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Abstract. Flood risk management generally relies on eco-
nomic assessments performed by using flood loss models of
different complexity, ranging from simple univariable mod-
els to more complex multivariable models. The latter ac-
count for a large number of hazard, exposure and vulnera-
bility factors, being potentially more robust when extensive
input information is available. We collected a comprehensive
data set related to three recent major flood events in northern
Italy (Adda 2002, Bacchiglione 2010 and Secchia 2014), in-
cluding flood hazard features (depth, velocity and duration),
building characteristics (size, type, quality, economic value)
and reported losses. The objective of this study is to compare
the performances of expert-based and empirical (both uni-
and multivariable) damage models for estimating the poten-
tial economic costs of flood events to residential buildings.
The performances of four literature flood damage models of
different natures and complexities are compared with those
of univariable, bivariable and multivariable models trained
and tested by using empirical records from Italy. The uni- and
bivariable models are developed by using linear, logarithmic
and square root regression, whereas multivariable models are
based on two machine-learning techniques: random forest
and artificial neural networks. Results provide important in-
sights about the choice of the damage modelling approach for
operational disaster risk management. Our findings suggest
that multivariable models have better potential for produc-
ing reliable damage estimates when extensive ancillary data
for flood event characterisation are available, while univari-
able models can be adequate if data are scarce. The analysis
also highlights that expert-based synthetic models are likely

better suited for transferability to other areas compared to
empirically based flood damage models.

1 Introduction

Among all natural hazards, floods cause the highest eco-
nomic losses in Europe (EEA, 2010; EASAC 2018). In Italy
alone, a country with the largest absolute uninsured losses
among EU countries (Alfieri et al., 2016; EEA, 2016; Pa-
protny et al., 2018), about EUR 4 billion of public money
was spent over a 10-year period to compensate for the dam-
age inflicted by major extreme hydrologic events (ANIA
2015). From 2009 to 2012, the recovery funding amounted
to about EUR 1 billion per year: about half of the total es-
timated damage of about EUR 2.2 billion (Zampetti et al.,
2012). In this context, and being compulsory in the EU Flood
Directive (2007/60/EC) and the Sendai Framework for Dis-
aster Risk Reduction (Mysiak et al., 2013, 2016), sound and
evidence-based flood risk assessments should support the de-
velopment and implementation of cost-effective flood risk re-
duction strategies and plans.

Several approaches of varying complexity exist to esti-
mate potential losses from floods, depending mainly on the
category of damage (e.g. direct impacts or secondary ef-
fects, tangible or intangible costs) and the scale of application
(i.e. macro-, meso- or micro-scale) (Apel et al., 2009; Carrera
et al., 2015; Hallegatte, 2008; Koks et al., 2016; de Moel et
al., 2015). Direct tangible damages to assets are typically as-
sessed by using simple univariable models (UVMs) that rely
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on deterministic relations between a single descriptive vari-
able (typically maximum water depth) and the economic loss
mediated by the type or value of buildings or land cover di-
rectly affected by a hazardous event (Huizinga et al., 2017;
Jongman et al., 2012; Jonkman et al., 2008; Merz et al., 2010;
Messner et al., 2007; Meyer and Messner, 2005; de Moel and
Aerts, 2011; Scawthorn et al., 2006; Smith, 1994; Thieken et
al., 2009). Empirical, event-specific damage models are de-
veloped from observed flood loss data. A major drawback of
empirically based damage models is their low transferability
to other study areas or regions, as significant errors are often
verified when these are used to infer damage in other regions
than those for which they were built (Amadio et al., 2016;
Apel et al., 2004; Carisi et al., 2018; Hasanzadeh Nafari et
al., 2017; Jongman et al., 2012; Merz et al., 2004; Scorzini
and Frank, 2017; Scorzini and Leopardi, 2017; Wagenaar et
al., 2016). Synthetic models, on the other hand, are based on
“what-if analyses”, which rely on expert-based knowledge in
order to generalise the relation between the magnitude of a
hazard event and the resulting damage estimate. That means
synthetic models have a higher level of standardisation and
thus are better suited for both temporal and spatial transfer-
ability (Smith, 1994; Merz et al., 2010; Dottori et al., 2016).

Both empirical and synthetic models can be configured
as uni- or multivariable. The vast majority of univariable
flood damage models account for water depth as the only
explanatory variable to explain the often complex relation-
ship between the magnitude of a flood event and the re-
sulting damages; however, other parameters may influence
the flood damage process, such as flow velocity (Kreibich
et al., 2009), flood duration and water contamination (Moli-
nari et al., 2014; Thieken et al., 2005), just to name a few.
In addition, non-hazard factors can be significantly differ-
ent from one place to another, such as the type and quality
of buildings, presence of basements, density of dwellings,
early warning systems and precautionary measures (Cam-
merer et al., 2013; Carisi et al., 2018; Figueiredo et al., 2018;
Kreibich et al., 2005; Merz et al., 2013; Penning-Rowsell et
al., 2005; Pistrika and Jonkman, 2010; Schröter et al., 2014;
Smith, 1994; Thieken et al., 2008; Wagenaar et al., 2017b).
Multivariable models (MVMs) can account for such addi-
tional factors and thus are able to adapt to the character-
istics of a specific event and location. Therefore, they are
better-suited for describing the complexity of the flood dam-
age process and being transferred to other contexts (Apel et
al., 2009; Elmer et al., 2010; Schröter et al., 2014; Wage-
naar et al., 2018). Common techniques applied in the context
of MVM are machine learning (e.g. artificial neural networks
and random forests) (Merz et al., 2013; Spekkers et al., 2014;
Kreibich et al., 2017; Carisi et al., 2018), Bayesian networks
(Vogel et al., 2013) and Tobit estimation (Van Ootegem et al.,
2015). Moreover, some MVMs support probabilistic analysis
of damage (Dottori et al., 2016; Essenfelder, 2017; Wagenaar
et al., 2017a). MVMs need to be validated against empirical
records from the region where they are applied in order to

produce reliable estimates (Hasanzadeh Nafari et al., 2017;
Molinari et al., 2014, 2019; Scorzini and Frank, 2017; Zhou
et al., 2013). However, greater sophistication of MVMs re-
quires more detailed hazard, exposure and loss description.
Due to the lack of consistent and comparable observed flood
data, these kinds of models are still rarely applied. This is
why it is necessary to compile comprehensive, multivari-
able data sets with a detailed catalogue of flood events and
their impacts (see Amadio et al., 2016; Molinari et al., 2014;
Scorzini and Frank, 2017).

Our study contributes to this end by assembling detailed
data on three recent flood events in northern Italy. For each
event, our data set comprises the following micro-scale data:
(1) hazard characterisation derived from observational data
and/or hydraulic modelling, (2) high-resolution exposure in
terms of location, size, typology, economic value, etc. ob-
tained from multiple sources, and (3) declared costs per
damage category. By building upon this extensive data set,
we employ supervised-learning algorithms to explore the
parameters of hazard, exposure and vulnerability and their
influence on damage magnitude. We test linear, logarith-
mic and square root regression to select the best-suited uni-
variable (UVM) and bivariable (BVM) models and two su-
pervised machine-learning algorithms, namely random for-
est (RF) and artificial neural networks (ANNs), for training
and testing the empirical MVMs. The models developed on
the three case studies considered provide a benchmark for
testing the performance of four literature models of differ-
ent nature and complexity, specifically developed for Italy.
The results of this study provide important insights for under-
standing the feasibility and reliability of flood damage mod-
els as practical tools for predictive flood risk assessments in
Italy.

2 Study area

With an area of 46 000 km2, the Po Valley is the largest con-
tiguous floodplain in Italy, extending from the Alps in the
north to the Apennines in the south-west and the Adriatic
Sea to the east. It comprises the Po River basin, the eastern
lowlands of Veneto and Friuli and the south-eastern basins
of Emilia–Romagna. The Po Valley is one of the most devel-
oped and populated areas in Italy, generating about half of
the country’s gross domestic product (AdBPo, 2006). In the
lower part of the Po River, flood-prone areas are protected
by a complex system of embankments and hydraulic works
that are part of the flood defence system in the Po Valley, ex-
tending for almost 3000 km as a result of a tradition of river
embanking lasting centuries (Govi and Turitto, 2000; Lasto-
ria et al., 2006; Masoero et al., 2013). However, flood protec-
tion structures generate a false sense of security and low-risk
awareness among the floodplain residents (Tobin, 1995). As
a result, exposure has steadily increased in flood-prone ar-
eas of the Po Valley (Domeneghetti et al., 2015). Records
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Figure 1. Case studies in northern Italy (Po Valley). 1 is Adda River flooding the town of Lodi, 2002; 2 is Bacchiglione River flooding
the province of Vicenza, 2010; 3 is Secchia River flooding the province of Modena, 2014. Flooded buildings for which damage records are
available are shown in black.

of past flood events (1950–1995) maintained by the National
Research Council (Cipolla et al., 1998) show that more than
3300 individual locations were affected by approximately
300 flood events within the Po Valley.

Three of the most recent flood events within the Po Val-
ley (Fig. 1) have been chosen as case studies for this anal-
ysis: the 2002 Adda flood that affected the province of Lodi
(Lombardy) (1), the 2010 Bacchiglione flood which involved
the area of Vicenza (2) and the 2014 Secchia flood in the
province of Modena (3). All three locations were subject to
frequent flooding between 1950 and 2000, according to the
historical catalogue. A short description of these three events
is provided hereafter to aid in understanding the dynamics
and impacts of each flood.

2.1 Adda 2002

On 27 November 2002, the province of Lodi suffered a
flood caused by the overflow of the Adda River. The flood
wave reached a record discharge of about 2000 m3 s−1, cor-
responding to a return period of 100 years (Rossetti et
al., 2010). The river overflowed the embankments and first
flooded the rural area and then the residential and commer-
cial areas within the capital town of the province, Lodi. The
low-speed floodwaters rose to 2.5–3 m. The inundation lasted
for about 24 h and affected a large area of the Adda flood-
plain, including 5.5 ha of residential buildings. No casualties
were reported, but several families were evacuated during

the emergency and important service nodes, such as hospi-
tals, were severely affected. The reported damage to residen-
tial properties, commercial assets and agriculture added up
to EUR 17.7 million, of which EUR 7.8 million is related to
residential buildings.

2.2 Bacchiglione 2010

From 31 October to 2 November 2010, persistent rainfall
affected the pre-Alpine and foothill areas of the Veneto re-
gion, exceeding 500 mm in some locations (ARPAV, 2010).
As a result, about 140 km2 of land was flooded, involving
130 municipalities (Belcaro et al., 2011). The Bacchiglione
River, in the province of Vicenza, was particularly nega-
tively affected. Heavy precipitation events and early snow
melting increased the hydrometric levels of the Bacchiglione
River and its tributaries, surpassing historical records (Bel-
caro et al., 2011). On the morning of 1 November, the wa-
ter flowing at 330 m3 s−1 opened a breach on the right levee
of the river, flooding the countryside and the settlements
of Caldogno, Cresole and Rettorgole with an average water
depth of 0.5 m (ARPAV, 2010). Then the river overflowed
downstream towards the city of Vicenza, which was inun-
dated up to its historic centre. The inundation lasted about
48 h and its extent was about 33 ha, 26 ha of which con-
sisted of agricultural land and 7 ha of urban areas. The to-
tal damage, including residential properties, economic activ-
ities, agriculture and public infrastructures, was estimated to

www.nat-hazards-earth-syst-sci.net/19/661/2019/ Nat. Hazards Earth Syst. Sci., 19, 661–678, 2019



664 M. Amadio et al.: Testing empirical and synthetic flood damage models: the case of Italy

be about EUR 26 million, while dwellings alone accounted
for EUR 7.5 million (Scorzini and Frank, 2017).

2.3 Secchia 2014

In January 2014 severe rainfall lasted 2 weeks in the cen-
tral area of the region of Emilia–Romagna, discharging the
annual average amount of rain in just a few days. In the
early morning of 19 January, the water started to overflowed
a section (10 m) of the of the right levee of the Secchia
River, which stands 7–8 m above the floodplain. Later that
morning the levee breached at its top by 1 m, flooding the
countryside. After 9 h, the entire levee section was destroyed
for a length of 80 m, spilling 200 m3 s−1 and flooding about
6000 ha of rural land (D’Alpaos et al., 2014). Seven munici-
palities were affected, with the small towns of Bastiglia and
Bomporto suffering the largest impacts. Both towns, includ-
ing their industrial districts, remained flooded for more than
48 h. The total volume of water inundating the area was esti-
mated to be about 36 million m3, with an average water depth
of 1 m (D’Alpaos et al., 2014). The economic cost inflicted
on residential properties, according to damage declaration,
amounted to EUR 36 million.

3 Materials and methods

3.1 Data description

We first collected detailed and uniform data portraying haz-
ard and exposure in the areas affected by the three events
in order to evaluate their relationship with impacts. Several
data sets were compiled from different sources, harmonised
and geographically projected to the building level (i.e. micro-
scale) for each one of the three study areas. The data set com-
prises the following:

– detailed hazard data, including flood extent, depth, du-
ration and flow velocity;

– high-resolution spatial exposure data, including type,
location and value of affected buildings;

– comprehensive vulnerability data, including the charac-
teristics of buildings and dwellings in terms of material,
quality and age;

– reported damage in terms of replacement and recon-
struction costs.

The main hazard features (extent, depth, flow velocity and
duration) were obtained from flood maps produced by 2-D
hydraulic models based on observations performed during
and after the events. In detail, the flood simulation for the
Adda River was produced by means of a River2D model
(Steffler and Blackburn, 2002) using a 10 m computational
mesh based on a high-resolution lidar DEM (Scorzini et al.,
2018). The Bacchiglione flood was simulated by using the

1-D–2-D model Infoworks RS (Beta Studio, 2012). The 1-
D river network geometry resulted from a topographic sur-
vey of cross sections, while the 2-D floodplain morphol-
ogy (5 m resolution) was obtained from lidar. The reliabil-
ity of the simulations for the Adda and Bacchiglione floods
was verified by using hydrometric data, aerial surveys of in-
undated areas and photos/videos from the affected popula-
tion (Rossetti et al., 2010; Scorzini et al., 2018; Scorzini
and Frank, 2017). The Secchia flood event was simulated
by using an innovative, time-efficient approach (Vacondio et
al., 2016), which integrated both river discharge and flood-
plain characteristics in a parallel computation. The simula-
tion was performed on a 5 m grid and its results were vali-
dated against several field data and observations, including a
high-resolution radar image (Vacondio et al., 2014, 2017).

The information needed for characterising exposure was
collected from a variety of sources and then spatially pro-
jected to get a georeferenced data set for each case study.
The footprints of buildings were obtained from the Open-
StreetMap database (Geofabrik GmbH, 2018) and associ-
ated with the official data set of addresses. The land cover
was freely available as perimeters classified by the CORINE
legend (fourth level of detail) (Feranec and Otahel, 1998)
obtained from Regional Environmental Agencies databases.
Land cover information was used to distinguish dwellings
from other types of buildings (industrial, commercial, etc.).
In addition, indicators for building characteristics (Table 1)
were selected from the database of the 2011 population cen-
sus (ISTAT, 2011). Reconstruction and restoration costs per
EUR m−2 were obtained for the case study areas from the
CRESME database (CRESME/CINEAS/ANIA, 2014). They
were used to convert the absolute damage values into rela-
tive damage shares. We chose to measure impacts in relative
terms so as to make them easier to compare through differ-
ent times (inflation effect) and places (different currencies).
Empirical damage records were gathered from local admin-
istrations after the flood events in relation to household street
numbers. The records falling outside the simulated flood ex-
tents were filtered from the data set. Each record includes
claimed, verified and refunded damage to residential build-
ings. Since actual compensation often covered only a frac-
tion of the damage costs, claimed damage was preferred in
order to gauge the economic impact (see Carisi et al., 2018).
We restricted our analysis on direct monetary damage to the
structures of residential buildings, excluding furniture and
vehicles. Economic losses, building values and construction
costs for the three events were scaled to 2015 euro inflation
values.

3.2 Damage model overview

Empirical damage models are drawn based on actual data
collected from specific events (e.g. Luino et al., 2009; Hasan-
zadeh Nafari et al., 2017); in some regions they represent the
only knowledge base for the assessment of flood risk. How-

Nat. Hazards Earth Syst. Sci., 19, 661–678, 2019 www.nat-hazards-earth-syst-sci.net/19/661/2019/



M. Amadio et al.: Testing empirical and synthetic flood damage models: the case of Italy 665

ever, they carry a large uncertainty when employed in differ-
ent times and places (Gissing and Blong, 2004; McBean et
al., 1986). Instead, synthetic models are based on a valuation
survey which assesses how the structural components are dis-
tributed in the height of a building (Barton et al., 2003; Oliv-
eri and Santoro, 2000; Smith, 1994). In such expert-based
models, the magnitude of potential flood loss is estimated
based on the vulnerability of structural components via a
“what-if” analysis by evaluating the corresponding damage
based on building and hazard features (Gissing and Blong,
2004; Merz et al., 2010). Most empirical and synthetic mod-
els are UVMs based on water depth as the only predictor
of damage, yet recent studies (Dottori et al., 2016; Schröter
et al., 2014; Wagenaar et al., 2018) suggest that MVMs de-
veloped using expert-based or machine-learning approaches
outmatch the performances of customary univariable regres-
sion models. However, the development of MVMs requires
a comprehensive set of data in order to correctly identify
complex relationships among variables. Models can be fur-
ther classified in relation to the scale of their development
and application (de Moel et al., 2015): “micro-scale” usu-
ally refers to a model built to account for impacts on indi-
vidual building components, and it is commonly applied for
local assessment; “meso-scale” refers to sub-national analy-
ses, which commonly rely on data aggregated on provincial
or regional administrative units; “macro-scale” concerns as-
sessments at national or global level.

3.3 Models from the literature

There are few models in the literature that are dedicated to the
economic assessment of flood impacts over Italian residen-
tial structures (see e.g. Oliveri and Santoro, 2000; Huizinga,
2007; Luino et al., 2009; Dottori et al., 2016). All such mod-
els have been developed independently by using different ap-
proaches, assumptions, scale and base data. The first model
selected for testing (Luino et al., 2009) is an empirical UVM
based on the official impact data collected at micro-scale af-
ter the flash-flood event of May 2002 in the Boesio Basin,
in Lombardy. One stage-damage curve was generated for
structural damage to the most common building type in the
area by using loss data measured after the flood, combined
with estimates of water depth from an 1-D hydraulic model.
In this model, the estimation of building value is based on
its geographical location, use and typology, based on mar-
ket value quotations by the official real estate observatory
of Italy (Agenzia delle Entrate, 2018). The second model
(OS – Oliveri and Santoro, 2000) is a synthetic UVM de-
veloped for a study performed at the micro-scale in the city
of Palermo (Sicily). The model describes damage in relation
to water depth and consists of two curves, one for two-storey
buildings and the other for those taller than two storeys. It
considers water stage steps of 0.25 m for each stage, and
the model computes the overall replacement cost as the re-
sult of damage over different components (internal and ex-

ternal plaster, fixtures, floors and electrical appliances), plus
the expenses for dismantling the damaged components. This
model is based on an estimate of the average reconstruc-
tion value of exposed properties, a hydraulic simulation of
potential flood hazard and expert-based assumptions about
the damage process, but it has not been validated on empir-
ical damage data. The third model we included in our anal-
ysis is part of a stage-damage curve database developed for
the meso-scale by the EU Joint Research Centre (Huizinga,
2007; Huizinga et al., 2017) on the basis of an extensive lit-
erature survey. Damage curves are provided for a variety of
assets and land use classes on the global scale by normal-
ising the maximum damage values in relation to country-
specific construction costs. These are obtained by means of
statistical regressions with socio-economic development in-
dicators. The JRC curves are suggested for application at the
supranational scale but can be a general guide for making
assessments at the meso-scale in countries where specific
risk models are not available. We selected the curve provided
for Italian residential buildings (JRC-IT) to be tested on our
data set, although JRC curves have already been tested at the
micro-scale in Italy, revealing significant uncertainty in their
estimates (Amadio et al., 2016; Carisi et al., 2018; Hasan-
zadeh Nafari et al., 2017; Scorzini and Frank, 2017).

The fourth model considered is INSYDE, In-depth Syn-
thetic Model for Flood Damage Estimation (Dottori et al.
2016), which is a synthetic MVM developed for residential
buildings and released as open-source R script. Repair or re-
placement costs are modelled by means of analytical func-
tions describing the damage processes for each component
as a function of hazard and building characteristics, by using
an expert-based “what-if” approach at the micro-scale. Haz-
ard features include physical variables describing the flood
event at building location, e.g. water depth, flood duration,
presence of contaminants and sediment load.

Indicators related to exposure and vulnerability include
building characteristics such as geometry and features.
Building features affect cost estimations either by modify-
ing the damage functions or by affecting the unit prices of
the building components by a certain factor. Damage cate-
gories include clean-up, removal costs and damage to finish-
ing elements such as windows, doors, wirings and installa-
tions (Fig. 2). The model adopts probabilistic functions for
some of the building components, for which it is difficult
to define a deterministic threshold of damage occurrence in
relation to hazard parameters. The curves are calibrated on
damage micro-data surveyed from a flood event in central
Italy (Umbria) (Molinari et al., 2014). Despite the large num-
ber of inputs, the model proved to be adaptable to the actual
available knowledge of the flood event and building charac-
teristics (Molinari and Scorzini, 2017). The list of explicit
inputs accounted for by the INSYDE model is adopted to se-
lect the variables accounted for by all MVMs assessed in our
analysis (Table 1).
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Table 1. List of variables included in the multivariable analysis.

Variable Description Source Unit Name

Hazard features

Water depth Maximum depth Hydro model m he
Flow velocity Maximum velocity Hydro model m s−1 v
Duration Hours of inundation Hydro model h d

Exposure and vulnerability of buildings

Replacement value Economic value of the building structure CRESME EUR m−2 RV
Area and perimeter Footprint area and external perimeter OSM/CTR m2, m FA, EP
Basement Presence (1) or absence (0) of basement CRESME – B
Number of storeys 1, 2, 3 or more than 3 storeys Census/inspection – NF
Building type Flat (1), semi-detached (2) or detached (3) Census/inspection – BT
Building structure Bricks (1) or concrete (2) Census/inspection – BS
Finishing level Low (0.8), medium (1) or high (1.2) Census/inspection – FL
Conservation status Bad (0.9), normal (1) or good (1.1) Census/inspection – CS

Observed damage

Damage claims Private and shared structural parts Official survey EUR D

Figure 2. Examples of damage curves in relation to water depth
produced by INSYDE for riverine floods in relation to a building
with FA= 100 m2, NF= 2, BT= 3, BS= 2, FL= 1, YY= 1990
and CS= 1.

3.4 Models trained on observed records

This section provides an overview of the empirical dam-
age models obtained from our events data set, namely two
supervised-learning algorithms (random forest, artificial neu-
ral network) and three uni- and bivariable regression mod-
els used to assess the importance of variables (listed in Ta-
ble 1) as damage predictors. Trained models share the same
sampling approach for validation: the observation data set is
split into three parts, two-thirds of which are used to train the
model and one-third of which is for validation. This process
is iterated 1000 times, scrabbling the data and resampling
the training set at each cycle. The output takes the mean of
all iterations and provides a curve which represents the em-
pirical damage relationship for the three events. This cross-

validation approach had previously been employed in Hasan-
zadeh Nafari et al. (2017) and in Seifert et al. (2010) in order
to optimise the statistical utility of the collected sample.

3.4.1 Multivariable models: supervised-learning
algorithms

A probabilistic approach is required in damage estimation
in order to control the effects of data variability on the
model uncertainty. This is useful for overcoming the limi-
tations associated with the choice of a single model and in-
creasing the statistical value of the analysis (Kreibich et al.,
2017). The algorithms we employed to deal with the empir-
ical data share an iterative scrambling and resampling ap-
proach (1000 repetitions) in order to draw the confidence in-
terval of the models independently from source data variabil-
ity. For the set-up of empirically based MVMs we selected 10
variables from those listed in Table 1, excluding those with
small variability (basement, conservation status) or those for
which an adequate level of detail was not possible to ob-
tain in our case studies. These 10 variables serve as input
for two supervised machine-learning algorithms, namely RF
and ANN, described in the next paragraphs. Both algorithms
were trained on our empirical data set and produced a dis-
tribution of estimates for each record, from which the mean
value was calculated.

Random forest

The RF is a data mining procedure, a tree-building algorithm
that can be used for classification and regression of con-
tinuous dependent variables (CART method – see Breiman,
1984), like the one used by Merz et al. (2013). RF has nu-
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Figure 3. Example of one of the regression trees produced by the random forest model.

merous advantages, such as accuracy of prediction, tolerance
of outliers and noise, avoidance of overfitting problems and
no need to make assumptions about independence, distribu-
tion or residual characteristics. Because of this, it has already
been employed in the context of natural hazards, including
earthquake-induced damage classification (Tesfamariam and
Liu, 2010), flood hazard assessment (Wang et al., 2015) and
flood risk (Carisi et al., 2018; Chinh et al., 2015; Kreibich et
al., 2017; Merz et al., 2013; Spekkers et al., 2014).

We used the algorithm implemented in the R package Ran-
domForest by Liaw and Wiener (2002). The random forest
algorithm builds and combines many decision trees (500 in
our case), where each tree has a non-linear regression struc-
ture, recursively splitting the input data set into smaller parts
by identifying the variables and their splitting values, which
maximises the predictive accuracy of the model. The tree
structure has several branches, each one starting from the
root node and including several leaf nodes, until either a
threshold for the minimum number of data points in leaf
nodes is reached, or no further splitting is possible (see Liaw
and Wiener, 2002 for details about the default values used,
e.g. the size of the leaves). The minimum number of obser-
vations per leaf is five. Each estimated value represented by
the resulting terminal node of the tree answers the partition
question asked in the previous interior nodes and depends on
the response variable of all the parts of the original data set
that are needed to reach the terminal node (Merz et al., 2013).
In order to reduce the uncertainty associated with the selec-
tion of a single tree, the RF algorithm (Breiman, 2001) cre-
ates several bootstrap replicas of the learning data and grows
regression trees for each subsample, considering a limited
number of variables at each split (normally, this number is
equal to the square root of the number of the total variables).
This will result in a great number of regression trees, each
based on a different (although similar) set of damage records
and each leaving out a different number of variables at each
split. The mean value among all predictions of the individ-
ual trees is chosen as the representative output. An exam-

ple of a built tree for the present study is shown in Fig. 3.
Another important strength of RF is its capability to evalu-
ate the relative importance of each independent variable in
the tree-building procedure, i.e. in our case, in representing
the damage process. By randomly simulating the absence of
one predictor, the RF algorithm calculates the model’s per-
formance decrease and thus the importance of the variables
in the prediction.

Artificial neural network

ANNs are mathematical models based on non-linear, par-
allel data processing (Haykin, 2001). They have been ap-
plied in several fields of research, such as hydrology, re-
mote sensing and image classification (Campolo et al., 2003;
Giacinto and Roli, 2001; Heermann and Khazenie, 1992).
The model used in this study (Essenfelder, 2017) consists of
a multi-layer perceptron (MLP) neural network model that
uses back-propagation as the supervised training technique
and the Levenberg–Marquardt as the optimisation algorithm
(Hagan and Menhaj, 1994; Yu and Wilamowski, 2011) (see
Fig. 4 for the model’s structure).

The ANN model evaluates the sum of squared er-
rors (SSEs) of the model outputs with regard to the targets
for each training epoch, as a way of assessing the generalisa-
tion property of a trained ANN model (Hsieh and Tang, 1998;
Maier and Dandy, 2000). The ANN runs in a multi-core con-
figuration and as a result provides an ensemble of trained
ANN models, thus is suitable for probabilistic analysis. The
input and target information are normalised by feature scal-
ing before being processed by the model, while the initial
number of hidden neurons per hidden layer is approximated
as two-thirds of the summation of the number of neurons in
the previous and subsequent layers (Han, 2002). Regarding
the activation functions, a log-sigmoid function is used for
the connection with neurons in the first and second hidden
layers, while a linear function is used for the connections
with neurons in the output layer, allowing values to be ei-
ther lower or greater than the maximum observed value in
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Figure 4. Structure of the artificial neural network model applied in this study by using two neuron (node) layers.

the target data set. This configuration is interesting, as it does
not limit the output range of the ANN model to the range of
normalised values. The input data are randomly split between
three distinct sets, namely training, validation and test. The
training data set is used to calibrate the ANN model, mean-
ing that the weight connections between neurons are updated
with respect to the data available in this data set. The learning
rate is controlled by coefficient µ: when µ is very small, the
training process approximates the Gauss–Newton optimisa-
tion algorithm (i.e. fast learning, low stability), while when
µ is very large, the training process resembles the steep-
est descent algorithm (i.e. slow learning, high stability). The
value of µ starts as 1 and is updated during each training
epoch: µ is reduced by half if the training epoch is success-
ful in reducing the SSE in the output layer; otherwise, the
value of µ is increased by a factor of 2 and a new training
attempt is performed. The validation set is utilised to avoid
the overtraining or overfitting of the ANN model, being used
to stop the training process. The test set is not presented to
the model during the training procedure, since it is used only
as a way of verifying the efficiency of a trained ANN when
stressed by new data. In order avoid any possible bias com-
ing from the random split of the original data set into training,
validation and test data sets, about 1000 training attempts are
performed, each with a different initial weight initialization
and training data set composition. The resulting ANN model
consists of an ensemble of four models, representing the best
overall results after the training procedure, which are used to
define the confidence interval.

3.4.2 Univariable and bivariable models

In order to understand if the added complexity of MVMs
brings any improvement in the accuracy of damage esti-
mates, we compare them with traditional, deterministic uni-
variable (UVM) and bivariable (BVM) regression models
that are empirically derived from the observation data set.
Considering the first (water depth) or the first two variables

(water depth and flow velocity), we investigate whether a lin-
ear, logarithmic or exponential function has the best regres-
sion fit to the records. All functions that consider water depth
are forced to pass through the origin, because most buildings
have no basement and, accordingly, no water means no dam-
age. As we did for the MVM training, we used an iteration
of 1000 scrambling and resampling cycles, which were re-
peated by using the two different sampling strategies: first
the models were trained on two-thirds of the data and vali-
dated on the remaining one-third of the records.

3.4.3 Workflow of the study

The main elements of the study are represented in the work-
flow shown in Fig. 5. The data set collected from flood events
is presented for training the UV, BV and MV models by iter-
ative cross-fold procedure. The trained RF provides the rela-
tive importance of predictive variables. Hazard and exposure
variables are then used to test the performance of both trained
and literature models. Simulated damage is compared to ob-
served costs in terms of error metrics.

4 Results and discussion

4.1 Observed damage records

Our combined data set contains records of 1158 damaged
residential buildings (Table 2). More than half of these were
damaged by the Secchia flood, which affected the largest
residential area (17.7 ha) and caused the largest total losses.
Only verified, spatially matching records are accounted for;
economic losses are scaled to 2015 euro inflation values.
Note that these losses are related to the structural damage
of residential buildings; thus, they do not represent the full
cost inflicted by these events.

Box plots in Fig. 6 show the variance of variables driv-
ing the damage. Water depths range from 0.01 to about 2 m,
with most records falling in a 0.4–1.2 m interval. Water ve-
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Figure 5. Workflow of the analyses performed in this study.

Figure 6. Data distribution for four variables from the three sample case studies.

Table 2. Summary of residential buildings affected by the three
investigated flood events, according to hydraulic simulations and
damage claims.

Case study Affected Flood Avg. Declared
(River basin, year) buildings extent water damage

(n) (ha) depth (M EUR
(m) 2015)

Adda, 2002 270 5.5 0.8 4.7
Bacchiglione, 2010 294 7.1 0.5 7.9
Secchia, 2014 594 17.7 1 21.1

Total 1158 30.3 2.3 33.7

locities range between 0.01 and 1.5 m s−1. Footprint areas
and observed relative damages have similar average values
for all three events; however the Secchia case study presents

a longer count of records as well as the largest spread of out-
liers.

The scatter plot in Fig. 7 better shows the density of ob-
served damage records in relation to the maximum water
depth. The increase in depth corresponds to a larger range
of variability in economic damage.

4.2 Influence of hazard and exposure variables on
predicting flood damage

Water depth (he) is identified by RF as the most important
predictor of damage (factor 3.4) among the 10 examined vari-
ables (Fig. 8). This confirms previous findings (Wagenaar et
al., 2017b) and justifies the use of depth-damage curves for
post-disaster assessment. Flow velocity and geometric char-
acteristics of buildings (area and perimeters) are also impor-
tant (factor 2.7 to 2.3), followed by other predictors such as
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Figure 7. Scatter plot of relative damage (y axis) in relation to max-
imum observed water depth (x axis). Records from the same event
are shown with the same colour.

building value, flood duration, number of storeys, finishing
level (quality) and type of structure (factor 1 or less). Al-
though water depth is the most influential variable, it is only
moderately more important than other predictors. This sub-
stantiates efforts to test the applicability of multivariable ap-
proaches to improve damage estimation.

4.3 Performance of damage models

To assess the predictive capacity of the four selected litera-
ture models, we compare them with empirically based, data-
trained models structured on the same variables; i.e. the eval-
uation of the model performances is carried out by measur-
ing and comparing the error metrics from the aforementioned
models (JRC-IT, Luino, OS and INSYDE) to those provided
by the empirical MVMs obtained from supervised-learning
algorithms, the BVMs and traditional UVMs (depth-damage
curves) developed on our data set. The performance of each
model is evaluated by using three metrics, namely mean ab-
solute error (MAE), mean bias error (MBE) and root mean
square error (RMSE). The MAE indicates the precision of
the model in replicating the total recorded damage. The MBE
shows the systematic error of the model, which is its mean
accuracy. The RMSE measures the average magnitude of the
error, enhancing the weight of larger errors. In addition to
these error metrics, the total percentage error (E%, differ-
ence between observed and simulated damage, divided by
observed damage) is shown in the tables.

4.3.1 Literature models

As a first step, estimates of empirical and synthetic mod-
els from the literature are compared with observed damages,
and the results, in terms of total loss and total percentage er-
ror, are shown in Table 3. JRC-IT is the worst-performing
model, largely overestimating damage from the three events
(E% 143–417). This confirms previous findings about the
scarce suitability of JRC meso-scale models for application
at the micro-scale, without previous validation (as in Ama-

Figure 8. Relative importance of variables as predictors of damage
according to the RF model.

dio et al., 2016; Carisi et al., 2018; Hasanzadeh Nafari et al.,
2017; Scorzini and Frank, 2017). The UV empirical model
from Luino overestimates damage with a percentage error
ranging from 44 to 177. This probably happens because the
damage curve is based on observations from a flash-flood
event characterised by higher flow velocities and larger rela-
tive impacts, proving that empirical models should be trans-
ferred with caution on flood events with characteristics dif-
ferent from those from which the models are generated.

The two synthetic models, OS and INSYDE, perform
much better, yet show a large variability of the error factor,
depending on the case being considered. In detail, OS pro-
vides better results for the Secchia event (6 % underestima-
tion) and worse results for the Adda set (72 % overestima-
tion), resulting in an estimate that is very close to the obser-
vations in terms of percentage error of the total data set, al-
though this is mainly due to the compensation of positive and
negative errors for the different events. On the contrary, the
INSYDE model exhibits a better performance for the Bac-
chiglione event (5 % overestimation) and a worse one for the
Secchia case study (37 % overestimation). Figure 9 compares
the estimated and observed damages for the entire data set
for the two best-performing literature models (OS and IN-
SYDE).

It is worth noting that, although the accuracy of the
OS model is higher than that of the INSYDE model for the
full set, the latter is more accurate for two out of the three
case studies (i.e. Adda 2002 and Bacchiglione 2010). More-
over, the INSYDE model provides more precise results, with
an error variance 10 times lower than that of the OS model
and with maximum errors never exceeding an absolute value
of 40 %. However, INSYDE seems to consistently overesti-
mate the total damages.
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Table 3. Estimates and error from literature models compared to observed damage. Monetary values are in M EUR. E% is total percentage
error.

Case study Unit Obs. JRC-IT LUINO OS INSYDE

Adda M EUR 2015 4.7 24.3 13.0 8.1 5.6
2002 E% 417.0 176.6 72.3 19.1

Bacchiglione M EUR 2015 7.9 19.2 11.4 6.5 8.3
2010 E% 143.0 44.3 −17.7 5.1

Secchia M EUR 2015 21.1 64.5 44.1 19.8 28.8
2014 E% 205.7 109.0 −6.2 36.5

Full set M EUR 2015 33.7 108.0 68.5 34.4 42.7
E% 220.5 103.2 2.0 26.7

Figure 9. Scatter plot comparing relative damage estimates produced by the two best-performing literature models, OS (a) and INSYDE (b).
Simulated damage is on the y axis; observed damage is on the x axis. Colours represent record density.

4.3.2 Data-trained univariable, bivariable and
multivariable models

In this section, damage values estimated by empirical, data-
trained UVMs, BVMs and MVMs are compared with ob-
served damage data. The results provided by these empiri-
cally based models are used as a benchmark for understand-
ing the capability of tested literature models in predicting
damage. The error metrics chosen for comparing the model
performances are presented for relative damage based on of-
ficial estimates of replacement value; however, training and
validation were also carried out in terms of monetary dam-
age with similar results, not presented here for the sake of
brevity.

The results shown in Table 4 and Fig. 10 indicate no sig-
nificant differences between UVMs and BVMs. We can af-
firm that the inclusion of flow velocity as a complementary
explanatory variable does not improve the performance of
simple regression models in our case study. For this reason,
from now on BVMs are dropped from further discussion to
focus on a direct comparison between UVMs and MVMs.

Table 4. Error metrics for the univariable and bivariable models.

UVMs BVMs

Function MBE MAE RMSE MBE MAE RMSE

Linear −0.015 0.087 0.127 −0.012 0.087 0.126
Log −0.046 0.080 0.131 −0.046 0.080 0.131
Root −0.003 0.086 0.123 −0.002 0.086 0.123

If we take into consideration only UVMs, the MAE and
RMSE are very similar for the three tested regression func-
tions. However, the root function described by the general
formula y = b( a

√
x) has a slightly better fit (correlation is

higher, MBE is lower) compared to linear and log func-
tions. We selected the function described by the equation
y = 0.13(

√
x) as the best-performing UVM to be included

in the comparison with MVMs. Our findings confirmed pre-
vious results indicating that the curve shape described by
the root function is the most adequate for describing the
flood damage process (Buck and Merkel, 1999; Cammerer
et al., 2013; Elmer et al., 2010; Kreibich and Thieken, 2008;
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Figure 10. Testing the predictive capacity of uni- and bivariable models: estimated relative damage (y axis) from the UVM (a) and BVM (b)
are plotted against observed relative damage (x axis), according to the three tested regression functions (LINear, LOGarithmic and ROOT
function).

Penning-Rowsell et al., 2005; Scawthorn et al., 2006; Sluijs
et al., 2000; Thieken et al., 2008; Wagenaar et al., 2017b).

Figure 11 shows a direct comparison between the dam-
age estimated by the empirically based models and the ob-
served damage. The upper panel shows the output from the
UVM described by the root function. The lower panels show
the output of the RF (left) and ANN (right) algorithms. The
two machine-learning algorithms produced comparable re-
sults, with both RF and ANN models tending to slightly
overestimate the average damage (higher density of points,
in red) and to significantly underestimate extreme values
(lower density of values, in blue). This is a common result of
data-driven models, where better results are biased to high-
frequency values in comparison to low-frequency values due
to the larger sample of those data in the calibration data set.
In Fig. 10, the range of estimates, shown as min–max, de-
scribes the confidence of the model for individual records.
In the case of RF, it shows the min–max range over all the
1000 iterations of the model, while in the case of ANN only
an ensemble of the four best-suited models is shown.

Theoretically, MVMs should simulate the complexity of
the flooding mechanism better than UVMs. In our test, the
ANN model has the best fit to the data, but UVMs (depth-
damage curves) appear to perform similarly: the MVMs
describe recorded damage with a percentage error of be-
tween 0.2 and 10, while the UVM error is about 12 (see Ta-
ble 5 in the next paragraph). Accordingly, when extensive
descriptive data are not available, UVMs appear to be a rea-
sonable alternative for describing the flood damage process.
These empirically data-driven models are useful for under-
standing the capability of multivariable approaches in pre-
dicting damage, i.e. which is the range of uncertainty that
can be expected when assessing the flood damage process,
as compared to simpler models such as UVMs.

4.3.3 Comparing model performances

First, we evaluate how selected literature UVMs (JRC-IT,
Luino and OS) compare to the root function trained on the
empirical data set. Figure 12 shows the distribution and
density of observed relative damage as a function of water
depth for the full data set, together with the UV curves se-
lected for testing. This figure explains the results presented in
Sect. 4.3.1, with the JRC-IT and Luino models growing too
fast for shallow water depths, as opposed to OS (shown as
two separate curves for different numbers of storeys), which
has a good mean fit to the data.

Table 5 summarises the main results from all the mod-
els in terms of error metrics. Specifically, among all mod-
els, MVMs RF and ANN are those with the lowest MAE and
RMSE, followed by UVM ROOT with a MAE of 0.086 and
an RMSE of 0.123. In terms of percentage error, the rank-
ing is the same, with the sole exception of the OS result,
which in terms of this metric lies between the two empir-
ical data-trained MVMs. Overall, the two expert-based lit-
erature models, OS and INSYDE, are the best-performing
ones when benchmarked against empirically trained models,
as shown by the MAE, MBE and RMSE. As mentioned be-
fore, the performance of the UVM OS is very close to those
of the MVM INSYDE, although this result may depend on
the fact that the major share of records comes from the Sec-
chia event, for which OS outperforms INSYDE.

Based on these results, the synthetic models INSYDE
and OS currently represent good alternatives for flood risk
assessment in Italy, in cases where no empirical loss data
are available to develop specific damage models. Indeed, our
analysis has shown that particular care should be taken when
transferring models derived from specific events (Luino
curve) or from different scales (JRC-IT), while synthetic
models can be considered more robust tools, relying on a
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Figure 11. Comparison of the predictive capacity of UV and MV models: simulated damage (y axis) is plotted against the observed damage
(x axis) for the UV model by using square root function (a), random forest (b) and artificial neural network (c). The grey dashed line shows
the range of model outputs for each damage record. The median is shown in colour as a function of the record density.

Table 5. Comparing error metrics between empirically based models and INSYDE.

Model MBE MAE RMSE Est. dmg Abs. error Percent
(M EUR 2015) (M EUR 2015) error

(%)

Trained UVM (ROOT) −0.003 0.086 0.123 37.8 +4.1 +12.3
models MVM (RF) −0.024 0.081 0.126 30.4 −3.3 −9.8

MVM (ANN) +0.009 0.091 0.115 33.8 −0.1 −0.2

Literature UVM (JRC_IT) +0.217 0.239 0.27 108 +74.3 +220.5
models UVM (Luino) +0.082 0.13 0.154 68.5 +34.8 +103.2

UVM (OS) −0.009 0.088 0.127 34.4 +0.8 +2.0
MVM (INSYDE) +0.019 0.093 0.132 42.7 +9.0 +26.7

Figure 12. Scatter plot of relative damage records (y axis) and wa-
ter depth (x axis). Point colours represent record densities. The red
line shows the empirical root function (y = 0.13(

√
x)), selected as

best suited. The other lines represent the three UV literature models
(JRC-IT, Luino and OS) selected for the test. The OS model is made
up of two curves in relation to the number of storeys.

physically based description of flood damage mechanisms.
Overall, for the data set investigated, the synthetic MVM IN-
SYDE was found to provide performances not much differ-
ent from those of the UV OS. However, the results of IN-
SYDE were more precise if we consider the different flood
events with a general, although limited, damage overestima-
tion in all the cases, as opposed to OS, which exhibited a
more accurate performance only for the Secchia flood and
larger variability for the other two events, consequently be-
ing less precise. Thus, caution should be used in generalis-
ing this finding. Further validation exercises, combined with
the application of standardised, detailed procedures for dam-
age data collection (e.g. Molinari et al., 2014) could improve
INSYDE’s predictive accuracy; since it is an open-source
model, the damage functions can be modified for the dif-
ferent building components. For example, the availability of
data sets with building losses subdivided into different cate-
gories (e.g. structural/non-structural elements, finishing, sys-
tems) could help to identify which damage components are
responsible for the larger share of the error. The same cannot
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be said for OS, which is presented as a simple stage-damage
curve, without a detailed explanation of the modelling as-
sumptions on the considered flood damage mechanisms.

We cannot exclude that the performances of MVMs would
benefit from the inclusion of additional predictive variables,
such as those related to the implementation of an early warn-
ing system and precaution measures, or social vulnerability;
however, the availability of such information is limited for
our case study. As a final consideration, the accuracy and pre-
cision of damage observations are key factors for the correct
development of an MVM. This makes synthetic and empir-
ical MVMs better suited for applications at the micro-scale
(up to the census block scale; Molinari and Scorzini, 2017),
where explanatory variables can be spatially disaggregated.
Indeed, the aggregation scale is of primary importance in the
application of MVMs: if we can compare our results to those
reported in other studies applying similar multivariable ap-
proaches on an extensive damage data set (bagging of re-
gression trees), as in Wagenaar et al. (2017a) and in Kreibich
et al (2017), we observe that our range of uncertainty is dras-
tically smaller. This difference is likely imputable to the fact
that, in the referred studies, information is aggregated at the
municipality level, as opposed to our case, where each vari-
able is precisely linked to the building locations.

5 Conclusions

Risk management requires a reliable assessment tool to iden-
tify priorities in risk mitigation and adaptation. Such a tool
should be able to describe potential damage based on the
available data related to hazard features and exposure char-
acterisation. Recent studies suggest that multivariable flood
damage modelling can outperform customary univariable
models (depth-damage functions). In this study we collected
a large empirical data set at the micro-scale (i.e. individ-
ual buildings), which includes multiple hazard and exposure
variables for three riverine flood events in northern Italy, in-
cluding the declared economic damage to residential build-
ings. On this basis, we produced three univariable, three bi-
variable and two multivariable models that are compared in
terms of predictive accuracy and precision. We found that
water depth is the most important predictor of flood dam-
age for the assessed events, followed by secondary variables
related to hazard (flow velocity, duration) and exposure fea-
tures (area, perimeter and replacement value of the building).
However, our results suggest that the inclusion of one addi-
tional variable (flow velocity) does not improve the estimates
produced by simple regression models in a bivariable set-up.
On the other hand, the analysis confirms the literature notion
that the root function is the curve best suited for describing
damage in relation to water depth. Two MVMs were trained
by using two different machine-learning algorithms, namely
random forest and artificial neural network. These empir-
ically trained MVMs performed well (with errors ranging

from 1 % to 10 %) in reproducing the damage output from the
three events and thus were set as a reference for assessments
in the same geographical context. In this perspective, other
case studies are needed to confirm their robustness. More-
over, our results corroborate previous findings about the ad-
vantages of supervised machine-learning approaches for de-
veloping or improving flood damage models. Still, their ap-
plication remains limited by the availability of the data re-
quired for the MVM set-up. However, in the case of a scarce
number of variables, simple univariable models trained on
the specific contexts seem to be a good alternative to MVMs.

We then considered four literature models of different na-
tures and complexities to be tested on our extended case
study data set. We compared their error metrics with those of
the empirically trained UVMs and MVMs in order to eval-
uate their performance as a predictive tool for flood risk as-
sessment. The results showed important errors when trans-
ferring models derived from different countries and scales,
such as the JRC-IT curve, or from events with different char-
acteristics, such as the empirical model from Luino, which
is based on a flash-flood event in which flow velocity likely
has a significant role in flood impacts. On the other hand,
we found that both UV (Oliveri and Santoro, 2000) and MV
(INSYDE, Dottori et al., 2016) synthetic models can provide
similar results (although with larger uncertainties) to those
observed from the empirically trained models. The tested
synthetic models can be currently considered as the best op-
tion for damage prediction purposes in the Italian context,
in cases where no extensive loss data are available to derive
a location-specific flood damage model. Overall, we found
that errors produced by synthetic models were within 30 %
of observed damage, with MVM INSYDE providing more
precise results over the single case study events (with a per-
centage overestimation of 19 %, 5 % and 37 % of observed
damage for Adda, Bacchiglione and Secchia, respectively)
and is more accurate for two out of the three case studies (i.e.
Adda and Bacchiglione), while the OS model is generally
less precise but more accurate for the sole Secchia flood event
(2 % error, as opposed to a 72 % overestimation for the Adda
and an 18 % underestimation for the Bacchiglione event).

Observed errors depend in part on the inherent larger vari-
ability found in the data set related to that particular event.
Nevertheless, the collection of additional independent flood
records from different geographical contexts in Italy would
help to further evaluate the adaptability of these models, esti-
mate their uncertainty and increase their predictive accuracy.
The open-source INSYDE model holds the best potential in
this sense. To conclude, the work presented here has assem-
bled a data set that is currently one of the most extensive and
advanced for Italy: empirical damage data are the most im-
portant set of information for improving and validating dam-
age models. On this track, we aim to promote a shared effort
towards an updated catalogue of floods that includes hazard,
exposure and damage information at the micro-scale. To this
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end, the adoption of a standardised and detailed procedure
for damage data collection is a mandatory step.
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