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Abstract. This work evaluates the influence of land use
and land cover (LUC) data with different properties on the
landslide susceptibility zonation of the road network in the
Zêzere watershed (Portugal). The information value method
was used to assess the landslide susceptibility using two
models: one including detailed LUC data (the Portuguese
Land Cover Map – COS) and the other including more gen-
eralized LUC data (the CORINE Land Cover – CLC). A
set of fixed independent layers was considered as landslide
predisposing factors (slope angle, slope aspect, slope curva-
ture, slope-over-area ratio, soil, and lithology) while COS
and CLC were used to find the differences in the landslide
susceptibility zonation. A landslide inventory was used as a
dependent layer, including 259 shallow landslides obtained
from the photointerpretation of orthophotos from 2005, and
further validated in three sample areas. The landslide sus-
ceptibility maps were assigned to the road network data and
resulted in two landslide susceptibility road network maps.
The models’ performance was evaluated with prediction and
success rate curves and the area under the curve (AUC). The
landslide susceptibility results obtained in the two models
present a high accuracy in terms of the AUC (>90 %), but
the model with more detailed LUC data (COS) produces bet-
ter results in the landslide susceptibility zonation on the road
network with the highest landslide susceptibility.

1 Introduction

Landslides are natural processes that can constrain the free
movement of people and goods when they directly or indi-
rectly affect road networks (Bíl et al., 2014, 2015; Hilker et

al., 2009; Meneses, 2011; Winter et al., 2013). The total or
partial blockages of road networks have economic and soci-
etal impacts, particularly on the direct damage to the infras-
tructure (material damages), on the population (injuries and
deaths) when driving on the affected infrastructure (Guillard
and Zêzere, 2012; Pereira et al., 2014, 2017), or by causing
indirect damages, such as delays, detours, material damage,
and the rising prices of raw materials (Zêzere et al., 2008; Bíl
et al., 2014, 2015; Jenelius and Mattsson, 2012; Winter et al.,
2016).

Landslide susceptibility assessment is crucial to identi-
fying locations with higher probabilities of landslide oc-
currence (Conforti et al., 2014; Guillard and Zêzere, 2012;
Guzzetti et al., 2006; Pereira et al., 2014; van Westen et al.,
2008). Landslide susceptibility is the likelihood of a land-
slide occurring in an determined area controlled by local ter-
rain conditions; it may also include a description of the ve-
locity and intensity of an existing or potential landslide (Fell
et al., 2008; Günther et al., 2013; Guzzetti et al., 1999). Land-
slide susceptibility reflects the degree to which a terrain unit
can be affected by future slope movements (Günther et al.,
2013).

In general, the choice of landslide predisposing factors
and the main details of the geographical information are not
explained in a landslide susceptibility assessment based on
statistical methods; rather, criteria defined in the literature
(e.g., slope angle, slope aspect, slope curvature, soil, lithol-
ogy, land use, and land cover) are used for this selection be-
cause they can explain the occurrence of slope movements
in the study area (Blahut et al., 2010; Castella et al., 2007;
Castellanos Abella, 2008; Guzzetti et al., 1999, 2006; Soeters
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and van Westen, 1996; van Westen et al., 2008; Zêzere et al.,
2008, 2017).

Beyond the influence of different environmental factors
(e.g., lithology, slope angle, slope morphology, topography,
soils, and hydrology) on the spatial distribution of landslides,
land use and land cover (LUC) dynamics are also an im-
portant factor on landslide susceptibility assessment (Guil-
lard and Zêzere, 2012). Certain land use and land cover
changes (LUCCs) (e.g., deforestation, slope ruptures to road
construction, steep slopes) increase the number of unstable
slopes (Reichenbach et al., 2014), i.e., promoting the propen-
sity for landslide occurrence, and can have an important im-
pact on landslide activity (Beguería, 2006; Glade, 2003; Mu-
gagga et al., 2012; Persichillo et al., 2017; van Westen et al.,
2008).

The LUC, while a proxy variable, is very dynamic over
time and is influenced by climate-driven changes and direct
anthropogenic impacts (Promper et al., 2014). In this regard,
it is an important predisposing factor to landslide susceptibil-
ity assessment, and Dymond et al. (2006) mention that im-
portance: “the quality of the input land-cover map is impor-
tant because the main purpose of the landslide susceptibility
model is to identify where land cover needs to be changed.”

For instance, performing a landslide susceptibility analysis
with a historical inventory over long periods (e.g., decades)
demands the use of a permanent set of predisposing factors
along the landslide inventory timeline. LUC can change over
time; for this reason, it will be more accurate to use the LUC
for different periods (Reichenbach et al., 2014) than using
the most recent LUC map, to avoid spatial relations between
past slope instability and incorrect LUC classes.

The scale of the predisposing factors directly influences
the map elements’ representation and detail, as well as the
choice of the scale of analysis of the final results (Leitner,
2004; Stoter et al., 2014). The choice in the level of de-
tail will also constrain the modeling results. For example,
Meneses et al. (2018b, c) obtained different LUCC results
in Portugal due to the use of different LUC datasets, namely
the CORINE Land Cover (CLC) and the official Land Cover
Map of Portugal (Portuguese designation and acronym Carta
de Ocupação do Solo, COS), with different properties con-
cerning the scale (1 : 100000 and 1 : 25000, respectively),
minimum mapping unit (25 and 1 ha, respectively), and gen-
eralization level (Table 1).

Due to the variation in the road network morphology (the
length vs. width of the roads), the selection of appropriate
data that integrate the analysis of road blockages caused by
landslides requires a systematic assessment of the detailed
properties of the landslide predisposing factors (Drobnjak et
al., 2016; Imprialou and Quddus, 2017; Kazemi and Lim,
2005; Orongo, 2011) to obtain detailed landslide susceptibil-
ity results at the local scale (roads).

In this context, the main goal of this work is to evaluate the
influence of the LUC data properties on the landslide suscep-
tibility zonation of road networks. Two specific goals were

defined: (i) to evaluate and quantify the landslide suscepti-
bility results using two LUC datasets (CLC 2006 and COS
2007) with different properties (scale and minimum mapping
unit) in two landslide susceptibility models; (ii) to use the
output results of the two landslide susceptibility models to
identify the sections of the main road network with the high-
est landslide susceptibility that will suffer future road block-
ages.

2 Materials and methods

2.1 Study area

This study was performed in the Zêzere watershed
(5063.9 km2) located in the center region of mainland Por-
tugal (Fig. 1). The north-northwest sector of this watershed
is occupied by the Serra da Estrela, reaching a maximum el-
evation of 1993 m, where steep slopes can be found; in the
central sector, the relief is less irregular when compared to
the previous sector, but it still has steep slope areas (e.g., the
vicinity of the Castelo de Bode and Cabril reservoirs); in the
south-southwest sector, gentle slopes and flat areas are pre-
dominant.

The soils of the Zêzere watershed are very variable among
the north-northwest, center, and southwest sectors. In the
northwest sector, Cambisols predominate, with small areas
of Fluvisols and eutric Lithosol along the Zêzere River. In
the central area, Lithosols are dominant, with some areas of
Cambisols. In the south-southwest sector, there are areas of
Lithosols intercalated with Cambisols and Luvisols.

According to CLC 2006, the predominant types of LUC
in the study area are forest and seminatural areas, which rep-
resent 72 % of the watershed area. Other LUC types are less
representative, for example, agricultural land (25.5 %), arti-
ficialized land–urban areas (1.5 %), and water bodies (1 %),
including an important freshwater reservoir, the Castelo de
Bode dam (Meneses et al., 2015a). The LUC of this water-
shed is very dynamic, highlighting the LUCC in forest and
agricultural areas derived from multiple socioeconomic driv-
ing forces (Meneses et al., 2017) and the degradation of vast
forest areas by wildfires (Meneses et al., 2018a).

Due to the large extension of this watershed, three sample
areas were selected according to the high density of land-
slides observed in these locations: the Serra da Estrela, Vila
de Rei, and Ferreira do Zêzere municipalities (areas of 86.7,
191.5, and 190.4 km2, respectively), where fieldwork was de-
veloped to validate part of the landslide inventory and the
disruption of roads caused by landslides.

2.2 Data

The landslide predisposing factors used to model the land-
slide susceptibility in the Zêzere watershed were selected af-
ter reviewing the literature about the causal factors of land-
slide occurrence (Blahut et al., 2010; Castella et al., 2007;
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Table 1. Properties of LUC data.

Properties Land cover maps of Portugal CORINE land cover

Acronym COS CLC

Scale 1 : 25000 1 : 100000

Minimum mapping unit 1 ha 25 ha

Data structure Vector Vector

Geometry Polygons Polygons

Minimum distance between lines 20 m 100 m

Base data Orthophotos Satellite images

Spatial resolution 0.5 m 20 m

Nomenclature
Hierarchical (five levels) Hierarchical (three levels)

225 classes 44 classes

Production method Visual interpretation Semiautomated production
and visual interpretation

Date of production 2007 2006

Castellanos Abella, 2008; Guzzetti et al., 1999; Reichenbach
et al., 2018; Soeters and van Westen, 1996; van Westen et al.,
2008; Zêzere et al., 2008, 2017) (Fig. 2).

Six fixed landslide predisposing factors were considered:
slope angle, slope aspect, slope curvature, slope-over-area ra-
tio (SOAR), soil, and lithology. The LUC types of COS and
CLC were used to find the differences in the landslide sus-
ceptibility zonation. The set of landslide predisposing fac-
tors and the corresponding classes (Fig. 2) were the same in
all models, only changing the LUC data.

In general terms, an increasing slope angle promotes land-
slide occurrence and is a very good proxy of the shear stress
(Zêzere et al., 2017). Slope instability is more frequent at the
higher slope angles of the Serra da Estrela and throughout the
Zêzere River valley. Also, in these areas, convex slope cur-
vature is predominantly related to slope instability. The slope
aspect is important in the spatial distribution of the different
LUC types of the study area (Fig. 2) and in slope instability,
especially in northwest-facing slopes (more exposed to rain
and with higher humidity levels).

The SOAR is a proxy variable of the moisture reten-
tion, the soil water content, and the surface saturation zones
(Zêzere et al., 2017), highlighting, in the Zêzere watershed,
the upstream (very close to the Zêzere River) and southwest
areas with a higher SOAR.

In the sample areas of the Vila de Rei and Ferreira do
Zêzere municipalities, where a high landslide density was
observed, schist and metasedimentary lithologies are pre-
dominant. Further, slope instability in the watershed is higher
in the hortic Luvisols and in the LUC classes of forest and
shrubland or herbaceous vegetation associations (Fig. 1).

The official LUC data available for the study area are CLC
produced by the European Environment Agency (EEA) and
COS produced by the General Directorate for Territorial De-
velopment (DGT) in Portugal. These LUC data (CLC and
COS) have different properties and have been used in sev-
eral studies about landslides in Portugal (e.g., Guillard and
Zêzere, 2012; Meneses et al., 2015b; Piedade et al., 2011;
Reis et al., 2003; Zêzere et al., 2017).

Table 1 describes the main properties of these LUC data
(DGT, 2013; EEA, 2007; IGP, 2010). Among the differences
between the two LUC datasets, the scale is highlighted be-
cause COS is the most detailed relative to CLC (proportion
1/4). However, the properties are not proportional between
the two LUC datasets; while the COS features have a min-
imum mapping unit of 1 ha, CLC has a minimum mapping
unit of 25 ha, and the minimum distance between lines is
20 m in COS, while in CLC it is 100 m.

To reduce possible discrepancies in the field, the LUC data
were collected for near dates: CLC 2006 and COS 2007.
The LUC data were developed with base information that
matches in temporal terms, for example, the satellite images,
orthophotos, and agricultural and forestry inventories used as
auxiliary information. The nomenclature of these LUC data
corresponds to the third level (see the official CLC nomen-
clature on the EEA website). In this study, the second level
of the CLC nomenclature was used because it has a lower
number of classes for the study area (12 of 31 classes).

The agreement among the LUC data is presented in Ta-
ble 2. The forest class shows great differences between the
two LUC datasets. For example, COS represents more for-
est area relative to CLC (34 % and 26.9 % of the study area,
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Figure 1. Zêzere watershed and landslide inventory. The pictures represent landslides that affected roads: A, B, C, D, and E – municipality
roads of Serra da Estrela; F – Ferreira do Zêzere; G – Vila de Rei.

respectively) because a part of COS (approximately 10 % of
the study area) is classified as scrub and/or herbaceous veg-
etation associations in CLC. The reverse was also verified;
approximately 5 % of the study area is classified as scrub
and/or herbaceous vegetation associations in COS, and this
same area is represented by forest class in CLC. These dis-
crepancies are derived from the LUC data properties because
COS is more detailed and represents more degraded forest
areas, especially where wildfires occurred. These events af-
fected a large percentage of the watershed (Meneses et al.,
2018a), especially the central sector, as a vast burned area
culminated in a large transition of forest area to shrubland.

The forest, scrub and/or herbaceous vegetation associa-
tions and open spaces with little or no vegetation are the
LUC types predominant in the hillsides with steep slopes (see
Tables S1 and S2 in the Supplement). The remaining LUC
classes present more area in the lower slopes (>10◦).

The soil and lithology data were obtained from the envi-
ronment atlas web platform published by the Portuguese En-
vironment Agency (APA) at a 1 : 1000000 scale. A digital
elevation model (DEM) was built using digital topographic
maps at a 1 : 25000 scale (IGEOE), containing contour lines
with 10 m equidistance.

Slope angle, slope aspect, slope curvature, and SOAR (to-
pographic wetness index) layers were extracted from the
DEM. Road network data (vector lines) were extracted from
Portugal’s military cartography (itinerary maps, 1 : 500000
scale), available on the Portuguese Army Geospatial Infor-
mation Center’s website. The road network was classified ac-
cording to the roads’ width and their network hierarchy. Con-
sidering the road center line, a buffer of 5 m was defined for
municipal roads, 10 m for complementary roads, and 20 m
for superhighways. These distances were measured with ge-
ographic information systems (GIS) on the study area roads
(directly on the orthophotos).

The landslide inventory was obtained using photointerpre-
tation (orthophotos from 2005 and Google Earth images), a
process supported by the ancillary topographic data and fur-
ther fieldwork validation only performed in the sample areas
(Fig. 1) due to the extension of the study area. A total of 128
landslides (predominantly shallow translational slides), with
a total area of 74 042 m2, were validated during fieldwork in
the sample areas (49.4 % of the total inventoried landslide
cases). Among the landslides initially inventoried by pho-
tointerpretation in the sample areas, more than 90 % of cases
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Figure 2. Predisposing factors used in the landslide susceptibility assessment. Predisposing factor map legend. Curvature – Cv: convex; St:
straight; Cc: concave. Lithology – A: alluvium; ACLD: arenites, conglomerates, limestones, dolomitic limestone; ACLM: arenites, conglom-
erates, limestones, dolomitic limestone and marl; ALSC: arenites, limestone, sand, stony banks and clay; CGA: clayey schist, graywackes
and arenites; CALD: conglomerates, arenites, limestone, dolomitic limestone, marly limestone and marl; CALM: conglomerates, arenites,
white limestone and red marl; G: gabbro; GD: glacial deposits; GS: granite and other stones; GP: granite porphyritic; LDM: limestones,
dolomitic limestone, marly limestone and marl; Q: quartzite; RCMD: red sandstone, conglomerates, marl and dolomitic limestones; SG:
sands and gravel; SRAC: sands, rocky, arenites and clay; SG: schists and graywackes; SGC: schist and graywacke complex; SAMQ: schists,
amphibolite, mica schists, quartzite graywackes, carboned stones and gneisses. Soil – HC: humic Cambisols; R: rankers; DC: dystric Cam-
bisols; DF: dystric Fluvisols; EL: eutric Lithosol; CC: calcic Cambisols; CL: calcic Luvisols; HL: hortic Luvisols; ChC: chromic Cambisols;
EC: eutric Cambisols; CcC: calcic–chromic Cambisols; HP: hortic Podzols; EF: eutric Fluvisols. LUC – UF: urban fabric; ICT: industrial,
commercial and transport units; MDC: mine, dump and construction sites; ANA: artificial, nonagricultural vegetated areas; AL: arable land;
PC: permanent crops; P: pastures; HAA: heterogeneous agricultural areas; F: forests; SHV: scrub and/or herbaceous vegetation associations;
OSV: open spaces with little or no vegetation; IW: inland waters.
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Figure 3. Landslide size frequency distribution.

were confirmed. In these sample areas, road disruptions were
also validated.

For the complete Zêzere watershed, 259 landslides were
identified, predominantly of shallow type. Of the total, 32
landslides directly affected the road network (total or partial
blockages by the material and seven cases with partial loss
of infrastructure). The landslide inventory was randomly di-
vided into two subsets (Fig. 1) (Chung and Fabbri, 2003): the
landslide training group and the landslide test group (81.5 %
and 18.5 % of the total landslide affected area, respectively).
The statistical description of each landslide group is pre-
sented in Table 3.

The landslide size frequency distribution is different be-
tween the landslides that affected the road network and those
that did not (Fig. 3). The area of the majority of landslides
ranges between 101 and 200 m2, while most of the land-
slides that affected the road network present a larger area
(>1000 m2).

All the predisposing factors and landslide inventory were
converted to raster (resolution 10 m) to assess the landslide
susceptibility. The selection of the predisposing factors’ cell
size was based on several geoinformation conversion tests in
the Zêzere watershed previously performed by Meneses et
al. (2016, 2018b).

2.3 Methods

The landslide susceptibility modeling was carried out using
the information value (IV) method (Yan, 1988; Yin and Yan,
1988). The IV method is a bivariate statistical method that
has been used in several studies and different areas with good
results for landslide susceptibility assessment (e.g., Guillard
and Zêzere, 2012; Oliveira et al., 2015a; Zêzere et al., 2017).

Nat. Hazards Earth Syst. Sci., 19, 471–487, 2019 www.nat-hazards-earth-syst-sci.net/19/471/2019/



B. M. Meneses et al.: Effects of different land use and land cover data 477

Table 3. Statistics description of the training group and test group landslide inventories.

Training group Test group

Non-affected Affected Non-affected Affected Total
roads roads roads roads inventory

Total landslides 185 26 42 6 259
Total area (m2) 44 604 369 404 10 444 12 089 104 077
Minimum (m2) 134 7 18 82 7
Maximum (m2) 27 364 12 507 1911 5881 12 507
Mean (m2) 2414 1421 249 2015 402
Standard deviation (m2) 3284 2647 304 2627 1069

The IV of each class within each explanatory variable is
given by Eq. (1) (Yan, 1988; Yin and Yan, 1988):

IVxi = ln
Si/Ni

S/N
, (1)

where IVxi is the IV of the variable xi , Si is the number of
terrain units with landslides and the presence of variable xi ;
Ni is the number of terrain units with variable xi , S is the
total number of terrain units with landslides, and N is the
total number of terrain units.

The IV method was applied in several landslide suscepti-
bility zonation studies, providing good results (e.g., Che et
al., 2012; Chen et al., 2016; Conforti et al., 2012) at the re-
gional scale. This method was also applied in several studies
conducted in Portugal, with good performance in suscepti-
bility assessment (e.g., Guillard and Zêzere, 2012; Oliveira
et al., 2015b; Pereira et al., 2014; Zêzere et al., 2017).

The a priori probability of finding a landslide unit in the
study area (S/N) and conditional probabilities for each class
of the independent variables (Si/Ni) were calculated, obtain-
ing the IV for these classes. However, the IV method presents
constraints on obtaining the natural logarithm for negative re-
sults; in this case, the lower value calculated for each variable
was assigned to classes when Si was equal to zero.

The IVs of all the variables were combined to obtain the
landslide susceptibility map (LSM). For the final landslide
susceptibility assessment, i.e., the integration of the IVs of all
the independent variables, the following equation was con-
sidered:

IVj =

n∑
i=0

Xij Ii, (2)

where IVj is the total IV of the cell j , Ii is the information
value of each cell of each independent variable, n is the num-
ber of variables, and Xij assumes the value 1 or 0, depending
on the presence or absence of the variable in the terrain unit.

Landslide susceptibility model performance was assessed
using training landslides. Landslide areas in the test group
were only used to perform an independent validation of the
landslide susceptibility. Prediction rate curves (PRCs) were

computed for each final LSM (Chung and Fabbri, 1999,
2003) and also the area under the curve (AUC). Success rate
curves (SRCs) were obtained for the landslide susceptibil-
ity road network maps using only the landslides that affected
roads.

The importance of each independent variable in the land-
slide susceptibility assessment was also determined, so that
the spatial influence of each predisposition factor in the mod-
els can be understood. The accountability (AI) and reliability
(RI) indexes have been used in different contexts to assess
the importance of each independent variable in the bivari-
ate statistical methods (e.g., Blahut et al., 2010; Meneses et
al., 2016). AI explains how different classes of predisposi-
tion factors are relevant in the analysis because they contain
the landslide area, while RI depends on the average density
of the landslide area in the predisposing factor classes that
are more relevant to the development of this process. In this
procedure, the AI and RI were determined using Eqs. (3) and
(4), respectively (Blahut et al., 2010).

AI =

n∑
i=1

k

N
100 (3)

RI =

n∑
i=1

k

n∑
i=1

y

100 (4)

Here k is the landslide area in classes with the conditional
probability values higher than a priori probability, N is the
total landslide area, and y is the area of each class of inde-
pendent variable with a conditional probability above the a
priori probability.

Two landslide susceptibility models were built using the
IV method (see results in Table S3), using the same set of
predisposing factors, except the LUC data (Fig. 4): model 1
(M1) was modeled with COS 2007 and resulted in landslide
susceptibility map 1 (LSM1); model 2 (M2) was modeled
with CLC 2006 and resulted in landslide susceptibility map
2 (LSM2). LSM1 and LSM2 were correlated, and the corre-
sponding spatial agreement was analyzed.
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Figure 4. Workflow of landslide susceptibility assessment (using different LUC datasets) and the road susceptibility data integration.

Information values of LSM1 and LSM2 were assigned to
the road network (using GIS), resulting in a road network
map with the landslide susceptibility location (landslide sus-
ceptibility of the road network – LSRN1 and LSRN2), where
there is a higher spatial probability of road interruption or
road interference caused by landslides. Different outputs
of the two models (road network) were compared using
the overall agreement and kappa coefficient (Congalton and
Green, 2009), allowing the assessment of the consistency
and agreement of the obtained results with different LUC
datasets. The information of road disruptions caused by land-
slides was used to validate these results.

Landslide susceptibility maps were built and classified in
10 classes (deciles) containing an equal number of terrain
units to allow visual comparison of the results.

3 Results

3.1 Landslide susceptibility

The landslide susceptibility results show spatial contrasts
in the study area. Some areas in the center of the water-
shed (highlighting the vicinity of the Castelo de Bode reser-
voir) and the northern sectors (highlight the Serra da Es-
trela) present the highest landslide density and susceptibility
(Fig. 5).

The results of the AI and RI indexes show important dif-
ferences among the predisposing factors that have been inte-
grated in the landslide susceptibility models (Table 4). The

Table 4. Results of the accountability (AI) and reliability (RI) in-
dexes.

Factors AI RI

Aspect 79.5 0.2
Slope 76.1 0.6
SOAR 13.5 0.7
Soil 62.4 1.0
Lithology 60.6 0.4
Curvature 61.1 0.3
LUC (COS) 82.0 0.3
LUC (CLC) 76.0 0.3

LUC predisposing factors (COS and CLC) registered the
highest AI results, highlighting COS’s LUC types with a
higher AI. These results show the relevance of certain classes
of COS in the predisposing factor dataset, by the number of
landslide areas covered (emphasis on the forests, scrubland,
and/or herbaceous vegetation associations, and open spaces
with a scarcity or absence of vegetation).

The soil, SOAR, and slope angle present the highest val-
ues in the case of RI, which shows that landslide density is
concentrated in a reduced number of classes of each of the
predisposing factor areas (e.g., hortic Luvisols, SOAR [22.5–
25], and slope [between 25 and 45◦]).

The landslide susceptibility model’s agreement test was
performed using the landslide training inventory used to per-
form the outputs of each landslide susceptibility model, and
these results were validated using the landslide test group.
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Figure 5. Landslide susceptibility (IV represented from the highest – red – to the lowest susceptibility – green): the map of Susceptibility M1
represent the results obtained with model 1 (performed with COS data) – LSM1; the map Susceptibility M2 represent the results obtained
with model 2 (performed with CLC data) – LSM2. The map on the right is the variation between LSM1 and LSM2.

The PRCs of each final susceptibility map (obtained from
the results of the landslide training group) show slight varia-
tions (Fig. 6), but, in general terms, the curves are identical,
demonstrating the high and similar performance of the mod-
els in the determination of landslide-susceptible areas.

The AUC of LSM1 and LSM2 that includes the same
landslide information used to train the models is 94.1 %
and 93.9 %, respectively. These results (landslide prediction)
were considered to integrate the landslide susceptibility road
network (LSRN1 and LSRN2) and the next analyses pre-
sented. Additionally, spatial differences were observed in the
landslide susceptibility maps (Fig. 5), reflecting the differ-
ences of the influence of LUC properties.

When the two landslide susceptibility maps are reclassi-
fied into two classes (not susceptible IV≤ 0 and susceptible
IV >0), the susceptible area in LSM1 corresponds to 19.7 %
and in LSM2 to 20.8 %. The CLC data provide IV results
lower than the IV obtained with the COS data, but CLC is
more generalized and justifies that the most susceptible area
is observed in LSM2, compared to LSM1. The variation be-
tween the maximum and minimum IVs (3 and −3 of 1IV in
Fig. 5) show the landslide susceptibility differences derived
from spatial representation of LUC classes of the two LUC
datasets considered. The highest variations between LSM1
and LSM2 are found in places with reduced IVs (low and
moderate susceptibility), marking the central sector of the
study area. The areas with the highest IVs in LSM1 and
LSM2 present a lower variation.

Figure 6. Prediction rate curves (PRCs) of the landslide suscepti-
bility (LSM1 – COS and LSM2 – CLC).

3.2 Landslide susceptibility in the road network

Due to the width of the road network, in most cases, these
infrastructures are not identified in the LUC data due to the
properties or specifications (Table 1), namely, the minimum
distance between lines considered in each LUC data in the
research. The class “road and rail networks and associated
land” (LUC nomenclature, level III) integrates the main class
”industrial, commercial, and transport units” (level II); how-
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Figure 7. Density of roads by LUC class of CLC and COS data (see
LUC legend in Fig. 2).

ever, when a tabulation of the area of the road network used
in this research and the LUC datasets was performed, the
density of the roads was different in each LUC class between
datasets (Fig. 7).

The IVs of LSM1 and LSM2 assigned to the road network
differentiated the roads according to the landslide suscepti-
bility, representing the highest IV where future landslides
will occur and possibly rupture the road network or cause
socioeconomic constraints due to total or partial blockages.
In this case, the differences in the roads’ landslide suscepti-
bilities were also analyzed.

The IVs assigned to the road network do not have spatial
agreement between the two models. The difference between
the maximum and minimum IVs of the LSRN1 and LSRN2
variations is significant, with IV variation of approximately
1. The interquartile range of the IV is greater in LSRN2 than
in LSRN1 (Fig. 8). However, the IV average is similar in
LSRN2 in comparison to LSRN1.

The landslide susceptibility map of the road network ob-
tained by LSM1 (resulting in LSRN1) (Fig. 9) shows that
it is spatially contrasted along the road network, highlight-
ing the places where future landslides that may cause dis-
turbances on the roads are most likely to occur. Conversely,
in the landslide susceptibility map of the road networks ob-
tained by LSM2 (resulting in LSRN2), the IV assigned to the
road network is generally lower when compared to LSRN1,
a result derived from the LUC generalization (CLC) used in
the input of model 2.

LSRN1 includes 14.1 % of the roads with a positive land-
slide susceptibility (IV≥ 0), and the roads with high land-
slide susceptibility (IV >10) represent only 0.1 % of the total
road network (Fig. 9). In LSRN2, the positive landslide sus-
ceptibility (IV≥ 0) increases (compared with LSRN1) and

Figure 8. Landslide susceptibility of the road network. LSRN1 –
IV assigned for LSM1; LSRN2 – IV assigned for LSM2.

comprises 14.7 % of the total road network, where 0.1 % of
this network corresponds to a high landslide susceptibility
(IV >10).

LSRN2 does not show a high variation in short road dis-
tances; i.e., the IV tends to be extended within each polygon
of the same class of the CLC’s LUC (larger polygons in com-
parison with the COS data), reducing the IV variation along
the roads. The variation in the IV within each polygon of the
LUC data is only explained by the remaining predisposing
factors included in the model.

In LSRN2, the places with a high landslide susceptibil-
ity are not always identified as those where landslides ef-
fectively occurred (Fig. 10). The landslide susceptibility of
the road network enhances the results obtained with COS
(LSRN1) in areas with very high landslide susceptibility,
precisely where landslides were validated in the fieldwork.
These results show the importance of LUC data properties in
the spatial differentiation of landslide susceptibility.

The spatial agreement and kappa coefficient between the
LSRN1 and LSRN2 landslide susceptibility classes are 89.7
and 83.1 %, respectively (Table 5). In general, the individual
susceptibility classes present a high agreement (≥ 80 %, ex-
cept the high and very high classes of LSRN2) but with dif-
ferences between the two models. For example, the landslide
susceptibility class “very high” comprises 0.05 % and 0.06 %
of the total road network in LSM1 and LSM2, respectively,
but LSRN2 presents 20.4 % of the omission differences in
the same susceptibility class compared to the 3.8 % commis-
sion differences of LSRN1. The intermediary susceptibility
classes of the two models highlight the omission and com-
mission differences.

Although variations exist between LSRN1 and LSRN2
landslide susceptibility, the relationship between the two
models’ outputs is high, presenting a Pearson correlation co-
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Figure 9. Landslide susceptibility of the road network (LSRN1 and LSRN2) and the ratio between landslide susceptibility classes of the
roads. LSRN1 – IV assigned for the LSM1; LSRN2 – IV assigned for the LSM2.

Figure 10. Examples of the landslide susceptibility of the road network in the Ferreira do Zêzere municipality. 1 – LSRN1; 2 – LSRN2.

efficient of 0.98 (significance level p<0.05). The results of
this correlation reflect the existence of an agreement on the
spatial variation between LSRN1 and LSRN2; i.e., in gen-
eral, when the IV of one output increases the other also in-
creases, or vice versa, regardless of the discrepancy among
the IVs of the same cells of each output.

The LSRN1 and LSRN2 results were crossed with all
landslides that caused perturbations or disruptions of the road
network, and the performance of models was assessed. Over-
all, the results were very good, with 89.5 % and 89.3 % AUC

for LSRN1 and LSRN2, respectively. However, LSRN1 of-
fers slightly better results when compared to LSRN2, as can
be seen in the representation of the SRC (Fig. 11); i.e., up to
20 % of the total area of the road network validates approx-
imately 83 % of the landslide susceptibility of LSRN1 and
LSRN2. Nevertheless, LSRN2 shows a slightly better per-
formance (to approximately 45 % of the total area of the road
network), but LSRN1 improves its validation performance at
this point, being completely validated with 67 % of the to-
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Table 5. Spatial agreement between LSRN1 and LSRN2 (percentage of road network).

LSRN2

Very low Low Moderate High Very high Total area Agreement Commission
LSRN1 (IV <− 5) (IV−5–0) (IV 0–5) (IV 5–10) (IV >10) (%) (%) differ. (%)

Very low (IV <− 5) 46.3 2.2 0.0 0.0 0.0 48.5 95.5 4.5
Low (IV−5–0) 3.5 31.7 2.3 0.0 0.0 37.4 84.6 15.4
Moderate (IV 0–5) 0.0 1.7 10.1 0.5 0.0 12.3 82.4 17.6
High (IV 5–10) 0.0 0.0 0.2 1.5 0.01 1.7 88.1 11.9
Very high (IV >10) 0.0 0.0 0.0 0.0 0.05 0.05 96.2 3.8

Total area (%) 49.8 35.5 12.58 2.03 0.06
Agreement (%) 93.0 89.2 80.3 75.0 79.6 Overall agreement: 89.7 %
Omission differ. (%) 7.0 10.8 19.7 25.0 20.4 Kappa coefficient: 83.1 %

Figure 11. Success rate curves of LSRN1 and LSRN2 models.

tal area of the road network, while LSRN2 is validated with
74 % of its area.

4 Discussion

In landslide hazard and risk assessment, the LUC data inte-
grate the controlling factor group and, in many evaluations,
are directed by another factor input to the model. Usually
LUC data are used as a landslide conditioning factor, which,
in some cases, is scarce, generalized, and not very detailed.
For example, Eeckhaut and Hervás (2012) verified that in dif-
ferent locations of Europe CLC is widely used for landslide
assessment because it is the only LUC data available. Re-
mote sensing and satellite images contributed to LUC data
acquisition for landslide susceptibility assessment in differ-
ent times (Guzzetti et al., 2012) and territories and minimize

some problems of scarcity and detail (thematic and resolu-
tion). LUC is an important conditioning factor in landslide
susceptibility (Pisano et al., 2017), and the high accountabil-
ity index results prove this fact (Table 4).

There are several studies about the influence of land use
cover changes on landslide susceptibility (e.g., Karsli et al.,
2009; Mugagga et al., 2012; Promper et al., 2014; Reichen-
bach et al., 2014), although to the best of our knowledge
there are no approaches that analyze the influence of different
LUC datasets with different properties (date and base maps
used on the production, spatial resolution, scale, minimum
mapping unit, or others) on the landslide susceptibility re-
sults. When the landslide predisposing factors are collected,
the LUC dataset must be selected according to its abovemen-
tioned properties and not only on the basis of its availability
and free-of-charge conditions.

When different LUC datasets are available, the choice for
the LUC dataset used in the landslide susceptibility assess-
ment is not always clearly justified, and the results may vary
according to LUC data properties selected. For Portugal dif-
ferent LUC datasets (with different properties) are available,
but the use of each dataset can generate different conclusions;
for example, different land use and land cover changes in the
same period were observed by Meneses et al. (2018c).

This study highlights the landslide susceptibility differ-
ences derived exclusively from the LUC data properties be-
cause the other predisposing factor maps are the same in both
models. Although if another method is used or the terrain
mapping unit or another characteristic is changed, the results
may vary, which has already been widely discussed (Chen et
al., 2016; Den Eeckhaut et al., 2010; Guzzetti et al., 2006;
Oliveira et al., 2015a; Zêzere et al., 2017).

Further, the data of soil and lithology were constrained and
very generalized (1 : 1000000 and 1 : 50000 scales, respec-
tively), and this factor can influence the IV results if more
detailed data were considered in the modeling process. The
performance of the landslide susceptibility mapping and as-
sessment is controlled by the quality of the available data not
only the method (Pourghasemi et al., 2014).
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Some research works refer to the quality of geoinforma-
tion (scale and precision) on the final result changes (e.g.,
Etter et al., 2006). In this case, the degree of completeness
and the positional, geometric, and thematic agreement of the
selected LUC data were evaluated by different proprietary
institutions, with more than 80 % accuracy, i.e., where the
semantic inconsistency error was reduced, an important fac-
tor in reducing the error propagation and achieving a product
with the best quality (Van Oort and Bregt, 2005; Regnauld,
2015).

The landslide inventory was obtained by photointerpreta-
tion, which is certainly not complete, especially in forest and
agricultural areas, a fact that could have an impact on the
landslide susceptibility zonation of the study area. This in-
ventorying method does not allow for shallow or small land-
slide identification in forest areas, where the type, height, and
density of the vegetation is important to landslide activity
(Guzzetti et al., 2012), or in cultivated areas where agricul-
tural practices erase the morphological and LUC signature
of slope failures (Fiorucci et al., 2011). The quality and com-
pleteness of the landslide inventories can interfere with the
quality of future landslide spatial occurrences (Galli et al.,
2008; Guzzetti et al., 2012; Reichenbach et al., 2018). How-
ever, the landslide inventory is the same for both landslide
models presented in this research, and the variation results
depend exclusively on the LUC datasets that are integrated
into each model.

The correlation between the outputs of each model is
high, but there are spatial differences between them. The
COS data are more detailed (1 : 25000) than the CLC data
(1 : 100000), and the LUC classes are more differentiated
in the territory, allowing greater detail and agreement in de-
termining the areas with high landslide susceptibility, which
were verified in LMS1. In model 2, CLC data are less de-
tailed and contribute to IVs that are lower (low and very low
landslide susceptibility in LSM2) compared with LSM1.

IV is more generalized along the road network at LSRN2
when compared with LSRN1, results derived exclusively
from the input of LUC data with different properties in the
models. These results highlight the importance of general-
ization and scale of LUC data selected in the landslide sus-
ceptibility assessment.

In the road network intersection with the LUC data, a
high absence of road data was observed in the class indus-
trial, commercial, and transport units, which is explained by
the cartographic generalization due to the minimum map-
ping unit and minimum distance among lines of each LUC
dataset. These factors exclude the road data due to the mini-
mum requirements defined in the technical specifications of
each LUC dataset creation. However, the distribution of the
road network among the LUC classes is quite variable in both
LUC datasets (COS and CLC), one of the factors that also
justifies the variation in landslide susceptibility observed in
different outputs.

The results of the PRC and AUC for LSM1 and LSM2
show a high quality and performance of both models in
the landslide susceptibility area determination (Guzzetti et
al., 2006), but LSM1 presents a slightly better performance.
Nevertheless, the prediction landslide results were validated
with the landslide test group and present good results to be
assigned in the road network.

The LSRN1 and LSRN2 models’ validation results
demonstrate that the models effectively identify the places
where the landslides occurred and are more likely to occur
in the future. In this case, the SRC and AUC note the high
efficiency of the models (Guzzetti et al., 2006), with LSRN1
having a slightly higher efficiency, highlighting the proper-
ties of the LUC data.

Some roads in the study area were affected by landslides,
a fact confirmed during the fieldwork developed to validate
the landslide inventory (examples of some road blockage or
damage in the Serra da Estrela and sample areas). In certain
cases, the affected roads are important accesses points for the
most isolated villages in the study area, and, in some cases, a
landslide can isolate the villages because part of the affected
infrastructure is the only public access, a fact verified in the
sample areas.

The results highlight the importance of LUC data proper-
ties in landside assessment. More detailed LUC data (COS
data) allow better landslide susceptibility results, a fact that
was also described by Dymond et al. (2006), identifying
some places where landslides occurred in the study area. De-
tailed predisposing factor data are recommended in landslide
susceptibility assessment, a fact also mentioned in other stud-
ies. For example, Fressard et al. (2014) refer to the impor-
tance of detail in geomorphological variables to obtain high-
quality results in landslide prediction.

This study was performed in a specific watershed, which
highlights that landslide susceptibility changes according to
the LUC data properties. It is recommended that the LUC
data to be used as a predisposing factor of landslide suscep-
tibility (e.g., in road networks) be as detailed as possible and
small-scale LUC datasets be avoided (≥ 25000). Further re-
search is needed to test if these results change when the scale
is different (e.g., national scale or very detailed scale).

In the analysis of the risk associated with road transporta-
tion, the higher the probability of a given event or incident,
the greater the consequences (Berdica, 2002). In this con-
text, the determination of the locales with the highest land-
slide susceptibility is very important, enabling prevention
and minimizing these consequences or enabling better reac-
tions when dealing with emergencies because road closures
change the travel and reaction time (Meneses and Zêzere,
2012).
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5 Conclusions

Landslide susceptibility in the Zêzere watershed is spatially
variable, highlighting some characteristics of the study area’s
geo-factors in high landslide density in a specific location,
for example, the highest slope angles and certain LUC types
(e.g., forests and scrubland) and lithology.

The properties of the data that are integrated into the land-
slide susceptibility models are also an important issue to be
considered since the variation in the properties of the same
geo-factor provided different results, in this case LUC with
different properties.

More detailed LUC data (COS) allow better landslide sus-
ceptibility results, while more generalized LUC data (CLC)
resulted in the landslide susceptibility being more reduced,
disallowing the identification of some places where land-
slides occurred. However, the results of the two susceptibil-
ity models showed good performance, a fact demonstrated
by the validation of the models’ results.

The assignment of the landslide susceptibility results to
the road network allowed the identification of the locations
with the highest spatial probability for landslide occurrence.
The LSRN1 map stands out with better results due to the inte-
gration of the COS dataset, showing the importance of LUC
data detail in the identification of locations where landslides
have occurred. The LSRN2 map does not have good perfor-
mance in the identification of high landslide susceptibility in
all road sections where landslides have occurred. In general,
both LSRN1 and LSRN2 show the same trend in the spatial
variation in landslide susceptibility of the study area’s road
network, highlighting the high susceptibility on the slopes of
the Serra da Estrela and near the Castelo de Bode reservoir.

Finally, LUC data properties were shown to be important
in the variation in landslide susceptibility results. When the
locations where landslides are likely to occur are known, al-
ternative options can be created to avoid partial or complete
isolation of certain localities, reduce the social and economic
constraints of this population, and adopt preventive measures
and alternative evacuation paths in case of landslide occur-
rence.
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Bíl, M., Kubeček, J., and Andrášik, R.: An epidemiological ap-
proach to determining the risk of road damage due to landslides,
Nat. Hazards, 73, 1323–1335, https://doi.org/10.1007/s11069-
014-1141-4, 2014.
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