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Abstract. Extreme cold weather events, such as the winter
of 1962/63, the third coldest winter ever recorded in the Cen-
tral England Temperature record, or more recently the winter
of 2010/11, have significant consequences for the society and
economy. This paper assesses the probability of such extreme
cold weather across the United Kingdom (UK), as part of a
probabilistic catastrophe model for insured losses caused by
the bursting of pipes. A statistical model is developed in or-
der to model the extremes of the Air Freezing Index (AFI),
which is a common measure of the magnitude and duration of
freezing temperatures. A novel approach in the modelling of
the spatial dependence of the hazard has been followed which
takes advantage of the vine copula methodology. The method
allows complex dependencies to be modelled, especially be-
tween the tails of the AFI distributions, which is important to
assess the extreme behaviour of such events. The influence of
the North Atlantic Oscillation and of anthropogenic climate
change on the frequency of UK cold winters has also been
taken into account. According to the model, the occurrence
of extreme cold events, such as the 1962/63 winter, has de-
creased approximately 2 times during the course of the 20th
century as a result of anthropogenic climate change. Further-
more, the model predicts that such an event is expected to
become more uncommon, about 2 times less frequent, by the
year 2030. Extreme cold spells in the UK have been found
to be heavily modulated by the North Atlantic Oscillation
(NAO) as well. A cold event is estimated to be ≈ 3–4 times
more likely to occur during its negative phase than its posi-
tive phase. However, considerable uncertainty exists in these
results, owing mainly to the short record length and the large
interannual variability of the AFI.

1 Introduction

Extended periods of extreme cold weather can cause severe
disruptions in human societies – in terms of human health,
by exacerbating previous medical conditions or due to re-
duction of the food supply, which can lead to famine and
disease; in terms of agriculture, by devastating crops, partic-
ularly if the freeze occurs early or late in the growing season;
and in terms of infrastructure, e.g. severe disruptions in the
transport system or the bursting of residential or system wa-
ter pipes (Bowman et al., 2012). All these consequences lead
to important economic losses.

Of particular interest for the insurance industry are the
economical losses that originate as a result of the bursting
of pipes due to freeze events. Water pipes burst because the
water inside them expands as it gets close to freezing, which
causes an increase in pressure inside the pipe. Whether a pipe
will break or not depends on the water temperature (and con-
sequently on the air temperature), the freezing duration, the
pipe diameter and composition, the wind chill effect (due to
wind and air leakage on water pipes), and the presence of
insulation (Gordon, 1996; McDonald et al., 2014).

Insurance losses from burst pipes have a significant im-
pact on the UK insurance industry. They have amounted to
more than GBP 900 million in the last 10 years, represent-
ing around 10 % of total insured losses, mainly due to flood
events and windstorms, in the United Kingdom (UK) during
the same period (ABI, 2017). Particular years can be very
damaging, such as, for example, the winter of 2010/2011,
when losses from burst pipes exceeded GBP 300 million in
the UK, making it the peril with the largest losses that year
(ABI, 2017). Moreover, much more extreme cold winters
have actually occurred in the UK in the last 100 years, such
as the winters of 1946/47 and 1962/63. It is crucial for the
insurance business to be able to anticipate the likelihood of
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the occurrence of similar and even more extreme events so
that they can adequately prepare for their financial impact
(AIR, 2012). In fact, capital requirements in (re)insurance
are estimated on a 1- in 200-year return period (RP) loss ba-
sis, which is usually much larger than the available historical
records.

Probabilistic catastrophe modelling is generally agreed to
be the most appropriate method to analyse such problems.
The main goal of catastrophe models is to estimate the full
spectrum of probability of loss for a specific insurance port-
folio (i.e. comprised of several residential, auto, commercial,
or industrial risks). This requires the ability to extrapolate
the possible losses for each risk to high return periods, which
is usually achieved by simulating synthetic events that are
likely to happen in the near future (typically a year). More
importantly, it also requires considering how all risks re-
late to each other and their potential synergy to create catas-
trophic losses. Such spatial dependence between risks can
result from various sources, for example, due to the spatial
structure of the hazard (e.g. the footprint in a windstorm or
the catchment area in a flood event) or due to similar build-
ing vulnerabilities between risks in the same geographical
area (e.g. due to common building practices) (Bonazzi et al.,
2012).

Modelling the spatial dependence of the hazard is usually
achieved by taking advantage of certain characteristic prop-
erties of the hazard footprint, like, for example, the track path
and the radius of maximum wind for windstorms or the ele-
vation in the case of floods. In the case of temperature, how-
ever, such a property cannot be easily defined; an alterna-
tive solution is to use multivariate copula models. Based on
Sklar’s theorem (Sklar, 1959), the joint distribution of all risk
sources can be fully specified by the separate marginal dis-
tributions of the variables and by their copula, which defines
the dependence structure between the variables.

However, one important difficulty is the limited choice of
adequate copulas for more than two dimensions. For exam-
ple, standard multivariate copula models such as the ellip-
tical and Archimedean copulas do not allow for different
dependency models between pairs of variables. Vine cop-
ulas provide a flexible solution to this problem based on a
pairwise decomposition of a multivariate model into bivari-
ate copulas. This approach is very flexible, as the bivariate
copulas can be selected independently for each pair, from a
wide range of parametric families, which enables modelling
of a wide range of complex dependencies (Czado, 2010; Diß-
mann et al., 2013).

In this paper, the vine copula methodology is used in a
novel application to develop a catastrophe model on insur-
ance losses due to pipe bursts resulting from freeze events in
the United Kingdom. The focus here is on the hazard compo-
nent (Sect. 2), which is modelled using the Air Freezing In-
dex (AFI), an index which accounts for both the magnitude
and duration of air temperature below freezing, calculated
from reanalysis data from the last 110 years. The statistical

models utilized to extrapolate to longer return periods are de-
scribed in Sect. 3. The model also accounts for two major
drivers of climate variability in the UK that are incorporated
as predictors:

– the North Atlantic Oscillation (NAO), a leading pat-
tern of weather and climate variability over the North-
ern Hemisphere mid-latitudes, which accounts for more
than half of the year-to-year variability in winter surface
temperature over UK;

– anthropogenic climate change and its direct effects in
the temperature profile in the UK.

Stochastic winter seasons are simulated, taking into ac-
count the correlation of the hazard between all pair cells with
the help of regular vine copulas (Sect. 3.3). The resulting re-
turn periods of extreme cold winters in the UK, including the
underlying uncertainties, are discussed in Sect. 4. Conclud-
ing remarks are found in Sect. 5.

2 Data

2.1 Temperature data sets

The hazard component of the catastrophe model is based on
the European Centre for Medium-Range Weather Forecasts
(ECMWF) 20th century reanalysis (ERA-20C) covering the
entire 20th century from 1900 to 2010 (Poli et al., 2016).
Reanalyses are data-assimilating weather models which are
widely used as proxies for the true state of the atmosphere
in the recent past. Even though centennial reanalyses, such
as ERA-20C, represent the most convenient data sets for as-
sessing the long-term historical climate, biases and uncer-
tainties inherent in both raw observations and models mean
that they should be used with caution. For example, impor-
tant differences in the 2 m temperature have been found be-
tween ERA-20C and other centennial reanalysis data sets,
especially during the first half of the 20th century as a result
of the sparse observational network in those early years (Poli
et al., 2016; Donat et al., 2016). Furthermore, studies have
suggested that long-term changes in the Arctic Oscillation,
mean sea level pressure, and wintertime storminess seen in
ERA-20C may be spurious as a result of the assimilation of
increasing numbers of observations (Dell’Aquila et al., 2016;
Poli et al., 2016; Bloomfield et al., 2018).

The ERA-20C product provides daily 3 h forecasts (i.e.
eight forecast steps starting at 06:00 UTC each day) of min-
imum and maximum temperature at 2 m. These are used to
compute daily minimum and maximum values at every grid
cell for the entire period. The daily average temperatures
are then computed as 0.5 (Tmax− Tmin), and the data are re-
gridded to a 1◦× 1◦ resolution, which corresponds to a total
of 67 cells over land.

The coarse horizontal resolution is expected to have rela-
tively small influence in most cases, given that winter climate
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anomalies are often coherent across large parts of the UK
as they are primarily associated with large-scale atmospheric
circulation patterns (Scaife and Knight, 2008). Nevertheless,
local temperature may be subtly different in certain micro-
climates, such as upland and urban regions. In particular over
urban regions, which are most important from an insurance
perspective, lower resolution may lead to temperatures that
are biased towards lower values, leading though to a conser-
vative view on the severity of extreme freeze events. In up-
land regions, on the other hand, extreme cold temperatures
are most probably underestimated, although it is reasonable
to expect that their damaging effects are somewhat mitigated
from increased protection levels. For example, water pipes in
properties located in mountainous regions are usually better
protected against cold spells.

For comparison purposes, the observed daily average tem-
perature gridded data set developed by the UK Met Office is
also used (Perry et al., 2009). This data set is based on tem-
perature data retrieved from 540 stations across UK with an
average station density of 21 km× 21 km (Perry and Hollis,
2005; Perry et al., 2009). It covers the entire UK but for a
much shorter period of 51 years (1960–2011). The original
5 km× 5 km resolution is re-gridded using bilinear interpo-
lation to 1◦× 1◦ in order to match the ERA-20C grid.

2.2 North Atlantic Oscillation index

The NAO refers to a redistribution of atmospheric mass be-
tween the Arctic and the subtropical Atlantic and swings
from one phase to another producing large changes in
weather, and in particular in surface air temperature, over the
Atlantic and the adjacent continents (Hurrell et al., 2013).
It is described by the NAO index (NAOI), a measure of
the mean atmospheric pressure gradient between the Azores
High and the Iceland Low. A positive NAOI is associated
with depression systems taking a more northerly route across
the Atlantic, which causes UK weather to be milder, while a
negative NAOI is associated with depression systems taking
a more southerly route, as a result of which UK weather tends
to be colder and drier (Osborn, 2000). In this study, the winter
(December through March) station-based index of the NAO
from Hurrell (2003) is used, which is based on the difference
of normalized sea level pressure between Lisbon, Portugal,
and Stykkishólmur and Reykjavik, Iceland (Fig. 1b).

2.3 Anthropogenic forcing

Increases in concentration of greenhouse gases, such as car-
bon dioxide (CO2), are accompanied by increased radiative
forcing, i.e. the difference between the incoming radiation
from the sun and the outgoing radiation emitted from the
Earth. This forcing arises from the ability of the gases to ab-
sorb long-wave radiation, thus reducing the amount of heat
energy being lost to space and increasing the warming of the
Earth’s surface. Here we use the change in radiative forcing

from CO2 as a predictor for climate change. It is calculated
using the simplified expression (Myhre et al., 1998):

1FCO2 = 5.35ln
(

Ci

C1990

)
, (1)

where 1FCO2 is the radiative forcing change (in W m−2),
Ci is the concentration of atmospheric CO2 at year i, and
C1900 is the reference “pre-industrial” CO2 concentration at
year 1900. Consequently, a doubling of CO2 corresponds to
a change in the radiative forcing of 3.7 W m−2. Historical
observations of global mean CO2 concentrations (in parts
per million or ppm) are taken from Hansen et al. (2007).
The temporal change in the CO2 radiative forcing during
the 20th century is shown in Fig. 1c. Projections of future
CO2 emissions are based on the Representative Concentra-
tion Pathway (RCP) scenarios adopted by the Intergovern-
mental Panel on Climate Change (IPCC) for its Fifth Assess-
ment Report (AR5) (Collins et al., 2013).

3 Methods

3.1 Air Freezing Index and historical events

The daily temperature data are used to compute the AFI at
each grid cell as the sum of the absolute average daily tem-
peratures of all days with temperatures below 0 ◦C during the
freezing period (Eq. 2). The freezing period in this study is
defined from 1 June of a year to 31 May the following year,
in order to include the entire winter season. Because AFI
accounts both for the magnitude and duration of the freez-
ing period, it is commonly used for determining the freezing
severity of the winter season (Frauenfeld et al., 2007; Bilotta
et al., 2015).

AFIi =


N∑
d=1
|Td| , if Td < 0 ◦C

0, if Td ≥ 0 ◦C for all d
, (2)

where AFIi is the AFI at cell i, N is the number of days in a
winter season, and Td is the daily average temperature for a
day d.

Maps of AFI values from ERA-20C for the severe winters
of 1946/47, 1962/63, and 2009/10 are shown in Fig. 2. The
winter of 1946/47 (i.e. season starting from 1 June 1946 to
31 May 1947) was a harsh European winter noted for its im-
pact in the United Kingdom. It was notable for a succession
of snowstorms from late January until mid-March, mainly
associated with easterly airstreams (Booth, 2007). The mean
AFI value (mAFI) in the entire UK (i.e. average of AFI val-
ues across all grid cells) mounted up to 75.6 ◦C, the second
largest value during the analysed period.

Based on the AFI, the 1962/1963 winter season was the
most severe winter in the 20th century and one of the cold-
est on record in the United Kingdom (Walsh et al., 2001).
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Figure 1. Interannual variation of (a) the average AFI over UK (mAFI), (b) the North Atlantic Oscillation index (NAOI), and (c) CO2 forcing
during the study period.

Figure 2. Map of AFI values (in ◦C) for the winter seasons of
(a) 1946/47, (b) 1962/63, and (c) 2009/10.

The “Big Freeze of 1962/63”, as it is also known, began on
the 26 December 1962 with heavy snowfall and went on for
nearly 3 months until March 1963. The cause of the cold
conditions was the development of a large “blocking” anti-
cyclone over Scandinavia and north-western Russia. Easterly
winds on the southern edge of this system transported cold
continental air westwards, displacing the more usual mild
westerly influence from the Atlantic Ocean on the British
Isles. Over the Christmas period, the Scandinavian High col-
lapsed, but a new one formed near Iceland, bringing northerly
winds. The mAFI in the entire UK (i.e. average of AFI values
across all grid cells) mounted up to 90.9 ◦C, which is 6 stan-
dard deviations larger than the average of the entire 110-year
period (14.0 ◦C). The event affected the southern part of the
country more, as shown in Fig. 2.

After 1962/63, a long run of mild winters followed until
late 1978 and early 1979. However, temperatures in 1978/79
were not as low and the cold weather was interrupted fre-
quently by brief periods of thaw (Cawthorne and Marchant,
1980). The mAFI value of winter 1978/79 reached 49.2 ◦C.
The 1980s stands out as a decade with several cold spells
in the UK, with mAFI values above 30 ◦C for the winters
1981/82, 1984/85, and 1985/86 (46.1, 32.6, and 41.0 ◦C, re-
spectively).

For the last 10 years of our study period (from 2000 to
2010), the mAFI seems to be underestimated in the reanaly-
sis data set (Fig. 1a). In particular, the winter of 2009/2010,
which is well known to have brought frigid temperatures to
the UK (Guirguis et al., 2011; Osborn, 2011; Seager et al.,
2010; Prior and Kendon, 2011), has a mAFI value of only
4.7 ◦C (Fig. 2c), which is much lower than the long-term av-
erage (13 ◦C) and over 10 times lower than the mAFI value
according to the UKMO data set (59.1 ◦C). No clear reason is
known for this bias, but it might be related to possible spuri-
ous long-term trends in the atmospheric circulation (Bloom-
field et al., 2018).

As shown in Fig. 1a, the two most severe winters in the
century (1946/47 and 1962/63) were associated with a neg-
ative NAO phase (Murray, 1966; Osborn, 2011). As men-
tioned earlier, the NAO has a profound effect on winter cli-
mate variability in the Atlantic basin, accounting for more
than half of the year-to-year variability in winter surface tem-
perature over the UK (Scaife et al., 2005; Scaife and Knight,
2008). Not surprisingly, the ERA-20C mAFI over the entire
UK is found to be significantly anti-correlated (ρ =−0.49,
p value= 6.5× 10−8) with NAOI. A negative correlation is
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found between the mAFI and 1FCO2 forcing, but it is much
less significant (ρ =−0.17, p value= 0.08). Both NAO and
climate change effects are included in the statistical model as
predictors in order to account for their relation to cold winter
spells in the UK as discussed in the following section.

3.2 Extreme value analysis

3.2.1 Stationary model

Since the historical data only extend for 110 years and our in-
terest lies in very rare events (such as 1-in 200-year events), it
is necessary to extrapolate by fitting an extreme value distri-
bution. The generalized extreme value (GEV) family of dis-
tributions has been chosen, which includes the Gumbel, the
Fréchet, and Weibull distributions. An additional term was
included, the probability of no hazard (P 0), in order to ac-
count for the cells, mainly on the south England coast, that
have years with no negative temperatures at all. The proba-
bility therefore that the AFI value (X) inside a cell j is lower
than or equal to a certain value (x) takes the form

F(x)= P(X ≤ x)

= P 0+ (1−P 0)exp

{
−

(
1+ ξ

x−µ

σ

)− 1
ξ

}
, (3)

where µ, σ , and ξ represent the location, scale, and shape
parameters of the distribution, respectively. F(x) is defined
when 1+ξ x−µ

σ
> 0, µ ∈ <, σ > 0, and ξ ∈ <. Its derivative,

the GEV probability density function f (x), is given by

f (x)= (4)

f (x)=



P 0, if x = 0

(1−P 0)
1
σ

[
1+ ξ

(
x−µ

σ

)]− 1
ξ
−1

exp

{
−

[
1+ ξ

(
x−µ

σ

)]− 1
ξ

}
, if x > 0

.

There are various methods of parameter estimation for
fitting the GEV distribution, such as least squares estima-
tion, maximum likelihood estimation (MLE), and probability
weighted moments. Traditional parameter estimation tech-
niques give equal weight to every observation in the data set.
However, the focus in catastrophe modelling is mainly on the
extreme outcomes, and, thus, it is preferable to give more
weight to the long return periods. The tail-weighted max-
imum likelihood estimation (TWMLE) method developed
by Kemp (2016) is employed here in order to estimate the
GEV parameters. This method introduces ranking depended
weights (w(r)) in the maximum likelihood. The weights are
defined for each cell based on the historical winter season
AFI values; i.e. the lowest historical AFI value in the cell
(rank r = 1 out of n observations) has the lowest weight,
while the largest historical AFI value (rank r = n) has the

largest weight, as follows:

w(r) = AFI(r)/
n∑
r=1

AFI(r). (5)

Along with the TWMLE method described above, a sec-
ond modification has been implemented in order to geo-
graphically smooth the GEV parameters. The smoothing is
incorporated into the fitting process by minimizing the local
(ranked) log-likelihood. More precisely, the log-likelihood
at each grid cell i is calculated using all grid points but
weighted by their distance:

LogLi =
170∑
j=1

(
kij ×LogLj

)
, (6)

where kij = 1
√

2π
e
−
d2
ij

2L2 , dij is the distance between cell i and
j , L is the smoothing parameter, and LogLj is the ranked
log-likelihood for cell j .

The smoothing increases the sample size at each grid
point, which thus leads to a more precise estimation of the pa-
rameters, especially for the shape parameter which is highly
influential in estimating the hazard levels at high return pe-
riods. Because the data grid resolution is already coarse, a
small length-scale parameter L of 20 km has been used (in
comparison to the grid size).

Finally, in order to avoid an overestimate of the positive
value of the shape parameter due to the small sample size
(Lee et al., 2017), a modification of the maximum likelihood
estimator using a penalty function is also applied for fitting
the GEV. The penalty function penalizes estimates of ξ that
are close to or greater than 1, following Coles and Dixon
(1999).

Estimates of P 0 for each grid cell are obtained by fitting
a logistic regression model with intercept only (Eq. 7). As
before, the fitting is performed against all grid cells, weighted
by their distance dij , and a length scale of 20 km has been
used. The model is extended in the non-stationary model to
include covariates as described in Sect. 3.2.2.

ln
(

P 0
1−P0

)
= b0 (7)

As an example, the GEV fit for a single cell over London
is shown in Fig. 3. The curve fitted as described above (black
line) is closer to the empirical estimates (black circles, com-
puted as described in Sect. 4.1) in comparison with the GEV
fit with no weighting applied (grey line). As shown in Ta-
ble 1, for both fits the shape parameter is positive (i.e. both
fits correspond to the Fréchet distribution), but for the ap-
proach followed here (TWMLE + geographical smoothing),
the shape parameter is smaller, leading to a shorter tail and a
curve that is nearer to the empirical estimate.

Maps of the fitted parameters are shown in Fig. 4. The
probability of non-negative temperatures during a season
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Table 1. Model parameters for a single cell over London.

Method b0 b1 b2 µ µ0 µ1 σ ξ

MLE (no predictors) −1.77 0 0 4.05 0 0 5.61 1.08
TWMLE + geographical smoothing (no predictors) −1.77 0 0 4.87 0 0 12.67 0.35
TWMLE + geographical smoothing (with predictors) −3.74 0.36 2.62 −2.27 −5.87 3.07 15.32 0.25

Figure 3. AFI return period curves for a single cell over London:
empirical fit (black circles), GEV fitted with MLE (grey line), and
GEV fitted with TWMLE and geographical smoothing (black line).

(P0) is, as expected, larger around the coast, which has
milder and less variable climate due to the water influence.
This also explains the lower mean (location parameter) and
larger spread (scale parameter) in the AFI distributions in the
coastal regions in comparison to inland. The shape parame-
ter, which affects the skew of the distribution, shows larger
values in the southern part of the UK in comparison to the
north, suggesting a less rapid increase in the maximum AFI
estimates.

3.2.2 Non-stationary model

In stationary models, the distribution parameter space is as-
sumed to be constant for the period under consideration.
However, such an assumption is not valid in the presence of
atmospheric circulation patterns or anthropogenic changes.
Regression approaches are often used to assess the influence
of climatic factors on hazards and covariates such as global
mean temperature, and CO2 concentration, and indexes of
natural variability (such as NAOI) have been employed by
several studies (Edwards and Challenor, 2013). In this study,
a generalized linear model is introduced into the statistical
distribution parameter estimates in order to improve the non-
stationarity representation of the model. The NAOI and the
global CO2 radiative forcing are chosen as covariates. There
are some important caveats to this choice. First, other natu-
ral factors apart from NAO are not accounted for, and hidden

Figure 4. Maps showing the spatial distribution of the model fit-
ted parameters: (a) P 0 calculated as eb0/(eb0 + 1), (b) location µ,
(c) scale σ , and (d) shape ξ .

co-varying effects might also be present. Also, while CO2 ra-
diative forcing is linearly related to the equilibrium surface
temperature, the relationship to transient surface tempera-
tures further depends on the efficacy of ocean heat uptake
(Winton et al., 2010). Both can lead to non-linear responses
of the local UK climate, especially when extrapolating far in
the future.

Despite the caveats, CO2 radiative forcing and NAO have
some important advantages. First, both are accurately mea-
sured. Although a model that relies on global mean surface
temperature may not have as strong correlations as the casual
link is more indirect, it has the advantage that it does not rely
on subtle regional patterns that are difficult to capture. They
also provide a reasonable way to isolate the human and nat-
ural influences on extreme temperatures (see, for example,
Risser and Wehner, 2017). While it would be possible to use
a more locally defined metric (such as the change in the mean
UK temperature, for example), this would include more un-
forced naturally occurring internal variability of the climate
system, making it difficult to identify the changes that are
driven by anthropogenic CO2 emissions. Finally, using a co-
variate such as the change in CO2 forcing avoids the diffi-
culty with determining the start of the trend, and also results
can be easily rescaled to a different time period or emission
scenario, which is helpful for mitigation strategies.
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The influence of NAO and of global warming is examined
by exploring improvements to the distribution fits, after in-
corporating linear covariates on the distribution parameters,
as follows:

– ln
(

P 0
1−P0

)
= b0+ b1NAOI+ b21FCO2

– µ= µ0+µ1NAOI+µ21FCO2 ,

where (b0, µ0) are the stationary model parameter estimates
and (b1, µ1) and (b2, µ2) are linear transformations of the co-
variates NAOI and 1FCO2 with respect to time, respectively.

Only non-stationarity with respect to P 0 and the location
parameter,µ, is discussed, since modelling temporal changes
in σ and ξ reliably requires long-term observations in order
to be estimated accurately (Katz et al., 2002; Cheng et al.,
2014). In addition, a simple linear model is selected, as this
is usually preferred when searching for trends in the occur-
rence of extreme events (Beguería et al., 2011). Finally, even
though some climate modelling studies predict changes in
the nature of NAO variability in an increasing CO2 climate
(Rind et al., 2005; Woollings et al., 2010), the model does
not include any interaction terms, as they have been found to
be non-significant.

As before, the parameters of each cell are estimated, tak-
ing also into account its neighbouring cells weighted by their
distance. The most pertinent model is selected, for each cell,
using the χ2 test, based on the change in deviance, between
the null-, one-, or two-predictor model. If the significance
value is less than 0.01, the model is estimated to have a sig-
nificant improvement over the reduced model. A separate test
is performed for the P0 and the GEV model. As an example,
in the case of the London cell, the model with two predic-
tors for both P 0 and the location parameter has been chosen
(Table 1).

The spatial distribution of the parameters of the final
model is shown in Fig. 5. Increasing NAOI or 1FCO2 is
consistent with a warming trend, leading to positive values
of the P 0 parameters (indicating increases in the number of
years with no negative temperatures) and to negative values
in the location parameters (indicating lower means in the AFI
distributions). The NAO is found to affect more cells in to-
tal (90 %) in comparison to anthropogenic climate change
(51 %). Notice, however, that due to the internal variability
of the NAO, any signal from a climate change trend can be
hidden in the limited observational period.

3.3 Vine copula model

The stochastic behaviour of the hazard (i.e. the AFI) at each
cell is fully described by its corresponding GEV probability
distribution, as described in Sect. 3.2. However, insurance
portfolio loss analysis requires the calculation of the com-
bined stochastic behaviour of the hazard across all the model
domain (i.e. all cells). This is described by the joint distribu-
tion of the hazard, which, according to Sklar’s theorem, can

Figure 5. Maps showing the spatial distribution of the non-
stationary model parameters: (a) b1, (b) b2, (c) µ1, and (d) µ2.
Zero values indicate linear trends not significant at the 0.01 level.

be fully specified by the separate marginal GEV distributions
and by their copula, which models the hazard dependence
between the cells. Vine copulas provide a flexible solution to
this problem based on a pairwise decomposition of a multi-
variate model into bivariate (conditional and unconditional)
copulas, whereby each pair-copula can be chosen indepen-
dently from the others. A brief introduction to the vine cop-
ula methodology can be found in Appendix A.

In this study, the joint multivariate hazard distribution of
the AFI across all the model domain (67 cells) is decom-
posed as a product of marginal and pair-copula probability
density functions (pdfs). The pair-copulas are fitted using the
R (https://www.r-project.org/, last access: 12 March 2019)
package VineCopula (Schepsmeier et al., 2017; Brechmann
and Schepsmeier, 2013). The method follows an automatic
strategy of jointly searching for an appropriate R-vine (reg-
ular vine) tree structure and its pair-copula families and esti-
mating their parameters developed by Dißmann et al. (2013).
This algorithm selects the tree structure by maximizing the
empirical Kendall’s τ values, based on the premise that vari-
able pairs with high dependence should contribute signifi-
cantly to the model fit and should be included in the first
trees.

The copula family types for each selected pair in the first
tree are determined using the Akaike information criterion
(Brechmann and Schepsmeier, 2013). For computational rea-
sons, the two-parameter Archimedean copulas are excluded
from this analysis, which, however, only has a negligible im-
pact on the results (not shown). The copula parameters are es-
timated sequentially (using maximum likelihood estimation)
from the top tree until the last tree, as described in Czado
et al. (2013). This approach only involves estimation of bi-
variate copulas and has been chosen since it is computation-
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Table 2. Percentage of family types used for the first five trees of the R-vine model.

Tree Indepen- Gaussian Student t Clayton Gumbel Frank Joe 180◦ 180◦ 180◦ 90◦ 90◦ 90◦ 270◦ 270◦ 270◦

dent Clayton Gumbel Joe Clayton Gumbel Joe Clayton Gumbel Joe

1 0 3.0 51.5 0 34.8 1.5 1.5 1.5 0 6.1 0 0 0 0 0 0
2 9.2 4.6 36.9 3.1 6.2 16.9 1.5 3.1 1.5 0 1.5 4.6 7.7 0 0 3.1
3 25 1.6 31.2 4.7 1.6 7.8 1.6 0 1.6 9.4 6.2 3.1 1.6 1.6 0 3.1
4 27 6.3 28.6 4.8 1.6 9.5 4.8 3.2 1.6 4.8 1.6 1.6 1.6 0 1.6 1.6
5 27.4 8.1 24.2 4.8 1.6 9.7 1.6 6.5 6.5 1.6 0 1.6 1.6 1.6 0 3.2

All 59.2 3.9 9.4 2.5 2.1 8.9 1.4 2.5 1.0 1.4 1.6 0.6 1.3 1.8 0.8 1.4

ally much less demanding than the joint maximum likelihood
estimation of all parameters at once.

The percentage of family types used for the first few trees
of the selected R-vine model (RVM) is shown in Table 2.
The large majority of the pairs in all trees are estimated to
be independent (59 %), but these pairs mainly occur at the
higher trees, since the most important dependencies are cap-
tured in the first trees (Brechmann and Schepsmeier, 2013;
Dißmann et al., 2013). Large dependencies, with Kendall’s τ
coefficients greater than 0.90, are found as expected between
neighbouring cells but remain important across the whole
model domain due to the nature of the hazard: the AFI as-
sesses the freezing temperatures during the entire winter and,
thus, is less associated with small-scale local phenomena that
can cause important spatial variation. At the first tree, 52 %
of the selected bivariate copulas are found to belong to the
Student t copula and 35 % to the Gumbel family, which ex-
hibit positive dependence in the tails. Gumbel, in particular,
has a greater dependence in the positive tail than in the nega-
tive and thus implies greater dependence at larger AFI values
than at lower ones. From the third tree onwards, the percent-
age of independent families is always larger than 40 %.

The small sample size used (110 years of data) in conjunc-
tion with the high dimensions of the modelled pdf (67) is of
concern in this study since this can lead to large uncertainties
in the resulting pdf, which can also propagate in the esti-
mated return periods. The impact of the short sample size on
the uncertainties in the results is quantified using a bootstrap
technique, as described in Sect. 3.4.

Goodness of fit (GOF) is calculated using the Cramér–von
Mises test, which compares the final selected RVM with the
empirical copula. The RVineGofTest algorithm of the same
R package implements different methods to compute the test,
which, however, usually perform poorly in cases of small
sample sizes and at higher dimensions as is the case for this
work (Schepsmeier, 2013). Nevertheless, Table 3 shows the
GOF results for two of these methods. The p value is found
to be larger than 0.05, which is an indication that the fitted
RVM cannot be rejected at a 5 % significance level. How-
ever, given also the quite large p values, a type II error can-
not be excluded. Nevertheless, the suitability of the model, in
comparison to the empirical data, is further discussed in the
Results section as well.

Table 3. Goodness-of-fit values for the Cramér–von Mises (CvM)
statistic based on the empirical copula process (ECP) and based on
the combination of the probability integral transform and empirical
copula process (ECP2) as implemented in the VineCopula R pack-
age.

Method CvM p value

ECP 9.1 0.7
ECP2 0.009 1

In the case of the stationary model, the vine copula is em-
ployed to model the entire spatial dependence of the AFI in
the UK. On the other hand, the spatial AFI structure in the
case of the non-stationary model is modelled in two ways:
(a) by quantifying the dependence on NAO or CO2 in each
location, treating each location as conditionally independent,
and then inducing spatial dependence through the variation
of NAO or CO2 and (b) by fitting the RVM to all the resid-
ual dependencies associated with the AFI between the cells;
these account for dependencies between cells resulting from
other large-scale circulation patterns and also regional cli-
mate variability (e.g. due to effects of local orography, land–
sea contrast, and small-scale atmospheric features such as
convective cells). Notice, however, that the effect of NAO or
CO2 on the residual hazard dependency structure is not taken
into account here. Recently, a methodology that offers the
possibility to include such meteorological predictors in a vine
copula model has been developed by Bevacqua et al. (2017)
and Bevacqua (2017) and is something to be addressed in a
future study.

3.4 Stochastic simulation and uncertainty estimation
via parametric bootstrap

The pdf is used to simulate 100 000 years of winter seasons in
the UK. For each year, the simulated AFI values at each grid
cell depend on the other cells based on the fitted RVM. Long
simulations are needed to obtain numerically converged re-
sults, i.e. convergence to the “true” return period. Our fo-
cus here is the 200-year RP, which is commonly associated
with capital and regulatory requirements. By repeating the
simulation several times, it has been assessed that 100 000
years of winter seasons is long enough to neglect the Monte
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Carlo uncertainty. The stationary model is used to generate
a stochastic set which corresponds to the current hazard ex-
perience. The non-stationary model permits us to create ad-
ditional stochastic sets that represent different climate con-
ditions. In order to assess the influence of climate change
on UK cold spells, three separate stochastic sets, of 100 000
years each, have been created as follows:

– pre-industrial climate (1FCO2 = 0 W m−2), corre-
sponding to the pre-industrial (1900) concentration of
CO2 (296 ppm);

– current climate (1FCO2 = 1.6 W m−2), correspond-
ing to a present-day (2018) concentration of CO2
(400 ppm);

– future climate (1FCO2 = 2.0 W m−2), corresponding to
the future year 2030 concentration of CO2 (435 ppm),
according to the RCP4.5 emission scenario.

The choice of the year 2030 assures a relative close time
distance which is more relevant for the insurance industry
(UNEP, 2015). At the same time, extrapolating far in the
future is particularly problematic, since it relies on the as-
sumption of the stability of these linear relationships, even
though they may be significantly altered by changing bound-
ary conditions. The change in the CO2 radiative forcing is
calculated here based on the RPC4.5 scenario (2 W m−2), but
similar values are projected for 2030 by the other RCP sce-
narios as well (Meinshausen et al., 2011). Each year of the
three stochastic sets above is associated with a random NAOI
value that has been simulated assuming a Gaussian distribu-
tion, fitted to the historical NAOI data set (see Fig. 6). The
influence of NAO on each one of these sets can thus be dis-
cerned by selecting only the simulated years with negative or
positive NAOI values.

The small sample size used in this study (110 years of
data) together with the high dimensions of the modelled pdf
(67) can lead to large uncertainties in the estimated return
periods. Following Bevacqua et al. (2017), the model uncer-
tainty is assessed using a parametric bootstrap approach, for
which a large number of models are created using, instead
of observations, randomly simulated data from the selected
RVM as a basis. In particular, confidence intervals are con-
structed as follows:

– A simulation with the same length as the observed data
(i.e. 110 years) is repeated for B = 500 times.

– For each of these B = 500 samples, a new full model is
fitted (including new GEV and logistic regression model
parameters at each cell and new RVM structure, pair-
copula families and parameters) following the method-
ology described in Sect. 3.3.

– For each of the resulting B = 500 RVMs, a simulation
of 10K years of winter seasons is performed. The uni-

Figure 6. Histogram of the NAOI and the pdf of the fitted Gaussian
distribution (red line).

form variables are then transformed using the (new) in-
verse marginal pdfs, and the corresponding return pe-
riod levels are estimated.

– The uncertainty in the return levels is estimated by
identifying the 95 % confidence interval (i.e. the range
2.5 %–97.5 %) from these 500 return level curves.

Due to computational constraints, confidence intervals are
only computed for the stationary model. In addition, the sim-
ulation length has been reduced to 10 000 years (instead of
100 000), which implies that part of the calculated uncer-
tainty is due to Monte Carlo sampling variability. In order
to investigate the sources of this uncertainty further, the un-
certainty associated with the RVM is only separated from the
uncertainty of the full model, i.e. of the joint pdf, by calculat-
ing confidence intervals with the same approach as described
above but using the same marginal pdfs in each bootstrap
repetition.

4 Results and discussion

4.1 Return period maps

The obtained stochastic sets (see Sect. 3.4) are used to cre-
ate return period maps for the different climatic conditions.
Figure 7a, b, and c represent the AFI values that occur once
every 10, 25, and 50 years based on the stationary model.
The empirical return periods are also plotted for compari-
son (Fig. 7d, e, and f). These are calculated for each cell as
1/(1−P), where P represents the cumulative probabilities
of the ranked values and is calculated based on the Weibull
formula P = i/(n+ 1) (Makkonen, 2006). The spatial pat-
tern is consistent between the empirical and stochastic sets,
showing the largest AFI values in high elevation areas, as ex-
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Figure 7. (a–c) Maps of stochastic AFI values (in ◦C) for return
periods of (a) 10, (b) 25, and (c) 50 years. (d–f) Maps of the corre-
sponding empirical AFI values.

pected. However, the empirical values are in general some-
what larger than the stochastic set. This difference is driven
by the exceptional 1962/63 event, which is estimated empir-
ically at 1 in 110 years but is predicted to be less frequent
according to the GEV fits. The probability of such an event
happening today is discussed in detail in Sect. 4.2.2.

Return period maps at higher return periods (100, 200,
and 500 years) for the pre-industrial, current, and future cli-
mate stochastic sets are shown in Fig. 8. In the beginning
of the 20th century, the UK was experiencing much colder
winters than today. By 2030, the future climate change sce-
nario, extreme cold events with an AFI larger than 100 ◦C
become quite rare (above a 100-year RP) everywhere, except
in mountainous regions. At high return periods and across all
scenarios, the model predicts larger AFI values for the south-
ern part of the UK in comparison to the north. The extreme
AFI values in the south are driven by the exceptional 1962/63
winter which has been more severe in the south than the north
(see Fig. 2b). Excluding this winter from the analysis results
in much lower AFI values in most of the region (not shown).

4.2 Regional return period AFI curves

The vine copula methodology permits the estimation of the
hazard return periods over aggregated regions in the UK.
Since our focus is mainly on inhabited areas, for each simula-
tion year (y) and for each region, the weighted AFI (wAFI) is
computed, whereby the AFI value at each cell j is weighted
by the corresponding number of residential properties (nj ),

Figure 8. Maps of stochastic AFI values (in ◦C) for return periods
of 100, 200, and 500 years for pre-industrial (a–c), current (d–f),
and future (g–i) climate.

as shown in Eq. (8). The weighted AFI thus places more
weight on the hazard over large populated urban areas than
agricultural or mountainous areas. The number of residen-
tial properties in the UK is taken from the PERILS Indus-
try Exposure Database (https://www.perils.org/, last access:
12 March 2019), which contains up-to-date high quality in-
surance market data at CRESTA level (Catastrophe Risk
Evaluating and Standardizing Target Accumulations; https:
//www.cresta.org/, last access: 12 March 2019) based on data
directly collected from insurance companies writing property
business in the UK. Return period wAFI curves for both the
empirical and the stochastic data are shown in Fig. 9. An
analogous return period plot based on the mAFI, i.e. without
weighting, can be found in the Appendix (Fig. A1).

wAFIy =
∑

AFIj,y · nj∑
nj

(8)
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Figure 9. Return period curves of the wAFI (in ◦C) based on the
historical data (grey) and the stochastic model (black). The 95 %
confidence intervals are shown as dashed grey lines for the historical
data and as a shaded grey area for the stochastic model. The dark
shaded area represents the stochastic uncertainty due to the RVM
model alone.

4.2.1 Model uncertainty

The stationary model is utilized to analyse the uncertainty in
the model results and investigate its sources. Figure 9 shows
the empirical and the stochastic return period curves of the
wAFI for the entire UK, together with their associated un-
certainties. The empirical return periods calculation is de-
scribed in Sect. 4.1, while their uncertainty intervals are com-
puted from the 2.5th and 97.5th quantile of the beta prob-
ability distribution function (Folland and Anderson, 2002).
The stochastic curve and confidence intervals are computed
as described in Sect. 3.4. The uncertainty in the model is
found to be large, only marginally lower than the empirical
estimates, and is associated with the short historical record
length. Most of the uncertainty (around 90 % for RPs greater
than 50 years) appears to originate from the uncertainty in the
GEV distribution parameters, with the remaining 10 % being
due to the RVM model (dark shaded area in Fig. 9). Extreme-
value theory is considered as a state-of-the-art procedure to
find values for return periods that amply exceed the record
length and has been utilized in this study. However, a com-
mon difficulty with extremes is that, by definition, data are
rare, and as a result, the shorter the record length, the more
inaccurate the estimation of the GEV parameters is. The re-
sults presented in the following sections should therefore be
interpreted with awareness of the existing uncertainties.

4.2.2 The 1962/63 winter return period and climate
change influence

Return period curves for the stochastic sets under pre-
industrial, current, and future climate conditions are shown in

Table 4. Return period estimates (in years) for the 1962/63 winter
freeze event, based on wAFI.

Method All UK South UK North UK
(< 55◦ N) (> 55◦ N)

Empirical 110 110 110
Stationary stochastic set 205 213 106
Non-stationary stochastic sets
– pre-industrial 204 209 102
– 1960s 216 219 112
– current 433 442 222
– 2030s 788 789 400

Fig. 10. The 1962/63 winter, with a wAFI of 209 ◦C, was the
coldest in the reanalysis data in the UK, and, thus, it is esti-
mated empirically as a 1- in 110-year event (i.e. the length of
the data set). This corresponds well with the Central England
Temperature record, the oldest continuously running temper-
ature data set in the world (Manley, 1974). According to the
latter, only two other winters (1683/84 and 1739/40) have
been colder than 1962/63 in the last 350 years, suggesting
a return period in the range of 110–120 years as well. The
stationary model overestimates this winter’s return period,
which is estimated to be 205 years across the whole of the
UK (Table 4). Especially in the south of the UK, the model
suggests that this event was particularly unusual. In the north-
ern part of the UK, on the other hand, the model suggests a
lower return period of 106 years, closer to the empirical esti-
mate.

The non-stationary model suggests that under current cli-
mate conditions, such an extreme event is approximately 2
times less likely to occur than in the 1960s. This agrees with
Massey et al. (2012), who used climate model simulations
to demonstrate that cold December temperatures in the UK
are now half as likely as they were in the 1960s. Christidis
and Stott (2012) also indicate that human influence has re-
duced the probability of such a severe winter in the UK by
at least 20 % and possibly by as much as 4 times, with a
best estimate that the probability has been halved. On the
other hand, some recent studies have argued that warming
in the Arctic could favour the occurrence of cold winter ex-
tremes and might have also been responsible for the unusu-
ally cold winters of 2009/10 and 2010/11 in the UK (Francis
and Vavrus, 2012; Tang et al., 2013). This hypothesis though
is still largely under debate; see, for example, Barnes and
Screen (2015) and Wallace et al. (2014).

By the year 2030, an event of the same severity as 1962/63
is predicted to become almost 2 times less infrequent, with a
return period of 788 years. Figure 10a shows an important
reduction in the probability of occurrence of cold extreme
events across the whole distribution as a result of the increase
of anthropogenic CO2 concentrations. Larger reductions are
found for the most extreme events as well, which is proba-
bly related to the large increase of the probability of no neg-
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Figure 10. (a) Return period curves of the wAFI (in ◦C) based on the historical data (grey) and the stochastic model for three different
climate conditions: pre-industrial (black), current (blue), and future (red). (b) Same as panel (a) but separated between the south UK (full
lines) and the north UK (dashed lines). Only stochastic sets are shown.

ative temperatures (P0) for several cells, especially around
the coast (see Fig. 8). Similar results are found in both the
northern and the southern part of the UK as well (Fig. 10b).

4.2.3 NAO influence

The profound effect of the NAO on the winter surface tem-
perature over the UK has been reported by several studies
(Scaife et al., 2005; Scaife and Knight, 2008; Osborn, 2011).
In conjunction with these studies, the model predicts that
a negative (positive) NAO phase increases (decreases) the
probability of a cold event in the UK substantially. Figure 11
shows the RP curve of the current climate wAFI, along with
RP curves computed solely from simulated years with NAOI
values greater than 1 (i.e. representing the positive NAO
phase) or years with NAOI values lower than 1 (i.e. repre-
senting the negative NAO phase). On average, extreme cold
winters are estimated to be ≈ 3–4 times more likely to occur
during the negative phase than the positive phase. As an ex-
ample, an event with a wAFI of 100 ◦C has a return period
of 39 years, assuming a negative phase, and 1 in 133 years,
assuming a positive phase. Because of its intrinsic chaotic
behaviour, the NAO is difficult (if possible at all) to predict
(Kushnir et al., 2006). Nevertheless, numerical seasonal fore-
cast systems are currently rapidly improving and have even
shown some success in the past (Graham et al., 2006; Folland
et al., 2006). Incorporating such information in models could

Figure 11. Return period curves of the wAFI (in ◦C) based on the
current climate stochastic model and assuming a variable NAOI
as described in the text (black line). Return period curves based
on negative (lower than −1) and positive (larger than 1) values of
NAOI are shown by green and orange lines, respectively.

be very useful from a catastrophe risk management perspec-
tive.

As already mentioned, the effect of the NAO or CO2 radia-
tive forcing in the hazard dependency structure has not been
taken into account here and is something to be addressed in
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a future study. Another point that requires further consid-
eration is the mechanisms that control and affect the NAO
and its temporal evolution and in particular how the NAO
responds to external CO2 forcing (Hurrell, 2015).

5 Conclusions

This paper presents a probabilistic model of extreme cold
winters in the United Kingdom. The hazard is modelled using
the Air Freezing Index, an index which accounts for both the
magnitude and the duration of air temperature below freez-
ing and is calculated from the ERA-20C reanalysis temper-
ature data covering the period from 1900 to 2010. Extreme
value theory has been applied in order to estimate the proba-
bility of extreme cold winters spatially across the UK. More
importantly, the spatial dependence between regions in the
UK has been assessed through a novel approach which takes
advantage of the vine copula methodology. This approach al-
lows the modelling of concurrent high AFI values across the
country, which is necessary in order to assess the extreme
behaviour of freeze events reliably.

Recognizing the non-stationary nature of climate ex-
tremes, the model also incorporates the NAO and climate
change effects as predictors. Stochastic sets of 100 000 years
representing different climate conditions (i.e. pre-industrial,
current, or future climate and positive or negative NAO) have
been generated, and the return periods of extreme cold win-
ters in the UK, such as the Big Freeze of 1962/63, have been
estimated. According to the model, the occurrence of such an
event is calculated to have decreased approximately 2 times
during the course of the 20th century as a result of anthro-
pogenic climate change. The model further predicts that by
the 2030s, extreme cold winters will become even more un-
common and will occur about 2 times less frequently un-
der the influence of increasing CO2 concentrations. The fre-
quency of extreme cold spells in the UK has been found to
be heavily modulated by the NAO as well. A cold event is
estimated to be ≈ 3–4 times more likely to occur during the
negative phase than the positive phase.

However, considerable uncertainty exists in these esti-
mates, which should be interpreted with caution. The 110-
year reanalysis record used in this study is estimated to be
short, and the level of uncertainty in extremal estimates with
long return periods is high. Additional uncertainty may also
be introduced by possible spurious trends in the reanalysis
data set. A longer record of temperature data would be nec-
essary in order to reduce the uncertainty, and high-quality
long-term reanalysis products with multiple ensemble mem-
bers could help in this direction.

Data availability. The ERA-20C data are available under a
Creative Commons Attribution 4.0 International License at https:
//www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-20c
(last access: 12 March 2019; Poli et al., 2016). The UK Met
Office data are available under the Open Government Licence
at https://www.metoffice.gov.uk/climate/uk/data/ukcp09 (last
access: 12 March 2019; Perry et al., 2009). The Hurrell North
Atlantic Oscillation Index (station based) dataset is freely
available at https://climatedataguide.ucar.edu/climate-data/
hurrell-north-atlantic-oscillation-nao-index-station-based (last
access: 12 December 2016; Hurrell, 2003). Historical observations
of global mean CO2 concentrations are freely available at https:
//data.giss.nasa.gov/modelforce/ghgases/Fig1A.ext.txt (last access:
12 March 2019; Hansen et al., 2007). The Perils Industry Exposure
Database is available on an annual subscription basis (https:
//www.perils.org/products/industry-exposure-and-loss-database,
last access: 12 March 2019). The perils data are used in this study
to calculate the weighted AFI in Sect. 4.2. However, results without
weighting do not alter the conclusions of this study and are also
presented in the Appendix (Fig. A1).
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Appendix A: Copulas and vine copulas

According to Sklar’s theorem, the joint multivariate distri-
bution of a set of d random vectors can be fully speci-
fied by the separate marginal distributions and by their (d-
dimensional) copula, which defines the dependence struc-
ture between them. More precisely, consider a vector of X =
(X1, . . .,Xd) of random variables with a joint probability
density function (pdf), f (x1, . . .,xd). Sklar’s theorem (Sklar,
1959) states that any multivariate continuous distribution
function F(x1, . . .,xd) with marginals F1(x1), . . .,Fd(xd)

can be written as

F(x1, . . .,xd)= C (F1(x1), . . .,Fd(xd)) (A1)

for some appropriate d-dimensional copula C, which is
uniquely determined on [0,1]d .

The probability density function (pdf) of X, f (x1, . . .,xd),
can be found by taking the partial derivatives with respect to
X:

f (x1, . . .,xd)= c(u1, . . .,ud)

d∏
i=1
fi(xi), (A2)

where c(u1, . . .,ud) is the copula density, given by

c(u1, . . .,ud)=
ϑdC(u1, . . .,ud)

ϑu1. . .ud
. (A3)

Expression (A2) is important in terms of modelling be-
cause it permits a multivariate density to be defined as the
product of marginal pdfs and a copula density function that
captures the dependence between the random variables (Ab-
bara and Zevallos, 2014). For a theoretical introduction to
copulas, see Nelsen (2006), Meucci (2011), Joe (2014), and
Durante and Sempi (2015); for a practical engineering ap-
proach and guidelines, see Genest and Favre (2007), Sal-
vadori and Michele (2007), and Salvadori et al. (2014, 2015).

To quantify the dependence between variables, different
measures have been defined, addressing different aspects of
dependence. A common measure of overall dependence is
the Kendall rank correlation coefficient, commonly referred
to as Kendall’s τ coefficient (Genest and Favre, 2007). How-
ever, dependence of rare events cannot be measured by over-
all correlations: even if two variables are completely uncor-
related, there can be a significant probability of a concurrent
extreme event in the two; i.e., they can still be tail-dependent.
Tail dependence describes the amount of dependence in the
lower tail or upper tail of a bivariate distribution. For its
mathematical definition, see Haff et al. (2015).

One important complication is that identifying the appro-
priate d-dimensional copula is not an easy task. In high di-
mensions, the choice of adequate families is rather limited
(Brechmann and Schepsmeier, 2013). Standard multivariate
copulas either do not allow for tail dependence (i.e. multi-
variate Gaussian) or only have a single parameter to con-
trol tail dependence of all pairs of variables (Student t and

Figure A1. Similar to Fig. 9 but for the mAFI (without weighting,
in ◦C).

Archimedean multivariate copulas). This is particularly prob-
lematic for catastrophe modelling applications, for which a
flexible modelling of tails is vital to assess the extreme be-
haviour of natural events reliably.

Vine copulas provide a flexible solution to this prob-
lem based on a pairwise decomposition of a multivariate
model into bivariate (conditional and unconditional) copulas,
whereby each pair-copula can be chosen independently from
the others. In particular, asymmetries and tail dependence
can be taken into account as well as (conditional) indepen-
dence to build more parsimonious models. Vines thus com-
bine the advantages of multivariate copula modelling, that is
the separation of marginal and dependence modelling, and
the flexibility of bivariate copulas (Brechmann and Schep-
smeier, 2013).

As an example, in a four-dimensional case, the joint pdf
can be decomposed as a product of six pair-copulas (three
unconditional and three conditional) and four marginal pdfs,
as shown in Eq. (A4):

f (x1,x2,x3,x4)= f (x1)f (x2)f (x3)f (x4)

× c12 (F1(x1),F2(x2))

× c23 (F2(x2),F3(x3))

× c34 (F3(x3),F4(x4))

× c13|2
(
F1|2(x1 | x2),F3|2(x3 | x2)

)
× c24|3

(
F2|3(x2 | x3),F4|3(x4 | x3)

)
× c14|23

(
F1|23(x1 | x2,x3),F4|23(x4 | x2,x3)

)
. (A4)

The above decomposition is not unique, and Bedford and
Cooke (2002) introduced a graphical structure called regular
vine (R-vine) structure to represent this decomposition with
a set of nested trees. The dependence structure with three
trees for the four-dimensional example above is shown in
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Figure A2. Example of four-dimensional R-vine trees correspond-
ing to the decomposition shown in Eq. (A4).

Fig. A2. More details on vine copulas can be found in Aas
et al. (2006), Schirmacher and Schirmacher (2008), Czado
(2010), and Schepsmeier (2013).
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