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Abstract. Unexpectedly large displacements in the interior
of the oceans are studied through the dynamics of packets of
internal waves, where the evolution of these displacements
is governed by the nonlinear Schrödinger equation. In cases
with a constant buoyancy frequency, analytical treatment can
be performed. While modulation instability in surface wave
packets only arises for sufficiently deep water, “rogue” in-
ternal waves may occur in shallow water and intermediate
depth regimes. A dependence on the stratification parameter
and the choice of internal modes can be demonstrated ex-
plicitly. The spontaneous generation of rogue waves is tested
here via numerical simulation.

1 Introduction

Rogue waves are unexpectedly large displacements from
equilibrium positions or otherwise tranquil configurations.
Oceanic rogue waves on the sea surface obviously pose im-
mense risk to marine vessels and offshore structures (Dysthe
et al., 2008). As these waves were observed in optical waveg-
uides, studies of such extreme and rare events have been
actively pursued in many fields of science and engineering
(Onorato et al., 2013). Within the realm of oceanic hydro-
dynamics, observation of rogue waves in coastal regions has
been recorded (Nikolkina and Didenkulova, 2011; O’Brien
et al., 2018). Nearly all experimental and theoretical stud-
ies in the literature of rogue waves in fluids focus on sur-
face waves. Our aim here is to investigate a similar scenario
for internal waves. Internal waves play critical roles in the
transport of heat, momentum and energy in the oceans, and

breaking of such waves may have an impact on circulation
(Pedlosky, 1987). There is a substantial literature on the ob-
servations and theories of large-amplitude internal waves in
shallow water (Stanton and Ostrovsky, 1998). Many studies
concentrate on solitary waves in long-wave situations em-
ploying the Korteweg–de Vries equation (Holloway et al.,
1997) but not on the highly transient modes with the poten-
tial for abrupt growth. In terms of relevance in other fields
of physics and engineering, the actual derivation of the gov-
erning equations may dictate the regime of input parameter
values necessary for rogue waves to occur.

Theoretically, the propagation of weakly nonlinear,
weakly dispersive narrowband wave packets is governed by
the nonlinear Schrödinger equation, where the dynamics are
dictated by the competing effects of second-order dispersion
and cubic nonlinearity (Zakharov, 1968; Ablowitz and Se-
gur, 1979). Modulation instability of plane waves and rogue
waves can then occur only if dispersion and cubic nonlin-
earity are of the same sign. For surface wave packets on a
fluid of finite depth, rogue modes can emerge for kh > 1.363,
where k is the wavenumber of the carrier wave packet and
h is the water depth. Hence, conventional understanding is
that such rogue waves can only occur if the water depth is
sufficiently large.

Other fluid physics phenomena have also been consid-
ered, such as the effects of rotation (Whitfield and John-
son, 2015) or the presence of a shear current, an opposing
current (Onorato et al., 2011; Toffoli et al., 2013a; Liao et
al., 2017) or an oblique perturbation (Toffoli et al., 2013b).
While such considerations may change the numerical value
of the threshold (1.363) and extend the instability region, the
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requirement of water of sufficiently large depth is probably
unaffected. For wave packets of large wavelengths, dynam-
ical models associated with the shallow water regime have
been employed (Didenkulova and Pelinovsky, 2011, 2016),
such as the well-known Korteweg–de Vries and Kadomtsev–
Petviashvili types of equations (Grimshaw et al., 2010, 2015;
Pelinovsky et al., 2000; Talipova et al., 2011), which may
also lead to modulation instability under several special cir-
cumstances.

The goal here is to establish another class of rogue-
wave occurrence through the effects of density stratification,
namely, internal waves in the interior of the oceans. Internal
waves in general display more complex dynamical features
than their surface counterparts. As an illustrative example, a
given density profile may allow many internal modes char-
acterized by the number of nodes in the vertical structures.
This family of allowed states will be generically represented
in this paper by an integer n (referred to here as the mode
number). There is an extensive literature on large-amplitude
internal solitary waves that are spatially localized pulses es-
sentially propagating without change of form (Grimshaw et
al., 2004; Osborne, 2010). Our focus here is on internal rogue
waves that are modeled as wave pulses localized in both
space and time. The asymptotic multiple scale expansions for
internal wave packets under the Boussinesq approximation
also yield the nonlinear Schrödinger equation (Grimshaw,
1977, 1981; Liu and Benney, 1981). When the buoyancy fre-
quency is constant, modulation instability in one horizontal
space dimension will only occur for kh < kch= 0.766nπ ,
where the fluid is confined between rigid walls that are dis-
tance h apart, n is the vertical mode number of the internal
wave and the critical wavenumber kc is given by the follow-
ing equation (Liu et al., 2018):

kc =
nπ

h

(
41/3
− 1

)1/2
. (1)

For a wave packet associated with the first internal mode
(n= 1), modulation instability or a rogue wave can occur
with the carrier wavenumber k and shallow fluid of depth h
in the range of kh < 0.766π or 2.406.

For a basin depth (h) of, for example, 500 m, the critical
wavelength (λc) is as follows:

λc =
2π
kc
=

2h

n
(
41/3− 1

)1/2 ,
and the ranges of “shallow” and “intermediate” depths are
covered (Table 1).

The important point is not just a difference in the numer-
ical value of the cutoff but that rogue waves now occur for
water depths lower than a certain threshold. Our contribution
is to extend this result. The nonlinear focusing mechanism of
internal rogue waves is (i) determined by an estimation of the
growth rate of modulation instability and (ii) elucidated by a
numerical simulation of the emergence of rogue modes with

Table 1. Critical wavelength λc as a function of various internal
mode numbers n (with h= 500 m).

n (mode number of Rogue waves and
internal waves, with instability can occur
each n representing for wavelengths longer than
a different vertical λc given by the following
structure) numerical values (in m)

1 1305
2 652
3 435
4 326
5 261

the optimal modulation instability growth rate as the initial
condition.

2 Formulation

2.1 Nonlinear Schrödinger theory for stratified shear
flows

The dynamics of small-amplitude (linear) waves in a strat-
ified shear flow with the Boussinesq approximation is gov-
erned by the Taylor–Goldstein equation (φ(y) is the vertical
structure, k is the wavenumber, c is the phase speed andU(y)
is the shear current):

φyy −

(
k2
+

Uyy

U − c

)
φ+

N2φ

(U − c)2
= 0, (2)

where N is the Brunt–Väisälä frequency (or the “buoyancy
frequency”; ρ is the background density profile) by

N2
=−

g

ρ

dρ
dy

(3)

The evolution of weakly nonlinear, weakly dispersive wave
packets is described by the nonlinear Schrödinger equation
for the complex-valued wave envelope S, obtained through
a multi-scale asymptotic expansion, which involves calcu-
lating the induced mean flow and second harmonic (β and
γ being parameters determined from the density and current
profiles):

iSτ −βSξξ − γ |S|
2S = 0, τ = ε2t, ξ = ε

(
x− cgt

)
, (4)

where τ is the slow timescale, ξ is the group velocity (cg)
coordinate and ε is a small amplitude parameter.

2.2 Constant buoyancy frequency

For the simple case of constant buoyancy frequency N0, the
formulations simplify considerably in the absence of shear
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Figure 1. The emergence of rogue-wave modes from a background continuous wave perturbed by a long-wavelength unstable mode. Larger
baseband gain implies a smaller time is required for the rogue-wave modes to emerge. (a) For N0 = 2, h= 4, k = 0.5, n= 1, r = 0.2 and
baseband instability growth rate= 0.868, a rogue wave emerges at τ ≈ 17. (b) For N0 = 2, h= 1, k = 0.5, n= 1, r = 0.2 and baseband
instability growth rate= 0.193, a longer time is required for the emergence of a rogue wave in a shallower fluid (τ ≈ 55). (c) For N0 = 1,
h= 4, k = 0.5, n= 1, r = 0.2 and baseband instability growth rate= 0.868, a rogue wave emerges at about the same time (τ ≈ 14) as
compared to the case with a higher buoyancy frequency N0 = 2. In all cases, the amplitude of the background continuous wave (A0) is taken
as 1.

flow (U(y)= 0). The linear theory Eq. (2) yields simple so-
lutions for the mode number n:

N =N0, φ = sin
(nπy
h

)
, (5)

with the dispersion relation, phase velocity (c) and group ve-
locity (cg) given by

ω2
=

k2N2
0

n2π2

h2 + k
2
, c =

ω

k
, cg =

dω
dk
, cg =

c

1+ k2h2

n2π2

. (6)

The subsequent nonlinear analysis yields the coefficients of
the nonlinear Schrödinger equation in explicit forms:

β =
3n2π2c2

2h2kN2
0

(
c− cg

)
, γ =−

6N2
0 kc

3
g
(
c− cg

)
c4
(
c3− 4c3

g

) . (7)

A plane wave solution for Eq. (4) (or, physically, a continu-
ous wave background of amplitude A0) is as follows:

S = A0 exp
[
−iγA2

0τ
]
. (8)

Small disturbances with modal dependence exp[i(rξ −�τ)]
will exhibit modulation instability if

a. �2
= βr2(βr2

− 2γA2
0) is negative, i.e., for βγ > 0;

calculations using Eqs. (6) and (7) lead to kh < kch=

0.766nπ (Eq. 1);

b. the maximum growth rate is (imaginary part of �)=
�i = |γ |A

2
0 for a special wavenumber given by β1/2r =

γ 1/2A0;

c. the growth rate for long-wavelength disturbance is
|�i/r| = (2βγ )1/2A0 for r→ 0.

In terms of significance in oceanography, the constraint
kh < kch= 0.766nπ does not depend on the constant buoy-
ancy frequency N0. However, it does depend on the mode
number (n) of the internal wave, with the higher-order modes
permitting a large range of carrier envelope wavenumbers
and fluid depths for rogue waves to occur. An analysis in
the long-wave regime of this Taylor–Goldstein formulation
would in principle recover the previous results related to the
Korteweg–de Vries and Gardner equations, and details will
be reported in the future.

3 Computational simulations

An intensively debated issue in the study of rogue waves
through a deterministic approach is the proper initial condi-
tion that may generate or favor the occurrence of such large-
amplitude disturbances. Modulation instability refers to the
growth of a small disturbance in a system due to the inter-
play between dispersive and nonlinear effects (Craik, 1984),
and here we examine this instability by solving the nonlinear
Schrödinger equation (Eq. 4) numerically. One suggestion is
the role played by long-wavelength modes associated with
modulation instability (also known as “baseband instability”;
Baronio et al., 2015). To examine this effect and to clarify
the role of stratification as well as the choice of internal wave
modes, numerical simulations are performed where baseband
modes with the scaled modulation instability growth rate on
a plane wave background and, for example, 5% amplitude
are selected as the initial condition (Chan and Chow, 2017;
Chan et al., 2018):

S(ξ,0)= [1+ 0.05exp(irξ)]A0,

where A0 is the amplitude parameter defined by Eq. (8) and
r is the wavenumber of the baseband mode.
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Figure 2. The baseband growth rate increases as the fluid depth h
increases:N0 = 2, k = 0.5, n= 1 (solid blue line);N0 = 2, k = 0.5,
n= 2 (dashed red line); and N0 = 2, k = 0.25, n= 1 (dotted black
line).

This choice of a preferred modulation instability mode
as the initial condition is different from other approaches
in the literature, such as one using random noise. A pseu-
dospectral method with a fourth-order Runge–Kutta scheme
for progressing through time is applied to solve the non-
linear Schrödinger equation (Eq. 4) numerically. When the
wavenumber r of the disturbance is small, corresponding to
a baseband mode, a rogue wave can be generated from the
plane wave background (Fig. 1). Physically this spontaneous
growth of disturbance due to modulation instability is closely
associated with the “focusing” of energy and thus the forma-
tion of rogue waves.

The growth rate of the baseband mode is a crucial factor of
rogue-wave generation. A stronger baseband growth rate will
trigger a rogue wave within a shorter period of time. From
Eqs. (6) and (7), the baseband growth rate (2βγ )1/2A0 in-
creases as the depth h or wavenumber k increases (Fig. 2),
but this growth rate decreases as the mode number n in-
creases. However, this baseband rate is independent of the
buoyancy frequency N0. Numerical simulations were per-
formed with parameter values appropriate for application to
fluid mechanics. The concrete numerical values of the growth
rates in a laboratory frame of reference (time t) can be esti-
mated from definitions used in Eq. (4), i.e., τ = ε2t and the
small amplitude parameter ε actually employed.

Figure 1 shows that rogue waves can emerge sooner when
the fluid is deeper. Remarkably, this implies that baseband
instability is stronger when the system is closer to the singu-
lar limit where the cubic nonlinearity changes sign. On the
other hand, the degree of the background density stratifica-
tion creates only a minor effect on the baseband mode. Apart
from choosing a preferred baseband mode, another perspec-
tive taken in the literature is to select a random field as the
initial condition. For the present nonlinear Schrödinger equa-
tion, “rogue-wave-like” entities would then emerge as well
(Akhmediev et al., 2009).

4 Discussion and conclusions

An analytically tractable model for packets of internal waves
was studied here through four input parameters, h (fluid
depth), k (wavenumber of the carrier envelope packet),
N0 (buoyancy frequency) and n (mode number of the in-
ternal wave), with only h and k relevant for surface waves.
For internal waves, modulation instabilities and rogue waves
may now arise for the shallow water and intermediate depth
regimes ifN0 is constant. With knowledge of baseband insta-
bility and supplemented by computer simulations, the non-
linear focusing mechanism of rogue waves is assessed. Re-
markably the constant buoyancy frequency may not play a
critical role in the existence condition in terms of focusing,
but the mode number of the internal wave does. For breathers
or other pulsating modes, this buoyancy frequency parame-
ter will enter the focusing mechanism consideration and fur-
ther analytical and computational studies will be valuable
(Sergeeva et al., 2014). In the next phase of this research
effort, contrasts and similarities with surface waves should
also be pursued, where a directional field or opposing cur-
rent can provide rogue-wave generation mechanisms beyond
the well-established criterion of kh > 1.363. Such effects of
shear currents and comparisons with experimental and field
data will be taken up in future studies (Onorato et al., 2011;
Toffoli et al., 2013a, b). Density profiles with variable buoy-
ancy frequency will also be examined in the future. Besides
their relevance to transport phenomena, internal waves have a
significant connection with underwater acoustics (Apel et al.,
2007; Zhou et al., 1991) and abnormally large internal rogue
waves may have physical implications for those aspects.

Data availability. No data sets were used in this article.
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