM as the key forecast vari-
able. Moreover, the entire depth of the soil profile is different
for the two models used in this analysis, typically about 2 m
for Noah-MP and about 4 m for CLSM; hence RZSM also
allows for a consistent way to merge soil moisture products
from both models.

Both products are generated at 0.25◦×0.25◦ spatial res-
olution and daily temporal resolution. Daily values are aver-
aged over a month to get monthly values. The monthly values
of the monitoring product are converted to percentiles rela-
tive to OL climatology over 1982–2010, and monthly val-
ues of the ensemble mean forecasting products (GEOS and
ESP based) are converted into percentiles relative to the (en-
semble mean) climatology over 1982–2010 of the respective
hindcast runs. In both cases, empirical distribution is consid-
ered to convert values to percentiles. Once gridded percentile
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values are generated, they are spatially aggregated over the
SA region (as shown in Fig. 2) to get RZSM monitoring and
forecasting products over the SA region.

2.5 Regional crop yield

The regional crop yield is calculated using country-level crop
production and area harvested reports. These reports come
from the United States Department of Agriculture Foreign
Agricultural Service (FAS) Production, Supply and Distribu-
tion (PSD) database. To compile this database, the USDA
relies on several sources, including official country statis-
tics, reports from agricultural attachés at US embassies, data
from international organizations, publications from individ-
ual countries, and information from traders both inside and
outside of the target countries. For this study, we focus only
on maize, as it is the main crop in the region and the key crop
for food security. To get regional crop yield from country-
level crop yield, we first converted country-level yield into
production using the harvested area (provided by the PSD),
added the total production, and then divided it by the sum
of the harvested area in all SA countries in our focus do-
main. The regional crop yield is detrended for the purposes
of this study to reduce the effect of any long-term changes
(e.g., technological changes) on the crop yield.

2.6 Out-of-sample crop yield forecasting

We also evaluate the NHyFAS RZSM monitoring and fore-
casting products’ performance in supporting food insecurity
early warning in SA through a series of out-of-sample crop
forecasting experiments. Specifically, we compare the accu-
racy of crop yield forecasts made with NHyFAS products
with univariate yield forecasts (using only the past yields)
and yield forecasts made with ENSO, a widely used predictor
for crop yield in this region. This evaluation has a direct im-
plication on the usage of NHyFAS products for operational
purposes, as crop yield forecasts are a common tool in food
security analysis and response (Davenport et al., 2019).

Our baseline model is a univariate (no exogenous pre-
dictors) autoregressive integrated moving average (ARIMA)
model,

y′t = φ1y
′

t−1+ . . .+φpy
′
t−p+θ1εt−1+ . . .+θqεt−q+εt , (1)

where yt is the time series of observed yields (and the ′ in-
dicates potential differencing of the time series), p is the
order of lags, φ is the autoregressive parameters, q is the
order of moving averages, θ is the moving average pa-
rameters, and ε is forecast errors from the prior periods.
ARIMA(p, d, q) models are standard and frequently used
methods for time series analysis and forecasting (Hyndman
and Athanasopoulos, 2018; Hyndman and Khandakar, 2008).
As discussed above, we compare the forecast performance of
univariate ARIMA models (Eq. 1) with ARIMA models that
also include environmental exogenous predictors, which, in

this case, are (i) December–January–February (DJF) ENSO,
(ii) the February RZSM (Feb-RZSM) (monitoring) product,
and (iii) the February RZSM forecast initialized on 1 Novem-
ber during the growing-season preceding harvested yields in
year t (e.g., 1982–1983 DJF used for 1983 yield). All mod-
els are fit using the auto.arima( ) function from the forecast
package in the R software language (R Core Team, 2018).

We use the period of 1983–2007 (25 years) as a train-
ing period and then provide “out-of-sample” forecasts of
crop yield starting in 2008. The training period always ex-
tends through the year before the target forecast year. For
example, the model fit over 1983–2008 is used to forecast
yields in 2009, the model fit over 1983–2009 is used to
forecast yield in 2010, and so on. We repeat this exercise
through 2018 and record the one-step-ahead prediction er-
ror in each iteration. In this way, we emulate the forecasting
process that food security analysts in the region go through
during every year prior to harvest.

3 Results

3.1 Performance of NHyFAS during the
2015–2016 drought event

As highlighted in Sect. 1, the 2015–2016 drought event in SA
is among the most severe in terms of drought severity and
food insecurity impacts in the last few decades. Therefore,
we begin the evaluation of the suitability of NHyFAS in sup-
porting food insecurity early warning in the SA region by
examining how this system would have performed during the
2015–2016 event. Although NHyFAS operationally provides
the seasonal forecasts every month, for the purpose of this
study, we focus on the forecast initialized on 1 November
(near the start of the planting season) and 1 January (near
the middle of the growing season) of the 2015–2016 event.
Figure 4 shows the RZSM forecasts for the growing season
made on 1 November 2015. By this time in the season, both
FEWS NET and SADC had provided early warning of poor
rainfall performance in the region (Magadzire et al., 2017).
The NHyFAS RZSM forecasts would have provided further
evidence of a looming unprecedented drought in the region.
These forecasts would have also indicated that RSA, which is
the most important country for the region’s food production,
was going to be within the epicenter of this drought event.
These forecasts, in turn, could potentially have triggered ear-
lier appropriate actions by the early warning agencies as well
as the decision makers (e.g., national governments and inter-
national relief agencies).

Later in the season, as the observed precipitation data be-
came available, RZSM monitoring products would have pro-
vided refined estimates of the spatial extent and severity of
drought in the region. Figure 4 (bottom panels) shows the
RZSM monitoring product available after each of the months
from November 2015 to February 2016. This monitoring

Nat. Hazards Earth Syst. Sci., 20, 1187–1201, 2020 www.nat-hazards-earth-syst-sci.net/20/1187/2020/



S. Shukla et al.: Improving early warning of drought-driven food insecurity in southern Africa 1193

Figure 4. Forecast (top panels) and monitoring of root-zone soil moisture (RZSM) percentiles for the months of November 2015 through
February 2016. October 2015 conditions reflect the state of RZSM during the month preceding the forecast initialization on 1 November 2015.
The RZSM monitoring product for a given month is available during the early part of the following month. The historical climatology (1982–
2010) was used to calculate percentile.

product would have provided additional proof of the drought
occurrence in the region and shown that RSA was within the
epicenter of this drought. It is important to state that even
the monitoring product can be effectively used as a predictor
of food insecurity events, as it is available before the typical
start of the harvest season (in April) and the lean season (in
November).

3.2 Performance of NHyFAS in supporting food
insecurity early warning

Next, we investigate the long-term performance of NHyFAS
in supporting food insecurity early warning by examining
how well forecasting and monitoring products available from
this system can explain historical variability in regional crop
yield of the SA region and, in particular, help identify below-
normal regional yield events. Regional crop yield is calcu-
lated by adding the yearly productions from the SA coun-
tries, then dividing it by the yearly total harvested area. The
regional crop yield is then detrended to remove the effect of
any long-term changes (such as technological changes) on
the regional yield.

First, we show in Fig. 5 how detrended crop yield corre-
lates (from early November to early March) with the monthly
RZSM monitoring product relative to how it correlates with
3-monthly seasonal precipitation and air temperature. The
results indicate that the monthly RZSM monitoring prod-
uct generally correlates better with detrended crop yield than

Figure 5. Variability in the correlation between the 3-month sea-
sonal precipitation, 3-month seasonal air temperature (AirT), and
monthly RZSM monitoring product with the detrended crop yield.
This result highlights that RZSM is potentially a better predictor of
crop yield than seasonal precipitation and AirT; also, the skill is the
highest in early March when DJF seasonal precipitation, AirT, and
February RZSM monitoring products are available.

with the seasonal precipitation or air temperature, with the
correlation reaching its peak by early March, when the Feb-
RZSM monitoring product and December–February precip-
itation and temperature are available. Feb-RZSM still shows
higher correlation than seasonal precipitation and tempera-
ture; however, the difference in correlation is not statistically
significant.

www.nat-hazards-earth-syst-sci.net/20/1187/2020/ Nat. Hazards Earth Syst. Sci., 20, 1187–1201, 2020
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Figure 6. Covariability of detrended regional yield in southern Africa, with (a) February RZSM forecasts (initialized on 1 November)
generated using ESP method and bias-corrected GEOS forecasts, (b) February RZSM forecasts (initialized on 1 January) generated using
ESP method and bias-corrected GEOS forecasts, and (c) the February RZSM monitoring product (available in early March). IC fcst stands
for initial condition of forecast.

Next, the correlation between detrended crop yield and
February RZSM forecasts (based on ESP method and
bias-corrected GEOS forecasts) initialized on 1 November
(Fig. 6a) and 1 January (Fig. 6b) is analyzed. The correla-
tion of the yield with GEOS-based February RZSM fore-
casts initialized on 1 November is 0.49, which is substantially
higher than that of ESP-based RZSM forecasts (0.16), clearly
demonstrating the added value of using GEOS-based climate
forecasts. Similarly, the correlation of yield with the GEOS-
based February RZSM forecasts initialized on 1 January
is 0.45, higher than that of the ESP-based forecasts (0.30) at
that time of the year. Moreover, the correlation of detrended
crop yield with GEOS-based February RZSM forecasts ini-
tialized on 1 November (0.49) and 1 January (0.45) is higher
than that with the RZSM monitoring product (Fig. 5) at those
times of the year (< 0.1 in early November and< 0.4 in early
January). Again, this highlights the value of using forecasts
of Feb-RZSM through early January in supporting food in-
security early warning. Figure 6c shows that the Feb-RZSM
monitoring product, which is available in early March, has
the highest correlation of 0.79 with the detrended crop yield.

Next, we examine how well the forecasting and mon-
itoring RZSM products do in providing early warning of
below-normal crop yield events. This criterion for perfor-
mance evaluation is of particular significance for food in-
security early warning in the region, as below-normal crop
yield events are the ones that generally lead to food insecu-
rity. In this case, below-normal regional crop yield events are
the events that lie in the bottom 18 (i.e., bottom half) when
detrended crop yields for the 36 years are ranked in ascend-
ing order.

We calculate the probability of below-normal crop yield
events when either the February RZSM forecast (initialized
on 1 November and 1 January) or the RZSM monitoring
product for the month of November (available in early De-
cember) through the month of February (available in early
March) is in the lowest tercile. RZSM products in this ter-
cile are those lying in the bottom 12 of the RZSM products
when ranked in ascending order. In the case of RZSM, the
ranked climatology is different for each of the forecasting
products and the monitoring products for each month. We
use the lower-tercile values of RZSM monitoring and fore-
casting products to focus on the drought years as indicated
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Figure 7. Fraction of years with below-normal regional crop yield
(based on the rank of detrended crop yield) given that the corre-
sponding RZSM forecasts (initialized on 1 November and 1 Jan-
uary) and RZSM monitoring product (available in early March)
were in the lowest tercile (based on the rank of the RZSM cli-
matology). Note that the 1 November (1 January) RZSM forecast-
based probability of ∼ 66 % (∼ 83 %) is statistically significant at
the ∼ 86 % (∼ 95 %) confidence level.

by those products. Because SA is a mostly rainfed region, the
crop yield is generally below normal during drought years, as
indicated in several recent events (2014–2015, 2015–2016,
2018–2019).

Figure 7 shows the fraction of years with below-normal
crop yield when February RZSM forecasts (made on
1 November or 1 January) were in the lower tercile (shown
by blue bars) or when monthly RZSM monitoring products
(shown by green bars) were in the lower tercile. These results
indicate that as early as 1 November, if the February RZSM
is forecasted to be in the lower tercile, there is ∼ 66 % prob-
ability of the regional crop yield being below normal (sta-
tistically significant at 86 % confidence level). This would
be 4–5 months before the start of the harvest season and
about 1 year before the start of the next lean season. The in-
ferred probability value increases to∼ 83 % when the Febru-
ary RZSM forecasts, initialized in January, are in the lower
tercile (statistically significant> 95 % confidence level). Fi-
nally, by early March, when the February RZSM monitor-
ing product is available, the inferred probability increases to
100 % (statistically significant> 95 % confidence level). In
other words, over 1982–2016, whenever the February RZSM
monitoring product for the SA region was in the lowest ter-
cile, the crop yield in the following season had been be-
low normal (based on detrended yield). This would be 1–
2 months before the start of the harvest season and about
8–9 months before the start of the next lean season.

Of course, the estimation of these probabilities is neces-
sarily limited by the small sample sizes examined; the actual
probability of low crop yield based on low February RZSM,
for example, while apparently high, is not a full 100 %. Nev-
ertheless, these results provide, overall, further evidence of
the suitability of the forecasting and monitoring products

from the NHyFAS in supporting early warning of food in-
security in the region.

3.3 Performance of NHyFAS in providing routine
operational crop yield forecasts

Finally, we evaluate the performance of NHyFAS for sup-
porting food insecurity early warning in SA by examin-
ing the accuracy of RZSM monitoring and RZSM forecast-
ing products in predicting regional crop yields. We com-
pare the crop yield forecasts made with the RZSM products
against both univariate forecasts (using only past observed
crop yields) and forecasts made with ENSO. As ENSO is a
widely used predictor for precipitation and crop yield fore-
casts in this region, we examine the added value of using
NHyFAS RZSM monitoring and forecasting products above
and beyond ENSO. All forecasts are done using ARIMA
models described in Sect. 2.6.

Figure 8 shows a comparison between the “observed”
reported crop yield (black lines) and the “out-of-sample”
(i.e., post-training period) forecasted yield (red lines) pro-
duced with a univariate model and the models using environ-
mental exogenous predictors (i) DJF ENSO, (ii) Feb-RZSM
(monitoring product), and (iii) Feb-RZSM (forecasting prod-
uct) initialized on 1 November in addition to that univariate
model.

The results indicate the following. (i) Environmental pre-
dictors such as ENSO and the NHyFAS products can make
crop yield forecasts that are more accurate than those pro-
duced using only a univariate approach. When ENSO is
used as an additional predictor (in addition to a univari-
ate model), the mean absolute error (MAE) reduces from
0.342 to 0.285 t ha−1, a ∼ 17 % reduction in error. (ii) Use
of the Feb-RZSM monitoring product has an even larger
impact, reducing the MAE by about 50 %, to 0.174 t ha−1.
(iii) Use of the Feb-RZSM forecasting product (initialized
on 1 November) has an impact similar to that of DJF ENSO.
Although the MAE is about 6 % larger when the forecast-
ing product is used rather than the ENSO predictor, the fore-
casting product has the significant advantage of being avail-
able about 4 months earlier. For comparison (not shown here)
the MAE of the Feb-RZSM forecasting product (initialized
on 1 November) is slightly smaller (∼ 6 %) than the MAE
of August–October (ASO) ENSO (also available in early
November) and is comparable to the MAE of September–
November (SON) ENSO (available in early December) as a
predictor of crop yield forecast.

Table 1 shows the number of times the observed yield is
within the 80 % confidence interval of the forecasts and the
mean spread of the confidence interval. The improvement
in performance obtained when the Feb-RZSM monitoring
product is used is clear; during 10 of the 11 years in the vali-
dation period, the observed yield falls within the 80 % confi-
dence interval, whereas this happens in only 7 years when
DJF ENSO is used as the additional predictor. The mean
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Figure 8. Comparison of the performance of a univariate model alone, ENSO (DJF), Feb-RZSM (monitoring product), and Feb-RZSM
(forecasting product) as a predictor in forecasting crop yield of southern Africa. Pink (gray) shading indicates 80 % (95 %) confidence
interval.

spread of the confidence interval associated with the use of
the Feb-RZSM monitoring product (0.70 t ha−1) is also the
smallest.

4 Discussion

This study makes a case for the application of NHyFAS’s
RZSM forecasting and monitoring products in supporting the
early warning of food insecurity in SA. It has been shown
that the successful early warning of crop yield, and especially
below-normal crop yield years, can be issued based on these
products. In this section, we address a few important caveats.

4.1 Comparison with existing drought forecasting
systems and approaches

In this study, we keep the comparison with existing fore-
casting systems and approaches limited to the comparison

of the performance of NHyFAS products with (i) ESP-based
(i.e., climatology) RZSM forecasts and (ii) ENSO-based
crop yield forecasts, both of which are commonly used ap-
proaches for drought forecasting in the region, including by
early warning providers such as FEWS NET. Comparison
against both approaches shows clear added value of using the
NHyFAS products. We could not compare the performance
of the NHyFAS with FEWS NET or SADC’s official histori-
cal forecasts for the following reasons:

i. FEWS NET’s official forecast is an outlook of food in-
security conditions (Funk et al. 2019; https://fews.net/,
last access: 26 April 2020) which is based not only
on agroclimatology (i.e., agriculture and climate con-
ditions) but also on market conditions and nutrition and
livelihood conditions. The NHyFAS forecasts that are
now being used by FEWS NET would fall into the cat-
egory of agroclimatological conditions. In fact, the goal
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Table 1. Performance of “out-of-sample” crop yield forecasting over the validation period of 2008–2018.

Univariate Univariate Univariate Univariate
model model+ model+ model+

ENSO Feb-RZSM Feb-RZSM
(monitoring) (forecast)

Mean absolute error over the validation period (t ha−1) 0.342 0.285 0.174 0.301
Number of years observed yield is within 95 % confidence interval bound 9 10 10 9
Mean spread of 95 % confidence interval (t ha−1) 1.64 1.20 1.07 1.20
Number of years observed yield is within 80 % confidence interval bound 9 7 10 7
Mean spread of 80 % confidence interval (t ha−1) 1.07 0.78 0.70 0.78

of the evaluation of the NHyFAS forecasts is to establish
whether NHyFAS forecasts can be suitable agroclima-
tological forecast inputs for FEWS NET to guide the
development of food insecurity outlook assessments.
Also, the FEWS NET food insecurity outlook is partly
based on subjective assessments, in some ways similar
to the US Drought Monitor (Svoboda et al., 2002) or
US Seasonal Drought Outlook, in addition to quantita-
tive assessments such as agroclimatological forecasts.
Finally, FEWS NET’s archive of food insecurity out-
looks currently extends back only to mid-2011.

ii. SADC CSC issues probabilistic seasonal-scale rainfall
forecasts. These forecasts are based on multiple mod-
els (both statistical and dynamical) as well as subjec-
tive expert assessments, which makes comparison with
purely quantitative products inappropriate. Addition-
ally, the archive of purely quantitative forecasts from
SADC CSC only goes back to 2017.

Finally, the NHyFAS products are intended to be used as an
addition to the existing early warning tools of FEWS NET
and SADC CSC, which are partners in the efforts described
in this study, rather than replacing any of the existing tools.

4.2 Influence of crop yield on regional food insecurity
and issues in crop yield reports

In this study, it is assumed that when the SA region faces
a production shortfall, the regional food insecurity is likely
to rise. This was certainly the case during the 20152–
2016 El Niño, the most recent major food insecurity event in
the region (SADC 2016). However, this assumption ignores
other important factors that may lead to or further worsen
food insecurity in the region, such as inadequate agricultural
inputs, price shocks (which can be global in nature), a rise in
population, conflict, limited livelihood options, stocks, etc.
Nonetheless, the direct relationship of crop yield with the in-
terannual variability in available moisture makes RZSM an
important variable for food security monitoring, and, thus, it
is of keen interest to early warning systems like FEWS NET,
which is presently the primary end user of the NHyFAS. Crop
yield early warning based on the NHyFAS products is also

directly relevant to international collaborative efforts like
the Group on Earth Observations Global Agricultural Mon-
itoring (GEOGLAM) initiative (Becker-Reshef et al., 2010,
2020) and, particularly, to Crop Monitor for Early Warning
(https://cropmonitor.org/, last access: 26 April 2020), which
provides monthly assessments of crop conditions for the
countries most vulnerable to food insecurity. Such assess-
ments are key to reducing the uncertainty of crop prospects
as the growing season progresses and to providing critical ev-
idence for informing food security decisions by humanitarian
organizations and governments alike.

It is also worth noting that crop yield reports can be
influenced by external factors (for example, reporting is-
sues related to methods) other than long-term agricultural,
technology-driven changes and climate interannual variabil-
ity. The effect of these factors on the regional crop yield, of
course, cannot be discounted by the detrending method em-
ployed in this study.

4.3 Reliance on single-climate-model forecasts

Finally, the results of this study are also likely affected by the
use of only one dynamical climate forecast model for driving
the seasonal hydrologic forecasting system. Adding forecasts
from more climate and hydrologic models would likely en-
hance the skill of the system (Kirtman et al., 2014; Krishna-
murti et al., 1999). The choice of one dynamical system was
made mostly for logistical purposes, since GEOS archived
and real-time forecasts include all atmospheric forcing vari-
ables needed to drive such LSMs and are available through
the NASA Goddard Space Flight Center routinely to facili-
tate operational production of NHyFAS forecasts.

5 Conclusions

The region of SA has witnessed several severe food insecu-
rity events in the last few decades. Mitigation of food insecu-
rity impact requires timely and effective interventions by na-
tional, regional, and international agencies. To support those
interventions, early warning of food insecurity is needed. In
this study, we investigate the suitability of the operational
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RZSM products produced by a recently developed NASA
seasonal-scale hydrologic forecasting system, NHyFAS, in
supporting food insecurity early warning in this region.

The key findings of this study are as follows. (i) The
NHyFAS products would have identified the regional se-
vere 2015–2016 drought event (which peaked in December–
February) at least as early as 1 November 2015. (ii) Febru-
ary RZSM forecasts produced as early as 1 November (4–
5 months before the start of harvest and about 1 year be-
fore the start of the next lean season) can explain the in-
terannual variability in regional crop yield production with
moderate skill (correlation 0.49). (iii) Use of dynamical cli-
mate forecasts adds to the skill (relative to the skill coming
from the initial hydrologic conditions alone) in predicting re-
gional crop yield through the prediction of February RZSM.
(iv) The February RZSM monitoring product, available in
early March (1–2 months before the start of harvest and 8–
9 months before the start of the next lean season) can explain
the variability in regional crop yield with high skill (corre-
lation of 0.79). (v) When the February RZSM forecast (ini-
tialized on 1 November) is found to be in the lowest tercile,
the subsequent detrended regional crop yield is below normal
about 66 % of the time (statistical significance level∼ 86 %),
and, likewise, when the February RZSM monitoring product
is in the lowest tercile, the subsequent crop yield is (for a
limited set of samples considered) always below normal (sta-
tistical significance level> 95 %). (vi) The February RZSM
monitoring product can provide “out-of-sample” crop yield
forecasts with higher skill than DJF ENSO (38 % reduction
in mean error relative to DJF ENSO), whereas the February
RZSM forecasting product, available in early November, can
provide crop yield forecasts with comparable skill (∼ 6 % in-
crease in mean error relative to DJF ENSO).

The NHyFAS products described here were first gener-
ated in August 2018 for operational applications by FEWS
NET. As described in much detail in Funk et al. (2019), each
month, FEWS NET’s regional scientists (located in east-
ern, western, and southern Africa) review the latest products
ahead of the FEWS NET’s monthly climate discussions. The
NHyFAS products, in addition to other early warning tools,
are used to support or revise the assumptions of climate and
hydrologic conditions in the upcoming season. The updated
assumptions are then passed on to food analysts for the re-
gion in order to help inform needed relief actions. This study
demonstrates the value of the NHyFAS products in support-
ing food insecurity early warning in the SA region. It is worth
mentioning that since NHyFAS currently covers the regions
of Africa and the Middle East, the NHyFAS products are
applicable for food insecurity early warning in the rest of
Africa and the Middle East as well. Based on this study, it
is postulated (future research pending) that NHyFAS RZSM
products can be particularly effective for the rainfed agricul-
ture regions and seasons which are not known to have strong
teleconnection (e.g., with ENSO), as in the SA region. Fi-
nally, since the data sets and models used to implement the

NHyFAS are available globally, a similar seasonal RZSM
monitoring and forecasting framework can be developed at a
global scale to support food insecurity early warning in other
rainfed regions across the globe.

Code and data availability. Crop yield, production, and con-
sumption data were obtained from USDA FAS’s PSD:
https://apps.fas.usda.gov/psdonline/app/index.html#/app/home
(last access: 26 April 2020). Average price data were obtained from
FAO’s FAO STATS database http://www.fao.org/faostat/en/#home
(last access: 26 April 2020). World Bank Development Indicators
were downloaded from https://data.worldbank.org/indicator/
(last access: 26 April 2020). GEOS forecast data sets are
generated and supported by NASA’s Global Modeling and As-
similation Office (GMAO). Model source code can be found at
NASA’s Land Information System’s GitHub repository (https:
//lis.gsfc.nasa.gov/news/latest-lis-code-now-available-github, last
access: 26 April 2020) (Kumar et al., 2006). Model parameters are
available upon request per email. The daily CHIRPS precipitation
data can be found at ftp://ftp.chg.ucsb.edu/pub/org/chg/products/
CHIRPS-2.0/global_daily/netcdf/p25/ (last access: 26 April 2020)
(Funk et al., 2015). MERRA-2 reanalysis-based atmospheric
forcings can be found through NASA’s GES DISC archive
(https://disc.gsfc.nasa.gov/datasets?keywords=(MERRA-2)
&page=1&source=Models%2FAnalysesMERRA-2, last access:
26 April 2020) (Gelaro et al., 2017). NHyFAS forecasts, in the form
of maps, can be found here: https://lis.gsfc.nasa.gov/projects/nhyfas
(last access: 26 April 2020). As of now, NHyFAS forecast data sets
are not publicly accessible.
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